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Abstract
The present work investigates the uncertainties in a nuclear liquid-drop model. The model parameters, their uncertainties

and correlations, are determined through standard regression analysis that includes a statistical treatment of the errors of
the model. The adjustment of the model is based on experimental binding energies corrected by the Thomas-Fermi shell
corrections. The uncertainties are then propagated onto observables to reveal the reliability of the predictions and insight is
provided to guide further research. Standard regression analysis is further extended to encompass experimental uncertainties
as well as correlations. Strong support for such an extension can be found in Bayesian inference. The uncertainties and the
correlations regarding microscopic corrections are not currently known, however, when available, these contributions may be
included through this extended formalism.

PACS numbers: 21.10.Dr, 21.60.Ev, 02.50.-r, 02.30.Zz

I. INTRODUCTION

The phenomenological Bethe-Weizsäcker formula, pro-
posed in 1935, can describe the binding energy of a broad
range of nuclei, using only few elementary concepts [1, 2].
Since then, many refinements have been introduced al-
lowing for a better description of the ever-expanding nu-
clear chart. The most significant development, was pro-
vided by Strutinsky, as semi-classical corrections, i.e.,
shell corrections, to the original model [3, 4]. An analo-
gous prescription may be applied to procure pairing cor-
rections. Later, deformation was included, both micro-
scopically, i.e., shell and pairing corrections, and macro-
scopically, i.e., liquid drop model [5, 6]. Although, recent
investigations [7, 8] have initiated detailed studies of such
family of models, a thorough uncertainty analysis is yet
to be provided and the ambition of the present text is to
fill the current void.

The liquid drop model has tremendous implications
when it comes to nuclear physics. In particular, the val-
ues of some parameters are directly related to infinite
nuclear matter, e.g., the binding energy per nucleon or
the symmetry energy, having profound consequences on
our understanding of the equation of state and conse-
quently, on precise stellar features. Furthermore, numer-
ous observables can be deduced from binding energies,
e.g., Q-values influencing the energies either required or

∗ Current address: Inria Grenoble Rhône-Alpes, 655 Avenue de
l’Europe, 38330 Montbonnot-Saint-Martin, France
† boilley@ganil.fr

released by nuclear reactions, thus, affecting nucleosyn-
thesis. The liquid drop parameters are also used to cal-
culate fission barriers, defined as the difference between
the ground-state and the saddle-point energies and are
crucial quantities for the synthesis of superheavy nuclei.
Moreover, separation energies, as well as pairing effects
may also be approached directly through masses. There-
fore, one can only recognize the consequences of binding
energies and their predictions upon our understanding of
nuclear physics.

Since the last decade, phenomenological descriptions
have being complemented by uncertainty analysis whose
aim is to encompass the errors of the model. Meth-
ods, such as regression analysis, have been introduced
to specifically address this question in precise quantita-
tive terms. Regarding the current inquiry, we adopt the
regression formalism presented in Refs. [9, 10] along with
an extended version of weighted regression to simultane-
ously address experimental and theoretical uncertainties
as well as their respective correlations.

The parameters of a liquid drop model are determined
through standard regression analysis, thus, going beyond
least squares by involving the errors of the model, the
uncertainties, as well as the mutual influence of the pa-
rameters. These uncertainties can then be propagated
onto observables to reveal the reliability of the predic-
tions, disprove models or even guide further research.

There are several liquid drop formulas in the scientific
literature, however, we shall focus on a single one found in
Ref. [11]. Nevertheless, the ideas developed here may be
applied to any linear model and can further be extended
to account for nonlinearities as exposed in Ref. [8].
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II. LIQUID DROP MODEL

The liquid drop model considered in the present work
is taken from Ref. [11] and gives the following expression,
for the theoretical binding energy,
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(
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for the ith nucleus having Ni neutrons, Zi protons, mass
number Ai=Ni+Zi, isospin Ii=(Ni-Zi)/Ai and where pj

are the parameters entering the model with j = 1, . . . , 8.
The parameters in Eq. (1) are determined through re-

gression using the following expression for the theoreti-
cally corrected experimental binding energies,

B′Exp,i = BExp,i + EPair,i + EShell,i. (2)

