Effect of noise and modeling errors on the reliability of fully 3D Monte Carlo reconstruction in SPECT
Résumé
We recently demonstrated the value of reconstructing SPECT data with fully 3D Monte Carlo reconstruction (F3DMC), in terms of spatial resolution and quantification. This was shown on a small cubic phantom (64 projections 10 x 10) in some idealistic configurations. The goals of the present study were to assess the effect of noise and modeling errors on the reliability of F3DMC, to propose and evaluate strategies for reducing the noise in the projector, and to demonstrate the feasibility of F3DMC for a dataset with realistic dimensions. A small cubic phantom and a realistic Jaszczak phantom dataset were considered. Projections and projectors for both phantoms were calculated using the Monte Carlo simulation code GATE. Projectors with different statistics were considered and two methods for reducing noise in the projector were investigated: one based on principal component analysis (PCA) and the other consisting in setting small probability values to zero. Energy and spatial shifts in projection sampling with respect to projector sampling were also introduced to test F3DMC in realistic conditions. Experiments with the cubic phantom showed the importance of using simulations with high statistics for calculating the projector, and the value of filtering the projector using a PCA approach. F3DMC was shown to be robust with respect to energy shift and small spatial sampling off-set between the projector and the projections. Images of the Jaszczak phantom were successfully reconstructed and also showed promising results in terms of spatial resolution recovery and quantitative accuracy in small structures. It is concluded that the promising results of F3DMC hold on realistic data sets
Domaines
Physique Médicale [physics.med-ph]
Loading...