

Heavy ions: Quarkonia

R. Caron

▶ To cite this version:

R. Caron. Heavy ions: Quarkonia. 10th Large Hadron Collider Physics Conference (LHCP2022), May 2022, Taipei, China. in2p3-04914120

HAL Id: in2p3-04914120 https://in2p3.hal.science/in2p3-04914120v1

Submitted on 27 Jan 2025 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Heavy ions: Quarkonia Highlights from ALICE, ATLAS, CMS, LHCb

Robin Caron, Institut de Physique des Deux Infinis (CNRS-IN2P3)

The 10th Annual Large Hadron Collider Physics Conference May 16-21, 2022 Taipei, Taiwan

Outline

- Introduction
- Quarkonia from Pb-Pb to pp collisions
 - Charmonia
 - Bottomonia
- Summary

Evolution of a heavy ion collision

[1] T. Matsui, *H. Satz, Phys.Lett.B* 178 (1986) 416-422

Figure from MADAI collaboration

chemical freeze out

kinetic freeze out

Quarkonia: a powerful tool to study medium properties and initial conditions

Signature of deconfinement:

suppression of quarkonia inside the quark-gluon plasma (QGP)

LHCP2022 - Heavy ions: Quarkonia

Why quarkonia?

central Pb–Pb collisions at the LHC

[2] A. Rothkopf, Phys. Rep. 858(2020) 1-117 [3] Braun-Munzinger, Stachel, Nature 448 (2007) 302 [4] R.L. Thews et al., Phys. Rev. C 63 (Apr. 2001) 054905

Sequential suppression:

- color screening and medium-induced dissociation
- sensitive to **medium temperature**
- excited states more suppressed w.r.t. ground states
- static vs dynamic dissociation [2]
- cc̄: O(100) and few bb̄ pairs produced close to $t \sim 0$ fm/c

Regeneration: strongly supported scenario at the LHC because of large number of cc pairs

LHCP2022 - Heavy ions: Quarkonia

Why quarkonia?... Across systems size

probe the initial stages of the collisions (photoproduction + polarization vs. EP measurements)

Access medium properties measuring suppression and **collectivity** (via R_{AA} and v_n)

Pb

heavy quark energy loss in the medium (e.g. non-prompt J/ψ measurement, prompt J/ψ at high p_T)

Shed light on multiparton interactions (via multiplicity dependent studies) + collectivity in small system (v_2)

Observable: nuclear modification factor R_{AA}

- Models implementing regeneration, either at the freeze-out (SHM) or during the medium evolution (TAMU), are in agreement with data at low $p_{\rm T}$
- $J/\psi R_{AA}$: more suppressed at high p_{T} , showing a rising trend towards lower p_{T}

• $R_{AA}^{\text{mid}-y} > R_{AA}^{\text{fwd}-y}$ (low p_{T}) as expected by recombination scenario ($N_{c\bar{c}}^{\text{mid}-y} > N_{c\bar{c}}^{\text{fwd}-y}$)

SHM: Andronic A. et al., Phys. Lett. B797 (2019) 134836, TAMU: Du X. and Rapp R., Nucl. Phys. A 943 (2015) 147-158

- Measuring production in AA relative to production in pp collisions:
 - > 1: Enhancement

• <1: Suppression

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{(dN/dy)_{AA}}{(dN/dy)_{pp}}$$

0 a momentum space anisotropy

- ^o Low $p_{\rm T}$ (< 5 GeV/c): transport model implementing regeneration can describe measured $J/\psi v_2$, the latter inherited from collective flow of c quarks during recombination

He, Wu, Rapp, arXiv:2111.13528

ALI-PUB-500427

High $p_T v_2$: path-length dependence mechanism + c quark space-momentum correlations

New results on charmonia

 $\psi(2S)$

C

C

Prompt $v_n^{J/\psi}$ measurements in Pb-Pb collisions

• Largest $v_2^{J/\psi}$ at low p_T (~5 GeV/c, expected from recombination) and also hint for v_3

