Validation of a dose deposited by low-energy photons using GATE/GEANT4
Résumé
The GATE Monte Carlo simulation platform based on the Geant4 toolkit has now become a diffused tool for simulating PET and SPECT imaging devices. In this paper, we explore its relevance for dosimetry of low-energy 125 I photon brachytherapy sources used to treat prostate cancers. To that end, three 125-iodine sources widely used in prostate cancer brachytherapy treatment have been modelled. GATE simulations reproducing dosimetric reference observables such as radial dose function g(r), anisotropy function F(r, θ) and dose-rate constant (Λ) were performed in liquid water. The calculations were splitted on the EGEE grid infrastructure to reduce the computing time of the simulations. The results were compared to other relevant Monte Carlo results and to measurements published and fixed as recommended values by the AAPM Task Group 43. GATE results agree with consensus values published by AAPM Task Group 43 with an accuracy better than 2%, demonstrating that GATE is a relevant tool for the study of the dose induced by low-energy photons.