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We suggest an extension to isospin asymmetric matter of the quarkyonic model from McLerran
and Reddy [1]. This extension allows us to construct the β-equilibrium between quarks, nucleons
and leptons. The concept of the quarkyonic matter originates from the large number of color limit
for which nucleons are the correct degrees of freedom near the Fermi surface – reflecting the confining
forces – while deep inside the Fermi sea quarks naturally appear. In isospin asymmetric matter, we
suggest that this new concept can be implemented within a global isoscalar relation between the
shell gaps differentiating the nucleon and the quark sectors. In addition, we impose the conservation
of the isospin-flavor asymmetry in the nucleon and the quark phases. Within this model, several
quarkyonic stars are constructed on top of the SLy4 model for the nucleon sector, producing a
bump in the sound speed, which implies that quarkyonic stars are systematically bigger and have
a larger maximum mass than the associated neutron stars. They also predict lower proton fraction
at β-equilibrium, which potentially quenches fast cooling in massive compact stars.

Recent observations of neutron stars (NS), such as ra-
dio and x-ray astronomy, or the detection of gravitational
wave (GW) detection, have provided the tightest con-
straints on the dense matter equation of state (EoS) to
date [2–4]. These constraints can be classified into differ-
ent groups: the first one refers to the highest NS masses
ever observed [5–10], estimated to be about 2M�, with
some indications that the maximum mass could eventu-
ally be larger [9, 10]. The second group assembles con-
straints from binary NS (BNS) GW detection in the in-
spiral phase, from which the tidal deformability is esti-
mated [11, 12] . It includes GW170817 [4] and further
detections. The third group still refers to NS mergers,
more specifically to the analysis of the electromagnetic
(EM) counterpart, see Ref. [13] for instance and refs.
therein. The fourth group matters with x-ray observa-
tions, such as thermal emission from qLMXB [14–16],
x-ray burst and photospheric expansion [6, 17], as well
as x-ray emission from hot-spots at the surface of some
NS (NICER) [18].

The analysis of these new data requires to set-up
generic models for the EoS, with various levels of agnos-
ticity to model assumptions, such as the isospin asymme-
try for instance, or the interaction prerequisites, inducing
possible spurious constraints among observables. As an
illustration, the nuclear meta-model [19] can be used to
explore predictions compatible with the assumption that
matter is uniquely composed of nucleons (and of course
leptons). It can also be employed for the description of
phase transitions. This is the purpose of this paper: ex-
ploring the nucleon-quark phase transition in compact
stars where this transition is described with the quarky-
onic model [1].

The quarkyonic model for dense matter proposed in
Ref. [20] (and recently applied to neutron stars in Ref. [1])
is one of them. It is an interesting candidate to bridge
the gap in describing quark matter and nuclear matter
at the phase transition [21]. The quarkyonic model is
not properly a microscopic model since it is not based

on the QCD Lagrangian or an effective version of it, but
it implements some features from in the large number of
color (Nc) limit of QCD [20] with few parameters. New
configurations at high and low temperature limit of the
holographic Witten-Sakai-Sugimoto model has recently
been interpreted as holographic realizations of quarky-
onic matter in isospin symmetric matter, based on a
quark Fermi sea enclosed by a baryonic layer on momen-
tum space [22]. In the real-world where Nc = 3, it possi-
bly approximates the actual ground state of dense matter
and the confrontation of its predictions to the data can be
used to determine the model parameters. These param-
eters happen to be physical and thus meaningful: they
are the quarkyonic scale ΛQyc ≈ 250 − 300 MeV, which
is comparable to the QCD scale ΛQCD, and κQyc which
controls the saturation of the nucleonic shell [20].

The interesting feature of the quarkyonic model is that
it suggests a cross-over between the hadron phase and the
quark one, at variance with other approaches such as the
ones based on Maxwell/Gibbs construction. Note that
cross-over are also suggested from Cooper pairing in the
hadron and in the quark phases. The quarkyonic cross-
over is thus another example of such features. It how-
ever disregards one of the essential prediction of QCD,
namely the restoration – as the density increases – of chi-
ral symmetry which is spontaneously broken in the QCD
vacuum. Note that in the holographic approach from
Ref. [22], chirally restored and chirally broken quarky-
onic matter are constructed, and it was found that only
chirally restored matter is energetically preferred. In
widely used quark models implementing the chiral sym-
metry breaking, e.g. Nambu–Jona-Lasinio approach, the
transition between the broken phase assimilated to the
hadronic phase and the restored one assimilated to the
free quark phase is however generally first order (for most
parameter sets). In the future, it would be interesting to
combine together in isospin asymmetric matter the phe-
nomenology of the color gauge symmetry realized at large
Nc and the chiral symmetry dynamics, both rooting into
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the QCD Lagrangian.

In the cross-over region, the quarkyonic model suggests
that the pressure first increases at the onset of the first
quarks, while first order phase transition models usually
suggest a softening of the pressure due to the increase of
the degrees of freedom [23, 24]. The consequence is the
large increase of the energy density, as well as a peaked
sound speed at a density of about 2-3 times the saturation
density of nuclear matter, nsat ≈ 0.16 fm−3, as expected
by some authors [25, 26].