High $p_T v_2$: path-length dependence effect at play for all particles

LHCP2022 - Heavy ions: Quarkonia

robin.caron@cern.ch

TAMU: Du X. and Rapp R., Nucl. Phys. A 943 (2015) 147-158 SHMc: Andronic A. et al., Nature 561, 321–330 (2018)

ALI-PREL-523330

Suppression hierarchy between J/ψ and $\psi(2S)$ over p_T and for all centralities

Hint of a larger $\psi(2S)$ / J/ ψ ratio in central collisions at the LHC w.r.t SPS (ratio described by TAMU model, while it is underestimated by SHMc in central events)

robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

10

- J/ψ photoproduction observed in peripheral Pb-Pb and not only in UPC
- 0

Theoretical models (for UPC) including modification of the photon flux and sometimes also the effect of the overlap between the nuclei (small impact) describe the data

> robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

11

ALI-PUB-521057

Vanishing polarisation at larger momenta 0

- Ο
- Sensitivity to vorticity and B field?

ALI-PUB-521052

First evidence of J/ ψ polarisation w.r.t. EP at low $p_{\rm T}$ (possibly larger in semi-central events)

robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

Prompt J/ψ , $\psi(2S)$

LHCP2022 - Heavy ions: Quarkonia robin.caron@cern.ch

13

- ^o ALICE extends non-prompt J/ ψ fraction ($f_{\rm R}$) measurements down to very low $p_{\rm T}$
- Non-prompt $J/\psi R_{AA}$ more suppressed towards more central collisions
- Ο

Recombination can explain the raising trend of $R_{\star,\star}^{\text{prompt J/\psi}}$ towards more central collisions AA

Unprecedented access to the low $p_{\rm T}$ region for beauty hadron $R_{\rm AA}$ through the measurements of non-prompt J/ψ and non prompt D^0 meson

Ο

CUJET: Shuzhe S. et al. Chin. Phys. C 43 (2019) 4, 044101, Chin. Phys. C 42 (2018) 10, 104104 Djordjevic M. et al. arXiv:2110.01544

Models including collisional and radiative energy loss consistent with data (high $p_{\rm T}$)

LHCP2022 - Heavy ions: Quarkonia

Prompt $\psi(2S) v_3$ found compatible with 0 and with $J/\psi v_3$

robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

Going towards small collision systems

 $^{\circ}$ Updated $R_{\rm pPb}$ for (non-)prompt J/ ψ thanks to new differential cross sections in pp

Stronger suppression at forward-y w.r.t. backward-y for (non-)prompt J/ψ

0 Prompt J/ψ : tension between data and EPS09 NLO nPDF parametrisation

EPS09 LO & nDSg LO: Phys. Rev. C 88 (2013) 047901, EPS09 NLO: Int. J. Mod. Phys. E. 22 (2013) LHCP2022 - Heavy ions: Quarkonia 1330007 FCEL: Phys. Rev. Lett. 109 (2012) 122301, and JHEP 03 (2013) 122

0

• No significant $p_{\rm T}$ dependence and $v_2^{\rm J/\psi}$ in pp compatible with 0 ($v_2^{\rm pp} < v_2^{\rm pPb} < v_2^{\rm PbPb}$)

Collective effects observed for light flavours... open question for heavy flavours

New results on bottomonia

 $\Upsilon(3S)$

b

- $\Upsilon(1S)$

Observation of $\Upsilon(3S)$ in Pb-Pb collisions (using BDT based on decay topology)

Sequential suppression: excited states suppressed in all centralities much more than

$\Upsilon(nS) R_{AA}$ in Pb-Pb collisions PbPb 1.6 nb⁻¹, pp 300 pb⁻¹ (5.02 TeV) CMS-PAS-HIN-21-007 **NEW** CMS 1.2 $p_{\tau} < 30 \text{ GeV/c}$ |y| < 2.4Preliminary Cent. 0-90 % (1S) (2015 PbPb/pp) Coupled Boltzmann Eq. 0.8 --- Y(1S) Y(3S) ₽ ₩ 0.6t ••• Y(2S) •••• Y(3S)

