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Abstract. The tetraneutron has attracted the attention of nuclear physicists during the                              

 

past decades, but there is still no unambiguous confirmation of its existence or non-
existence. A new experiment based on 8He(p,2p)7H{t+4n} reaction, with direct 
detection of the four neutrons, has been carried out at RIBF, which can hopefully help 
to draw a definite conclusion on the tetraneutron system.  

1.  Introduction 
Many-neutron systems made of the chargeless neutrons, especially the tetraneutron(4n), have 
attracted a lot of attention of the nuclear physics community in recent years. Their existence, 
whether as bound or resonant states, is of fundamental importance in nuclear physics, serving 
as a sensitive probe to investigate the nuclear force free from the Coulomb interaction. Their 
properties are also crucial for a deeper understanding of neutron stars [1,2]. 
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Many experimental trials have been made in search of the very exotic 4n state in the past 
decades. However, all these attempts failed to draw a firm conclusion due to the extremely low 
statistics. In 2002, Marqués et al. [3] reported the possible existence of a bound or low-lying 
resonant 4n state observed in the breakup reaction of 14Be → 10Be + 4n channel. Another 
experiment using the 4He(8He, 8Be)4n reaction found the candidate resonant state with an energy 
ER = 0.83 ± 0.65(stat) ± 1.25(syst) MeV above the 4n threshold and a width Γ ≤ 2.6 MeV [4].  
   Motivated by the experimental hints, many theoretical calculations were performed to study 
the tetraneutron system [5-11]. All of them agree that a bound state is ruled out based on 
standard nuclear forces but the existence of a tetraneutron as a low-lying resonant state is still 
under debate. It is supported by some theoretical models including Quantum Monte Carlo 
(QMC) [12] and No-Core Shell Model (NCSM) calculations [13] while some other ab-initio 
calculations exclude such a resonant 4n state [8,9] since large (unrealistic) modifications of the 
three-body force would be necessary in order to reproduce the 4n resonance reported in [4]. 

Here, we report a new experiment on 4n by using the 8He(p,2p)7H{t+4n} reaction at the 
RIKEN Radioactive Isotope Beam Factory (RIBF) facility.    

2.  Experimental Methods 
The 8He(p,2p)7H{t+4n} experiment was carried out in inverse kinematics at RIBF in 2017. The 
8He secondary beam with an energy of 150 MeV/nucleon was produced through the projectile 
fragmentation reaction from the 18O primary beam bombarding on a 9Be primary target, and 
then purified and transported through the BigRIPS fragment separator [14]. The incident beam 
can be identified by TOF-ΔE method on an event-by-event basis. The trajectories of beam 
particles can be reconstructed from two multi-wire drift chambers (BDC1, BDC2) located 
upstream of the target. The 8He beam with an intensity of 105 pps impinged onto the 150 mm-
thick liquid hydrogen target MINOS [15] which can offer high luminosity and 7H was then 
produced by the (p,2p) reaction.  

 

Figure 1. Schematic view of the experimental setup. 

 

 
Figure 1 shows the schematic view of the experimental setup. The key ingredient of our 

experiment is the kinematically complete measurement of all the reaction products. The recoil 
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protons were tracked by the TPC surrounding the liquid hydrogen target and then detected in 
coincidence by an array of 36 NaI crystals [16], arranged in two symmetric rings. The energy 
resolution of the NaI scintillators was around 1% (FWHM) for 80 MeV protons. Energy 
calibration was performed by measuring the proton-proton elastic scattering at 175 MeV with 
the same setup. The trajectories of two protons are essential to reconstruct the reaction vertex 
in such experiments with a thick target.  

Charged fragments were deflected in the SAMURAI [17] dipole magnet from the path of 
the neutrons. They passed through two drift chambers (FDC1, FDC2) located at the entrance 
and exit of the dipole magnet and finally detected by the HODO plastic scintillator array. The 
multiple neutron detection is crucial but extremely challenging in this kind of multi-neutron 
studies. The neutrons were detected by two plastic scintillator arrays, the NeuLAND 
demonstrator from GSI and the existing NEBULA array, placed downstream of the dipole 
magnet, which can together provide the highest 4n detection efficiency (ε4n ~1%) at present. In 
addition, since we have access to the complete 7-body kinematics of the final state (2p+t+4n), 
we can also obtain the invariant mass of 7H and 4n by measuring only 3 of the 4 neutrons. The 
statistics can be enhanced markedly by this so-called “Missing-Invariant-Mass method” since 
the detection efficiency close to the threshold for 3n can be 10 times or more higher than that 
for 4n.   

3.  Preliminary results 
As shown in figure 2(a), tritons and 6He can be separated clearly using the TOF-ΔE method. 
Figure 2(b) shows the polar-angle correlation for the two recoil protons in coincidence with 
triton fragments.  

 

Figure 2. (a) PID of fragments identified by HODO. (b) p-p polar-angle correlation.  

 

 
We first analyzed the 6He+n channel, populated in the (p,pn) reaction, to validate the 

momentum analysis of fragments and neutrons. As shown in figure 3(a), the relative-energy 
spectrum of 7He reconstructed from 6He and one neutron exhibits a clear peak at around 0.4 
MeV, in good agreement with previous works [18,19]. We also reconstructed the angular 
distribution of the polar angle 𝜓 defined as the angle between the 7He momentum 𝒑$%& and 
6He-n relative momentum 𝒑'%&()  [20]. As shown in figure 3(b), it is anisotropic but 
symmetric with respect to 90°, consistent with previous work [19,21].  
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Figure 3. (a) Relative-energy spectrum of 7He. (b) Polar angular distribution for 7He decaying 
into 6He+n.  

 

 
The multi-neutron analysis is now in progress, for which rejection of crosstalk is essential. 

A crosstalk rejection algorithm based on the time-space separation and the energy deposition 
of the recorded hitting signals has been well established [22] and will be optimized in the 
current measurement according to the real experimental setup. 
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