These features are characteristic to the quarkyonic
model – however not specific – and have motivated
further investigations and applications to neutron star
physics. In the original paper by McLerran and
Reddy [1], the quarkyonic matter was studied in the case
of isospin symmetry (symmetric matter, SM) as well as
in the case of neutron matter (NM). The application to
neutron star has been performed assuming it is composed
only of neutrons, and u and d quarks within the ratio
satisfying local charge neutrality, kFd = 21/3kFu where
kFd (kFu) is the d (u) quark Fermi momentum. A ver-
sion of the quarkyonic model for isospin asymmetric mat-
ter, where the isospin asymmetry is controlled by the
chemical equilibrium, was then suggested by Zhao and
Lattimer [27]. In their model, Zhao and Lattimer have
treated nucleons and quarks as independent particles for
which the energy minimization imposes the equilibrium
between their respective chemical potential. They found
that their quarkyonic stellar model is able to satisfy ob-
served mass and radius constraints with a wide range of
model parameters. They also predict that quarkyonic
matter tends to reduce the proton fraction, compared to
the nucleonic case. This reduces the domain of param-
eter allowing the direct URCA process [28]. It was also
suggested by Jeong, McLerran and Sen [29] that the hard
core in the nucleon interaction could be represented by
an excluded volume, which in turns can be related to the
shell gap controlling the cross-over properties. In such
model, the shell gap is directly controlled by the size of
the hard core. Similarly to the original paper by McLer-
ran and Reddy [1], this model also predicts the presence
of a peak in the sound speed at 2-3nsat. It was also ex-
tended to describe three-flavor baryon-quark mixtures,
allowing the onset of strange particles [30, 31].

In this paper, we suggest another version of the quarky-
onic model for isospin asymmetric matter (AM) where we
investigate the analogy between the quarkyonic model
and the Cooper pair formation around the Fermi en-
ergy [1]. While this analogy may appear as rather sim-
plistic, it suggests that quarks and nucleons may be
viewed as two representations of the same quasi-particle
excitation, in the same way as Cooper pairs and sin-
gle particles coexist in superfluids or superconductors,
but in different regions of the nuclear spectrum [32]. In
AM, the neutron/proton ratio in the nucleon sector and
the flavor asymmetry in the quark sector are fixed by
the compound nature of the nucleons, since n : udd
and p : uud. In this spirit, quarks and nucleons are

not distinguished as two independent particles for which
the energy minimization imposes an equilibrium relation,
as suggested in the quarkyonic model of Zhao and Lat-
timer [27]. In addition, the β-equilibrium does not in-
volve quark chemical potentials since only nucleons are
occupying the Fermi levels. Our picture requires a new
approach for the thermodynamical construction of the
phase equilibrium. The cross-over, as described in the
original quarkyonic model [1], is depicted by an isoscalar
condition connecting the momenta of the quarks and of
the nucleons, while the isospin/flavor asymmetry in the
quark and the nucleon sectors is fixed. Under these two
assumptions, the model we propose describes the phase
transition from symmetric to neutron matter.

In our picture, there is no direct contribution of the
quarks to the β-equilibrium since they do not occupy
Fermi levels. The presence of quarks however influences
the β-equilibrium, through their contribution to the nu-
cleon chemical potentials. This picture breaks down
in the pure quark phase, which does not occurs in the
quarkyonic model since there is always a small but fi-
nite contribution of nucleons at high density. In addition
the chiral symmetry generating the constituent quark
mass is assumed to remain at all density, even in the
dense phases where quarks become the dominant species.
This is also an interesting suggestion from the quarkyonic
model which goes against the usual picture of the hadron-
quark phase transition based on chiral symmetry restora-
tion. As we stated earlier, on the one hand the quarky-
onic transition is driven by features of QCD relying on
its gauge theory nature at large Nc, where only planar
graphs survive, whereas on the other hand the transition
follows the chiral symmetry restoration (property of the
quark sector only) which induces a large change of the
constituent masses and also of the baryon properties. In
the future, a model unifying both mechanisms in isospin
asymmetric matter would be an interesting theoretical
development.

In this paper, we suggest an extension of the original
quarkyonic model [1] for AM in Sec. I. The cold catalyzed
NS EoS – at β-equilibrium – is derived in Sec. II and
finally we calculate NS properties in Sec. III. We finally
conclude and suggest outlook in Sec. IV.

I. QUARKYONIC MODEL IN ASYMMETRIC
MATTER

The concept of quarkyonic matter has emerged in the
large number of color, Nc, limit of QCD [20]. In this limit
and when the nucleon density nN is much larger than the
QCD scale, nN � Λ3

QCD, the confining potential of QCD
is dominant even though the nucleonic Fermi momentum
is large, kFN

� ΛQCD. The concept of quarkyonic mat-
ter has been introduced in order to resolve this apparent
paradox: the ground state of dense matter is composed of
dressed quarks (with mass 'MN/3) that are freely mov-
ing deep inside the Fermi sea, and of a shell of baryons
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generated by the strong confining force, which lies close
to the Fermi level [20]. Baryons occupies a momentum
shell whose width is taken to be ∆Qyc ≈ ΛQyc, while
deepest states are occupied by quarks.