- 0.4 0.2 350 400 250 300 50 150 200 100 $\langle N_{\mu}$ part
- theory and not observed in the data
- $R_{AA}^{\Upsilon(nS)}$

Coupled Boltzmann equations [JHEP 01 (2021) 046]

^o Stronger suppression of $\Upsilon(3S)$ w.r.t. $\Upsilon(2S)$ as a function of centrality expected from

measurements from ALICE (not shown), ATLAS and CMS show similar trend

 $\circ \Upsilon(3S)$ more suppressed than $\Upsilon(2S)$ over all $p_{\rm T}$ intervals (double yield ratio)

Models are not able to explain the data Ο

> Coupled Boltzmann equations [JHEP 01 (2021) 046], Open-quantum system [PRD 104 (2021) 094049]

Going towards small collision systems

$R_{\rm pPb}$ of $\Upsilon(nS)$ states

$\circ \Upsilon(nS)$ states in p-Pb are found to be less suppressed than in Pb-Pb collisions

robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

$Y(1S) v_2$ in p-Pb and comparison to Pb-Pb collisions

• First $v_{\gamma}^{\Upsilon(1S)}$ in p-Pb collisions, **compatible with 0** (as observed for Pb-Pb)

• Low $p_{\rm T}$: $v_2^{\Upsilon} < v_2^{J/\psi} < v_2^D < v_2^{h^{\pm}}$, while at high $p_{\rm T}$: common mechanism?

$Y(1S) v_2$ in p-Pb and comparison to Pb-Pb collisions

• First $v_{\gamma}^{\Upsilon(1S)}$ in p-Pb collisions, **compatible with 0** (as observed for Pb-Pb)

• Low $p_{\rm T}$: $v_2^{\Upsilon} < v_2^{J/\psi} < v_2^D < v_2^{h^{\pm}}$, while at high $p_{\rm T}$: common mechanism?

- multiplicity $\langle n_{ch} \rangle$ for events containing $\Upsilon(nS)$
- GeV/c (even including color reconnection)

LHCP2022 - Heavy ions: Quarkonia

robin.caron@cern.ch

Summary

- OPLIC Plenty of new LHC results on quarkonia:
 - Sequential suppression: clearly observed for bottomonia
 - ^o **Regeneration:** most consistent scenario for the production of charmonia at low- p_T ... negligible effect for bottomonia (while B_c : very large R_{AA} at low p_T and larger than quarkonia, hint of coalescence; X(3872) results; see backup)
 - ^o Significant J/ ψ polarisation in Pb-Pb w.r.t. EP: looking forward to theory calculations
 - **Collective flow:** non zero $v_2^{J/\psi}$ for Pb-Pb and p-Pb but $v_2^{J/\psi} \sim 0$ for pp collisions... Hint of non zero v_2 for prompt $\psi(2S)$ in Pb-Pb... $\Upsilon(1S)$ not affected
- ^o Very challenging for theorists to describe both R_{AA} and $v_2 \dots$ in general, models can reproduce the data qualitatively well; tensions are visible in some cases

Thank you for your attention!

