Effective Field Theory and Time-Reversal Violation in Light Nuclei
Résumé
Thanks to the unnaturally small value of the QCD vacuum angle $\bar\theta < 10^{-10}$, time-reversal ($T$) violation offers a window into physics beyond the Standard Model (SM) of particle physics. We review the effective-field-theory framework that establishes a clean connection between $T$-violating mechanisms, which can be represented by higher-dimensional operators involving SM fields and symmetries, and hadronic interactions, which allow for controlled calculations of low-energy observables involving strong interactions. The chiral properties of $T$-violating mechanisms leads to a pattern that should be identifiable in measurements of the electric dipole moments of the nucleon and light nuclei.