Even if matter is composed of nucleons and quarks,
low energy excitations around the Fermi level involve
only quasi-particles of nucleonic type. The excitation of
quarks require the expense of a momentum of the order
of the shell width ∆Qyc. In this prospect, nucleons and
quarks are not independent particles, but there are re-
alization of matter excitations in well separated energy
regions. This picture is clearly illustrated on the left
panel of Fig. 1 for SM.

In SM, this picture is simple since it is sufficient to fix
a condition between the nucleon and quark single parti-
cle energies εN (k) and εQ(k) to separate the deep quark
states from the nucleons ones located around the Fermi
level. This condition imposes that the last quark occu-
pied state coincides with the first nucleon one [1],

εNI
N (kFN

−∆Qyc) = NcεQ(kFQ
) (1)

where kFN
and kFQ

are isoscalar nucleon and quark Fermi
momenta. The factor Nc in Eq. (1) stands for the number
of quarks forming each nucleon in its ground state. With
this condition, the nucleon and quark degrees of free-
dom are reduced to only one free variable, that we fix to
be kFN

, the nucleon Fermi momentum for convenience.
Note that in Eq. (1) the nucleon single particle energy

is the non-interacting (NI) one, ENI
N (k) =

√
M2
N + k2.

This choice is performed in order to avoid unnecessary
complication of the model. We further assume that
chiral symmetry remains broken to set the quark mass
(Mu = Md = MQ) with MQ ≈ MN/Nc, as in the con-
stituent quark model.

Finally a prescription for the thickness of Fermi layer
where nucleons reside has to be taken. We adopt the
same relation from the original paper [1],

∆Qyc =
Λ3

Qyc

~c3k2
FN

+ κQyc
ΛQyc

~cN2
c

, (2)

with ΛQyc ≈ 250 − 300 MeV and κQyc ≈ 0.3. ∆Qyc

defines the energy scale below which nucleons reside.
The concept of quarkyonic matter however leads to

a fundamentally new way to represent the nucleon and
quark densities nN and nQ and their associated Fermi
seas. As in a superfluid, there is only one chemical po-
tential that enters into the thermodynamic equilibrium,
and which is associated to the last nucleon occupied state
µN = E(NB) − E(NB − 1) where E is the total baryon
energy in the ground state and NB stands for the num-
ber of baryons which is a partition of nucleons and quarks
states. By adding or removing a baryon, the entire Fermi
sea is reorganized leading to a new partition between
quark and nucleon states, with the condition on the num-
ber densities nB = nN + nQ. This new concept is first
applied to symmetric and neutron matter [1] and we are
now suggesting an extension for AM.

Q
k

F

N

Q

Qyc∆

np

u

d

FIG. 1: Schematic views of the different Fermi seas at
stake in quarkyonic matter for SM (left) and AM
(right). Quarks occupy deep states inside their Fermi
spheres while nucleons occupy the shells close to their
Fermi levels.

A. Global isoscalar relation between nucleon and
quark Fermi seas

By breaking the isospin symmetry in AM, the nucleon
and quark states are replaced by four other states: neu-
trons, protons, as well as u and d quarks are the natural
components in AM, where they are represented by their
associated densities, nn, np, nu and nd. The four Fermi
seas are schematically represented in the right panel of
Fig. 1. The baryon charge density controlling SM is com-
pleted in AM by the isospin asymmetry δN . Since there
are only two charges and four particles, the concept of
quarkyonic matter in asymmetric matter requires two ad-
ditional relations.

At variance with SM where nucleons and quark Fermi
seas could be defined by imposing a relation between
their single particle energies, see Eq. (1), nothing sim-
ilar can be done in AM between the four particles. The
concept of quarkyonic matter suggests however that the
relation between nucleons and quarks in SM, see Eq. (1),
remains globally valid in AM. The nucleon and quark
Fermi momenta in AM, kFN

and kFQ
, are represented in

Fig. 1 by the red dashed circles.
Expanding the single particle energies in Eq. (1), e.g.

