Surrogating the surrogate: accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm - IN2P3 - Institut national de physique nucléaire et de physique des particules
Communication Dans Un Congrès Année : 2010

Surrogating the surrogate: accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm

Résumé

In global optimization, when the evaluation of the target function is costly, the usual strategy is to learn a surrogate model for the target function and replace the initial optimization by the optimization of the model. Gaussian processes have been widely used since they provide an elegant way to model the fitness and to deal with the exploration-exploitation trade-off in a principled way. Several empirical criteria have been proposed to drive the model optimization, among which is the well-known Expected Improvement criterion. The major computational bottleneck of these algorithms is the exhaustive grid search used to optimize the highly multi modal merit function. In this paper, we propose a competitive ''adaptive grid'' approach, based on a properly derived Cross-Entropy optimization algorithm with mixture proposals. Experiments suggest that 1) we outperform the classical single-Gaussian cross-entropy method when the fitness function is highly multi modal, and 2) we improve on standard exhaustive search in GP-based surrogate optimization.
Fichier principal
Vignette du fichier
Bardenet.pdf (725.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

in2p3-00580438 , version 1 (28-03-2011)

Identifiants

  • HAL Id : in2p3-00580438 , version 1

Citer

R. Bardenet, Balázs Kégl. Surrogating the surrogate: accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm. 27th International Conference on Machine Learning (ICML 2010), Jun 2010, Haifa, Israel. pp.55-62. ⟨in2p3-00580438⟩
154 Consultations
299 Téléchargements

Partager

More