Critical stability of few-body systems
Résumé
When a two-body system is bound by a zero-range interaction, the corresponding three-body system -- considered in a non-relativistic framework -- collapses, that is its binding energy is unbounded from below. In a paper by J.V. Lindesay and H.P. Noyes it was shown that the relativistic effects result in an effective repulsion in such a way that three-body binding energy remains also finite, thus preventing the three-body system from collapse. Later, this property was confirmed in other works based on different versions of relativistic approaches. However, the three-body system exists only for a limited range of two-body binding energy values. For stronger two-body interaction, the relativistic three-body system still collapses. A similar phenomenon was found in a two-body systems themselves: a two-fermion system with one-boson exchange interaction in a state with zero angular momentum J=0 exists if the coupling constant does not exceed some critical value but it also collapses for larger coupling constant. For a J=1 state, it collapses for any coupling constant value. These properties are called "critical stability". This contribution aims to be a brief review of this field pioneered by H.P. Noyes.