EQ(k) =
√
M2
Q + k2, one gets the following relation be-

tween the nucleon and quark isoscalar Fermi momenta,

kFQ
=
kFN
−∆Qyc

Nc
Θ(kFN

−∆Qyc) . (3)

Note that in Eq. (3) we assumed that the nucleon shell
gap ∆Qyc is also an isoscalar quantity. Eq. (3) allows
quark to appear as soon as kFN

− ∆Qyc > 0 indepen-
dently of the isospin asymmetry. This is supported, as
we explain previously, by the idea that exciting quarks in
AM requires an energy of the order of ∆Qyc irrespectively
of the partition of matter between neutrons and protons.
Without an actual solution of QCD, this assumption is
the simplest one which can be done.
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The limit of NM was also explored in the original pa-
per by McLerran and Reddy [1]. The prescription taken
there imposes that one has to choose which among u and
d quarks are connected to the neutron states. In addi-
tion, the value for ΛQyc = 300 MeV considered in SM
was changed to 380 MeV in NM. In our model, ΛQyc is
taken constant, but the change of the Fermi momentum
between SM and NM, see Eqs. (3) and (17), induces an
effective modification of ΛQyc between SM and NM with

the ratio 21/3, which is exactly the same ratio consid-
ered by McLerran and Reddy [1]. In practice, the two
approaches lead to similar results in NM. The isoscalar
relation (3) presents however the advantage to describe
AM and to recover the limit of SM, where the concept of
the quarkyonic matter is simple.

In summary, we remark that the isoscalar Fermi mo-
mentum kFN

controls both the isoscalar quark Fermi mo-
mentum kFQ

, see Eq. (3), as well as the nucleon gap
(3) from the prescription (2). The isoscalar nucleon and
quark densities can be safely determined as,

nN =
2

3π2

[
k3
FN
− (kFN

−∆Qyc)3Θ(kFN
−∆Qyc)

]
,

(4)

and the quark density,

nQ =
2

3π2
k3
FQ

Θ(kFQ
) . (5)

The total baryon density is built upon the nucleon and
quark contributions as,

nB = nN + nQ . (6)

While the isoscalar densities nN and nQ can now be
calculated from kFN

, the connection to the densities of
the four particles n, p, u and d are yet unknown. They
are related to the isoscalar densities from the following
relation:

nN = nn + np (7)

nQ = (nd + nu)/Nc . (8)

In the following, we suggest that the densities nn,
np, nu and nd can be obtained in AM by imposing
the isospin/flavor asymmetry in the nucleon and quark
phases.

B. Isospin/flavor asymmetry

We will now determine the particle densities. In the
quarkyonic model, there is a partition between nucleons
and quarks which changes as the density evolves. It re-
veals the dynamical process converting quarks into nucle-
ons or breaking the nucleons into their constituents, as it
shall be in compound systems. A simple way to translate
this symmetry into the nucleon and quark phases is to
impose that the two phases conserve the isospin/flavor
asymmetry. Since n : (udd) and p : (uud), we obtain

the following relations for the quark density in the nu-
cleon phase, nnuc

u = nn + 2np and nnuc
d = 2nn + np,

which leads to the following simple connection between
the isospin asymmetry parameter δN = (nn − np)/nN in
the nucleon phase and the flavor asymmetry parameter
δQ = (nd − nu)/(nd + nu) in the quark phase:

δN = NcδQ . (9)

From SM to NM, δN goes from 0 to 1, while δQ goes
from 0 to 1/Nc. The dynamics of the phase transition
thus imposes that the u and d flavor ratio reflects the
isospin asymmetry of the nucleon phase.

As a side note, we are aware that the isospin/flavor
asymmetry relation (9) can possibly be violated by the
two phases if the energy minimization is injected. Such a
refinement of the quarkyonic model is indeed very inter-
esting but it complexifies the quarkyonic approach, which
nice feature remains in its simplicity. Further extensions
of the present model will be explored in the future, es-
pecially to analyze their role in the predictions presented
here.

Knowing δN and kFN
– which fixes nN and nQ – one

can deduce all particle densities as

nn =
1 + δN

2
nN ≡ xnnN , (10)

np =
1− δN

2
nN ≡ xpnN , (11)

nd =
1 + δQ

2
NcnQ ≡ xdNcnQ , (12)

nu =
1− δQ

2
NcnQ ≡ xuNcnQ . (13)

The u and d quark Fermi momenta are simply related
to their densities as

k3
Fu

=
3π2

Nc
nu = (1− δQ)k3

FQ
, (14)

k3
Fd

=
3π2

Nc
nd = (1 + δQ)k3

FQ
, (15)

since d and u quarks occupy their Fermi sphere, see
Fig. 1.

The neutron and proton Fermi layers can be calculated
from the difference of two Fermi spheres with different
radii defined as,

nn =
1

3π2

(
k3
Fn
− k3

Fmin
n

)
, np =

1

3π2

(
k3
Fp
− k3

Fmin
p

)
,

(16)
where kFmin

n
and kFmin

p
are the lower bound of the nucleon

shell, see Fig. 1. Injecting Eq. (4) into ni = xinN (i = n,
p) and identifying with Eqs. (16), we obtain

k3
Fn

= (1 + δN )k3
FN

, k3
Fp

= (1− δN )k3
FN

, (17)

as well as

k3
Fmin

n
= (1 + δN )

(
NckFQ

)3
, (18)

k3
Fmin

p
= (1− δN )

(
NckFQ

)3
. (19)
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Note that kFmin
n

and kFmin
p

can be re-expressed as kmin
Fi

=

(2xi)
1/3NckFQ

= Nc(3π
2xinQ)1/3, for i = n, p.

