Angular Dependence in Proton-Proton Correlation Functions in Central $^{40}Ca+^{40}Ca$ and $^{48}Ca+^{48}Ca$ Reactions
Résumé
The angular dependence of proton-proton correlation functions is studied in central $^{40}Ca+^{40}Ca$ and $^{48}Ca+^{48}Ca$ nuclear reactions at E=80 MeV/A. Measurements were performed with the HiRA detector complemented by the 4$\pi$ Array at NSCL. A striking angular dependence in the laboratory frame is found within p-p correlation functions for both systems that greatly exceeds the measured and expected isospin dependent difference between the neutron-rich and neutron-deficient systems. Sources measured at backward angles reflect the participant zone of the reaction, while much larger sources observed at forward angles reflect the expanding, fragmenting and evaporating projectile remnants. The decrease of the size of the source with increasing momentum is observed at backward angles while a weaker trend in the opposite direction is observed at forward angles. The results are compared to the theoretical calculations using the BUU transport model.