Monte Carlo methods - IN2P3 - Institut national de physique nucléaire et de physique des particules
Communication Dans Un Congrès Année : 2013

Monte Carlo methods

R. Bardenet

Résumé

Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC) methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
Fichier principal
Vignette du fichier
epjconf_sos2012_02002.pdf (14.48 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

in2p3-00846142 , version 1 (18-07-2013)

Identifiants

Citer

R. Bardenet. Monte Carlo methods. IN2P3 School of Statistics (SOS2012), May 2012, Autrans, France. pp.022002, ⟨10.1051/epjconf/20135502002⟩. ⟨in2p3-00846142⟩
132 Consultations
169 Téléchargements

Altmetric

Partager

More