At low densities, in the absence of quarks kFQ
= 0, so

neutrons and protons occupy entirely their Fermi spheres
with radii given by Eqs. (17). It is interesting to note that
Eqs. (17) are identical in the presence or the absence of
quarks.

Now that the Fermi spheres and the Fermi shells for
n, p, u and d particles are well defined, all thermody-
namical quantities can be determined, e.g. the energy of
the ground state, the pressure, the chemical potentials,
or the sound speed.

C. Energy density and derivatives

The energy density of quarkyonic matter is given by

ρB = ρN + ρQ , (20)

where the nucleon and quark terms are given by:

ρN = 2
∑
i=n,p

∫ kFi

kmin
Fi

d3k

(2π)3

√
k2 +M2

N + VN (nn, np) ,(21)

ρQ = 2
∑
q=u,d

Nc

∫ kFq

0

d3k

(2π)3

√
k2 +M2

Q , (22)

with the nuclear residual interaction given by the meta-
model [19],

VN (nn, np) =
∑
α

1

α!
cα(δN )xαuα(x) , (23)

where x = (nN−nsat)/(3nsat), cα(δN ) = csat,α+csym,αδ
2
N

and uα(x) = 1− (−3x)N+1−α exp(−b nN/nsat). The co-
efficients csat,α and csym,α are related to the empirical
parameters, e.g. Esat ≈ −16 MeV, nsat ≈ 0.16 fm−3 and
Ksat ≈ 230 MeV in nuclear matter, considering the rela-
tivistic extension of the meta-model (for the kinetic term
only) [33]. The present calculation is based on the nu-
cleon Skyrme interaction SLy4, on which the meta-model
is adjusted. We consider the parameters given in table I.

The binding energy density εB is defined as

εB(kFN
, δN ) = ρB(kFN

, δN )−MNnB , (24)

and the binding energy per baryon number is

eB(kFN
, δN ) = εB(kFN

, δN )/nB . (25)

The other quantities as the chemical potentials, pres-
sure and sound velocities are computed using the usual
definitions, see Ref. [19, 34] for more details.

D. Results

In this section we compare a pure nucleon model for
matter properties against quarkyonic models constructed

on top of the same nucleon model. The choice of SLy4
is influenced by the fact that this pure nucleon model
reproduces most of the recent observational data, such
as the tidal deformability from GW170817 or the NICER
x-ray observation of PSR J0030+0451. We then explore
the influence of the quarkyonic model parameters ΛQyc

and κQyc.
The neutron chemical potential µn, the energy per par-

ticle EB/A, the baryon pressure PB and baryon sound
speed (vs,B/c)

2 are shown in Fig. 2 for SM (solid lines,
δN = 0), AM (dashed lines, δN = 0.5) and NM (dotted
lines, δN = 1). The quarkyonic model parameters are
fixed to be ΛQyc = 250 MeV and κQyc = 0.3. The pre-
dictions for the quarkyonic phase (green lines) are con-
fronted to the ones for the pure nucleon phase (magenta
lines). The model predictions are stopped when causality
is violated. The sound velocity in quarkyonic matter has
a peak at around nB ≈ 0.4 fm−3, as shown in Ref. [1] for
SM and NM, and confirmed here for AM. The position of
the peak is almost independent of the isospin asymmetry,
but the peak is a bit more pronounced in NM compared
to SM. For the chosen parameters, the sound speed pre-
dicted by the quarkyonic model at high density reaches
a value close to the conformal limit, i.e. 1/3. The bump
in the sound speed density profile present in quarkyonic
matter impacts the pressure, the chemical potential and
the binding energy. These thermodynamical quantities
are strongly increased for densities where the sound speed
is maximal, and they are softer at higher densities. The
softening is such that the pressure of quarkyonic matter
crosses the pure nucleon one at high density, see Fig. 2.
The softening of the EoS is also predicted by usual con-
struction of first order phase transitions from nucleon to
quark matter, and the interesting feature of the quarky-
onic model is the stiffening of the EoS at low densities,
where it really matters for NS, before the softening at
high density. The region of importance for NS properties
coincides mostly with the densities where the pressure is
stiff. This is the reason why this model is of particular
interest for the phenomenology of compact stars.

The increase of the chemical potential in the cross-
over region can also be explained from the behavior of
the nucleon Fermi momentum, which can be traced down
from Eq. (4) and re-written as,

k3
FN

=
3π2

2

[
nN +N3

c nQ

]
, (26)

showing that the quark contribution to the nucleon Fermi
momentum is strongly enhanced by the factor N3

c . As the
density increases however, the quark component of mat-
ter becomes more and more dominant and the softening
actually occurs.

