Fast classification using sparse decision DAGs - IN2P3 - Institut national de physique nucléaire et de physique des particules
Communication Dans Un Congrès Année : 2012

Fast classification using sparse decision DAGs

Résumé

In this paper we propose an algorithm that builds sparse decision DAGs (directed acyclic graphs) out of a list of base classifiers provided by an external learning method such as AdaBoost. The basic idea is to cast the DAG design task as a Markov decision process. Each instance can decide to use or to skip each base classifier, based on the current state of the classifier being built. The result is a sparse decision DAG where the base classifiers are selected in a data-dependent way. The method has a single hyperparameter with a clear semantics of controlling the accuracy/speed trade-off. The algorithm is competitive with state-of-the-art cascade detectors on three object-detection benchmarks, and it clearly outperforms them in the regime of low number of base classifiers. Unlike cascades, it is also readily applicable for multi-class classification. Using the multi-class setup, we show on a benchmark web page ranking data set that we can significantly improve the decision speed without harming the performance of the ranker.
Fichier principal
Vignette du fichier
Fast_classification.pdf (400.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

in2p3-00711150 , version 1 (22-06-2012)

Identifiants

  • HAL Id : in2p3-00711150 , version 1

Citer

Róbert Busa-Fekete, D. Benbouzid, Balázs Kégl. Fast classification using sparse decision DAGs. 29th International Conference on Machine Learning (ICML 2012), Jun 2012, Edinburgh, United Kingdom. pp.951-958. ⟨in2p3-00711150⟩
143 Consultations
78 Téléchargements

Partager

More