Run 3 is coming: new available measurements with unprecedented precision

ALICE, Figure: https://cds.cern.ch/record/1477949

robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

Integrated and p_{T} -differential R_{AA}

- Sequential suppression for conventional charmonia and bottomonia states 0
- Larger R_{AA} when the binding energy is increasing

robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

X(3872) measurement in Pb-Pb collisions [LHCb-CONF-2022-001]

- 0 First evidence of X(3872) in Pb-Pb is reported: 4.2 σ standard deviation
- Prompt X(3872) to $\psi(2S)$ yield ratio: **unique experimental** input for theory
- Indication for **medium-induced coalescence** 0

LHCP2022 - Heavy ions: Quarkonia robin.caron@cern.ch

32

B_c measurement in Pb-Pb collisions

- ^o Evidence of very large R_{AA} in Pb-Pb is measured w.r.t. quarkonia
- Further indication for coalescence mechanism

robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

Fragmentation of jets with prompt J/ψ in Pb-Pb and pp

• Hint of a z-dependence of the J/ ψ suppression ($z = p_{T,J/\psi}/p_{T,jet}$)

Indication that the J/ ψ - medium interaction depends on the fragmentation

J/ψ production in pp collisions

- 0
- $^{\circ}$ $p_{\rm T}$ -differential cross sections well described by models

JHEP 11 (2021) 181

New measurements for prompt and non-prompt J/ ψ : updated $R_{\rm pPb}$ results

J/ψ polarisation in Pb-Pb collisions

- Related to spin alignment of a particle w.r.t a given axis 0
- ^o For a vector meson (**v**), the total angular momentum $(\mathbf{J}, \mathbf{J}_7)$ is:

 $|v; \mathbf{J}, \mathbf{J}_z > = b_{+1} | 1, +1 > +b_0 | 1, 0 > +b_{-1} | 1, -1 >$

$W(\cos\theta,\varphi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\varphi}\sin^2\theta\cos 2\varphi + \lambda_{\theta\varphi}\sin 2\theta\cos 2\varphi)$

LHCP2022 - Heavy ions: Quarkonia robin.caron@cern.ch

EVENT-PLANE

v_n coefficients in Pb-Pb collisions

- Related to initial geometry of the overlap region and high pressure gradients 0
- Spatial anisotropy is transferred into a **momentum space anisotropy** Ο

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n)$$

n=2

 ϵ_n $v_n = \langle \cos n(\varphi - \Psi_n) \rangle$ n = 3

> robin.caron@cern.ch LHCP2022 - Heavy ions: Quarkonia

$Y(1S) v_2$ extraction in p-Pb collisions

^o Fourier decomposition of azimuthal distribution using v_n

Simultaneous fit on dimuon invariant mass

• High multiplicity p-Pb collisions: $v_2^{\Upsilon} < v_2^{J/\psi}$

LHCP2022 - Heavy ions: Quarkonia

robin.caron@cern.ch

$Y(1S) v_2$ in Pb-Pb collisions

- $\circ \Upsilon(1S) v_2$ measurements in PbPb collisions compatible with 0 and lower than J/ψ
- All current theoretical models (including regeneration or not) can describe data 0

Non-prompt J/ψ and $\psi(2S) v_2$ extraction in Pb-Pb

- mass fit

LHCP2022 - Heavy ions: Quarkonia

robin.caron@cern.ch

J/ψ and prompt $\psi(2S) v_n$ in Pb-Pb collisions

Larger v_2 is observed for prompt J/ ψ w.r.t. non-prompt while all ~0 for v_3 Ο

• Hierarchy is observed: $v_2^{b \to J/\psi} < v_2^{J/\psi} < v_2^{\psi(2S)}$ however not clear w.r.t. centrality

J/ψ pair production in Pb-Pb collisions

^o Constrains on J/ψ production (NRQCD) and double parton scattering

Despite different acceptance and inclusive or prompt: good agreement w LHCb

$\psi(2S)$ production in pp and p-Pb collisions

- 0
- Agreement with models at low $p_{\rm T}$ Ο
- pp and p-Pb data are compatible within the uncertainties

Linear increase of $\psi(2S)$ normalized yield vs. multiplicity while $\psi(2S)/J/\psi$ is flat

LHCP2022 - Heavy ions: Quarkonia

High- $p_T J/\psi$ and $\psi(2S)$ production pp collisions

Non-prompt fraction of J/ ψ

- prompt production $\psi(2S)/J/\psi$ ratio data