The conclusion of this first set of results is that the
generic features of the quarkyonic model predicted by
McLerran and Reddy [1] are preserved in our extension of
the quarkyonic model for AM, and we can predict similar
features in NM with the same parameters as the one in
SM. Our results are also in qualitative agreement with
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Model Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym m∗/m ∆m∗/m bsat

MeV MeV fm−3 MeV MeV MeV MeV MeV MeV MeV

SLy4NR
MM -15.97 32.01 0.1595 46 230 -120 -225 400 -443 -690 0.69 -0.19 6.90

SLy4RL
MM -15.97 32.01 0.1595 46 230 -120 -225 400 -443 -690 1.0 0.0 6.90

TABLE I: Parameters of the SLy4 meta-model used in the non-relativistic (NR) case for the description of nuclear
matter and in the relativistic case (RL), where only relativistic kinematic is considered, for the quarkyonic matter.
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FIG. 2: Baryon chemical potential µB , energy per particle EB/A, pressure PB and sound speed (vs,B/c)
2 in

symmetric (SM, δN = 0.0), asymmetric (AM, δN = 0.5), and neutron matter (NM, δN = 1.0) for ΛQyc = 250 MeV
and κQyc = 0.3.

the ones found by Zhao and Lattimer [27] as well as Jeong
McLerran and Sen [29] where different nuclear potential
were used.

II. QUARKYONIC MODEL AT
β-EQUILIBRIUM

We are now constructing the beta-equilibrium solu-
tions, which describe the ground state of dense mat-
ter existing in the core of compact stars. In cold cat-
alyzed NS, matter components are determined from the
β-equilibrium equations,

µn − µp = µe , (27)

µe = µµ , (28)

and charge neutrality,

ne + nµ +
1

3
nd = np +

2

3
nu . (29)

At fixed total density, these three equations allows the
determination of three variables: the isospin asymmetry
δN and the electron and muon densities, ne and nµ.

Note that the charge neutrality condition (29) in NM
becomes nd = 2nu, which coincides with the relation
between u and d quark Fermi momenta, kFd = 21/3kFu,
imposed in NM in [1].

The particle fractions in dense matter are shown in
Fig. 3 for the SLy4 nucleon model (magenta) and the
quarkyonic model taking ΛQyc = 250 MeV and κQyc =
0.3 (green). On the left panel of Fig. 3 are shown only
the baryon contributions, n, p, d and u, while on the
right panel, the contributions of the nucleons, quarks,
electrons and muons are represented. In the crossover
region, neutron and proton densities are reduced compare
to the original nucleon model while the amount of quarks
increases. In particular, we observe that the fraction of
protons is reduced in the quarkyonic model such that
it remains below the dURCA threshold (& 1/9% in the
presence of muons [28] ).

In order to investigate the role of the parameters of
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the quarkyonic model on the proton fraction, we show in
Fig. 4 a comparison for different choices for the param-
eters (ΛQyc, κQyc): (250, 0.3), (270, 0.3) and (250, 0.2).
Increasing ΛQyc from 250 MeV to 270 MeV induces an in-
crease of the proton fraction at high density, which passes
the dURCA threshold, but at higher density. In terms of
energy density ρBc

2, right panel in Fig. 4, the dURCA
threshold is pushed even higher, since the quarkyonic
model predicts larger energy densities than the pure nu-
cleon one.

Finally, the thermodynamical properties of quarkyonic
matter at β-equilibrium are shown in Fig. 5: the neu-
tron chemical potential µn, the total energy per parti-
cle Etot/A, the equation of state P (ρBc

2) and the total
sound speed. The effect of varying the parameters of
the quarkyonic matter is also shown. The largest impact
is observed when the parameter ΛQyc in increased from

250 MeV to 270 MeV. Increasing ΛQyc has the effect of
pushing the onset of the first quarks at higher density, as
it can also be observed in Fig. 5. As a consequence, in-
creasing ΛQyc makes quarkyonic matter more and more
repulsive, except at low density where the larger ΛQyc

the softer the EoS, as discussed previously. The effect
of changing κQyc is smaller. It was tuned in the original
paper by McLerran and Reddy [1] to the conformal limit
for the sound speed.

III. QUARKYONIC STARS

The structure of non-rotating neutron stars is pro-
vided by the solution of the spherical hydrostatic equa-
tions in general relativity, also named the Tolmann-
Oppenheimer-Volkof equations [35],

dm(r)

dr
= 4πr2ρ(r), (30)

dP (r)

dr
= −ρ(r)c2

(
1 +

P (r)

ρ(r)c2

)
dΦ(r)

dr
,

dΦ(r)

dr
=
Gm(r)

c2r2

(
1 +

4πP (r)r3

m(r)c2

)(
1− 2Gm(r)

rc2

)−1

,

where G is the gravitational constant, c the speed of
light, P (r) the total pressure, m(r) the enclosed mass,
ρ(r) = ρB(r) is the total mass-energy density and Φ(r)
the gravitational field. P and ρ have contributions from
both the baryons (PB , ρB) and the leptons (PL, ρL).

The four variables (m, ρ, P , Φ) are obtained from the
solution of the three TOV equations (30) and the EoS for
the quarkyonic matter. In the present calculation, a crust
EoS is smoothly connected to the core EoS as described
in Ref. [34]. The tidal deformability ΛGW induced by
an external quadrupole field is expressed in terms of the
Love number k2 as ΛGW = 2k2/(3C

5), where the com-
pactness is C = GM/(Rc2), and k2 is calculated from
the pulsation equation at the surface of NS [11, 12],

k2 =
8C5

5
(1− 2C)

2
(2− yR + 2C(yR − 1))

×
(

2C(6− 3yR + 3C(5yR − 8))

+4C3
(
13− 11yR + C(3yR − 2) + 2C2(1 + yR)

)
+3(1− 2C)2 (2− yR + 2C(yR − 1)) ln(1− 2C)

)−1

,(31)

where yR is the value of the y function at radius R,
yR = y(r = R), and y(r) is the solution of the follow-
ing differential equation,

r
dy

dr
+ y2 + yF (r) + r2Q(r) = 0 , (32)

with the boundary condition y(0) = 2 and the functions
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2 at β-equilibrium for the parameters (ΛQyc, κQyc), same choice as in Fig. 4.

F (r) and Q(r) defined as,

F (r) =
1− 4πr2G[ρ(r)− P (r)]/c4

1− 2M(r)G/(rc2)
, (33)

r2Q(r) =
4πr2G

c4

(
5ρ(r) + 9P (r) +

∂ρ(r)

∂P (r)
[ρ(r) + P (r)]

)
×
(
1− 2M(r)G/(rc2)

)−1 − 6
(
1− 2M(r)G/(rc2)

)−1

− 4G2

r2c8
(
M(r)c2 + 4πr3P (r)

)2 (
1− 2M(r)G/(rc2)

)−2
.

(34)

The NS moment of inertia is obtained from the slow
rotation approximation [36, 37] as

I =
8π

3

∫ R

0

drr4ρ(r)

(
1 +

P

ρ(c)c2

)
ω̄

Ω
eλ−Φ , (35)

where ω̄ is the local spin frequency, which represents
the general relativistic correction to the asymptotic an-
gular momentum Ω and λ is defined as exp(−2λ) =
1−Gm/(rc2).

As usual, for a given EoS the family of solutions is
parameterized by the central density or pressure or en-
thalpy. The EoS are characterized by their evolution in
the mass-radius diagram, where both masses and radii
of compact stars could in principle be measured, as dis-
cussed in our introduction, see also Ref. [38].

We show in Fig. 6 the predictions for the mass M ,
radius R, tidal deformability ΛGW , central density nc,
binding energy Ebind and moment of inertia I associated
to various quarkyonic EoS with (ΛQyc, κQyc): (250, 0.3),

(270, 0.3) and (250, 0.2) (green lines). These predictions
are confronted to the ones for a nucleon EoS (solid ma-
genta line).

The impact of quarkyonic matter on the mass-radius
relation is huge, as already noticed in Refs. [1, 29]. While
the maximum mass for SLy4 is reached at 2.03 M�, the
quarkyonic stars almost reach 3 M�. These is also a large
impact on the radius: the 1.4 M� radius R1.4 of the pure
nucleon model is about 11.5 km, while it is pushed up to
13-14 km in the quarkyonic model. Quarkyonic stars can
therefore be much more massive than pure nucleon ones,
and are also bigger in size. Quarkyonic stars have also
different tidal deformabilities ΛGW compared to the pure
nucleon case. For the same mass, the quarkyonic stars
have larger ΛGW , and at fixed ΛGW , they have larger
radii. At a fixed central density (in fm−3), quarkyonic
stars are much more massive than the pure nucleon model
we considered. This is an effect of the repulsion observed
for the pressure in Fig. 5. For the same mass, quarkyonic
stars have a slightly lower Ebind compared to the associ-
ated nucleonic star, they however have a larger moment
of inertia.

One can estimate the influence of the parameters ΛQyc

and κQyc. As observed in previous figures, the param-
eter κQyc is almost not influential at all, while ΛQyc is
much more critical. By increasing ΛQyc, the realization
of quarkyonic matter is pushed up and the EoS get closer
to the pure nucleon case. The quarkyonic star therefore
also get a bit closer to the neutron star as ΛQyc increases.
The journey in the mass-radius diagram is therefore very
much controlled by the parameter ΛQyc. By decreasing
ΛQyc the quarkyonic star gets bigger and bigger com-
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pared to the NS, as well as it gets more and more massive.
In the future, the observation of several points in mass
and radius, e.g. from NICER observations, will thus be
very useful for the determination of the parameter ΛQyc.

Finally we discuss the dURCA threshold, represented
in the curves by the solid circle. Only the pure nu-
cleon case reaches the dURCA threshold, and it happens
close to 2 M�. Even the quarkyonic model with (ΛQyc,
κQyc)=(270, 0.3), which satisfies the dURCA condition
at high density, see Fig. 4, reaches the unstable branch
before it gets to the dURCA density. It is thus more
difficult to reach the dURCA condition with quarkyonic
stars. The same conclusion was also obtained by Zhao
and Lattimer [27] with their version of quarkyonic mat-
ter.

We show in Fig. 7 the NS compactness defined as
(M/M�)/(R/km), where R is expressed in km, function
of the mass (left panel) and of the radius (right panel).
The compactness of the isolated NS RX J0720.4-3135 has
been extracted from observations and estimated to be
0.105±0.002 [39]. Reporting this value in the left panel
of Fig. 7 we observe that the nucleonic EoS SLy4 sug-
gests that the mass of the pulsar is 1.25 M�, compatible
with observed masses but close to their lower limit [40],
while the quarkyonic model suggest higher masses, up
to 1.43 M�, which is compatible with the canonical NS
mass. Note that a Bayesian exploration of nucleonic
models has predicted a centroid of about 1.33 M� [34].
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FIG. 7: Compactness (M/M�)/(R/km) as function of
the mass M/M� (left) and radius (right) for various
sets of the parameters ΛQyc and κQyc fixed to be as in
Fig. 4.

This value is slightly larger than the one suggested by
SLy4 EoS, but is still lower that the canonical mass. On
the right panel of Fig. 7 the radii associated to the ob-
served compactness are also reported. While the SLy4
EoS favors 11.9 km, the quarkyonic stars point towards
larger radii, up to 13.6 km in the upper case. So we con-
clude that for a fixed value of the compactness, Fig. 7
shows that quarkyonic stars have larger masses and radii
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than NS.

The gravitational redshift zsurf associated to the ra-
dial emission of photons from the surface, which is
detected by a distant observer is defined as zsurf =(
1− 2GM/(Rc2)

)−1/2−1. In Fig. 8 we show zsurf versus
the stellar mass (left panel) and versus the stellar radius
(right panel). The emission line feature of the gamma ray
burst GB790305, assumed to originate from the e−e+ an-
nihilation (observed peak at 430 keV, line width 150±20
keV), and assuming thermal nature of line broadening
and taking due account of the thermal blueshift, leads
to the observational constraint zGB790305

surf = 0.22 [41, 42],
which is reported in Fig. 8. We also deduce from this
observational data that SLy4 would favor typical masses
of the order of 1.32 M�, low masses, while the quarky-
onic star built on the same nucleonic star would point
towards 1.53 M�, closer to the canonical NS mass. The
radius of extracted from SLy4 would be 11.9 km, while
quarkyonic star would point towards larger radii, up to
about 13.8 km.

Finally, we construct the quarkyonic model on top of
a nucleonic model which does not reach the observation
constraint of about 2M�. To do so, we reduce the value
of Zsym from the SLy4 nucleonic model by 300 MeV,
see table I. The nucleonic model is shown in Fig. 9 un-
der the label SLy4-soft (solid magenta line) while the
quarkyonic models are shown for the same three cases as
before. With this example, we show that the crossover
transition to quark matter, as described by the quarky-
onic approach, can bring enough repulsion to reach large
maximum mass, even if the model for the nucleonic part
cannot satisfy the observed requirement that the maxi-
mal mass of NS should be above about 2M�.
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IV. CONCLUSIONS

We have proposed an extension of the original quarky-
onic model from Ref. [1] to AM, where the original
quarkyonic model for SM is recovered as a limit. Our
extension assumes (i) that the description of the quark
Fermi see and nucleon shell is globally isoscalar and (ii)
that the isospin-flavor asymmetry in the quark and nu-
cleon phases is fixed. These assumptions root into the
concept of the quarkyonic model where nucleons result
from the strong confining force, which strength is large
close to the Fermi level. The assumption (i) allows us to
smoothly connect to the quarkyonic model in SM, and
suggests a description of NM quite comparable – at least
qualitatively – to the original one suggested by McLerran
and Reddy [1]. By fixing the isospin/flavor asymmetry in
the nucleon and quark phases, assumption (ii), the prop-
erties of isospin asymmetric quarkyonic matter can be
entirely determined from the nucleon Fermi momentum
kFN

and the isospin asymmetry δN .

NS matter at β-equilibrium is then been calculated and
it provides qualitatively similar results as in the original
model [1]. It is also in agreement with other extensions
in asymmetric matter [27, 29], while being based on dif-
ferent assumptions. In our model, quarkyonic stars are
larger and heavier than the associated NS, and the pa-
rameter ΛQyc is playing a dominant role in changing the
radius and the mass of quarkyonic stars. This result is
valid even if the nucleonic component is soft, e.g. too
soft to reach 2M�. The proton fraction at β-equilibrium
is found to be reduced in the quarkyonic matter, com-
pared to the related pure nucleonic phase, which poten-
tially quench fast cooling – based on dURCA process –
in massive compact stars. The confrontation to a set of
masses and radii, potentially obtained in future obser-
vations like NICER or gravitational wave detections of
in-spiral binary NS, will potentially constrain ΛQyc, as
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well as cooling scenarios.

In the future, we aim at incorporating the quarkyonic
model in systematical comparisons to observational data
in order to better understand the properties of dense mat-
ter. Extension of the present model to finite tempera-
ture is also on our map for the near future, as well as
improving the isospin/flavor asymmetry relation. Also,
adding chiral symmetry consideration in the quarkyonic
model, taking into account the two most striking fea-
tures of QCD, will certainly be an interesting extension
to study.
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