It includes the uncorrected experimental binding energy
(BExp,i), the average pairing energy (EPair,i) and the shell
correction energy (EShell,i). The uncorrected experimen-
tal nuclear binding energy is deduced from the atomic
mass excess, found in the 2016 mass evaluation, account-
ing for the masses of the electrons as well as their binding
energy [12, 13]. The pairing energy was directly taken
from the Thomas-Fermi model [5], and is restated here
for the sake of completeness:

EPair,i =



4.8

N
1
3

i

+
4.8

Z
1
3

i

− 6.6

A
2
3

i

− 30

Ai
(Ni = Zi, odd)

4.8

N
1
3

i

+
4.8

Z
1
3

i

− 6.6

A
2
3

i

(Ni odd, Zi odd)

4.8

Z
1
3

i

(Ni even, Zi odd)

4.8

N
1
3

i

(Ni odd, Zi even)

0 (Ni even, Zi even)

(3)

Notice, the minus sign before the term 30/Ai instead of
the plus sign appearing in Ref. [5] which seems to be a
typographical error. In the following, the Thomas-Fermi
shell corrections from Ref. [5] are used.

Note that Eq. (1) is linear and can easily be written in
the matrix form,

B′Th = F · p, (4)

where B′Th and p are column vectors, respectively, con-
taining all the values of B′Th,i and pj while the matrix F
is defined as,
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where the ith line of F is associated with the ith nucleus
while the jth column is related to the parameter pj. Thus,
the matrix F has as many lines as there are nuclei, Nn

and as many columns as there are parameters, Np and
naturally, the vector p has as many lines as there are
parameters.

In order to ease the notations of the following sections,
the primes will be dropped while still implicitly referring
to the corrected experimental binding energies defined by
Eq. (2).

III. REGRESSION ANALYSIS

In this section, the mathematical formalism of stan-
dard regression, used throughout this text, is exposed
and special attention is directed towards the distinction
between the least squares method and regression analysis
which is based on additional hypotheses and opens the
door to uncertainty analysis. Most of the forthcoming
material can be found in Refs. [9, 10].

A. The ordinary least squares method

In the literature related to liquid drop models, the
least squares method is, more often than not, the favored
method to determine the parameters. This method con-
sists in minimizing the sum of the squared errors,

S =

Nn∑
i=1

(BExp,i − BTh,i)
2
, (6)

with respect to the model parameters entering BTh,i. The
previous expression can be written in matrix form, cf.
Eq. (4), as

S = (BExp − F · p)
T · (BExp − F · p) (7)

and its minimization with respect to the parameters
yields the following solution,

p =
(
FT · F

)−1 · FT ·BExp. (8)

The parameters obtained using Eq. (8) are identical to
those given in Ref. [11] under the same conditions, thus,
insuring the validity of the approach presented hitherto
[14].

B. The regression hypotheses

In the present least squares method, the model is as-
sumed exact and experimental uncertainties are ignored,
therefore, theoretical uncertainties cannot be reached.
However, this may be achieved, using regression analysis
and in particular, by involving the errors of the model. It
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is assumed, in regression analysis, that the experimental
data can be described by

BExp = F · p + ε, (9)

where ε represents the error associated with the model.
Assuming no prior understanding of the experimen-

tal data, the binding energies are just a set of distinct
scattered values, thus, having a mean and a variance.
A model’s ambition is, of course, to explain why these
values are all so different from each other and to un-
cover the origin of this variance. Thus, on the one hand,
the model F · p is responsible for the explained varia-
tions, i.e., the corrected binding energy variations that
the model is able to account for. On the other hand, the
error ε is accountable for the unexplained variations, i.e.,
the corrected binding energy variations left unexplained
by the model and yet present in the experimental data.
It should be borne in mind that the model is only meant
to describe the corrected experimental binding energies,
cf. Eq. (2), while the errors may also inherit flaws from
the liquid-drop itself, the average pairing, the shell cor-
rections, as well as other issues having unknown origins.

In order to determine the uncertainties in the param-
eters, some assumptions, regarding the distribution of
these errors, are still required. For the simplest regres-
sion analysis, the first hypothesis concerns the mean of
the errors which is assumed to vanish, i.e., E[εi]=0. The
second hypothesis deals with the dispersion and the mu-
tual influence of the errors which are assumed to pos-
sess a common variance σ2 and to be uncorrelated, i.e.,
COV[εi,εj]=σ

2 δij. The errors having the same variance,
the second hypothesis is also known as the homoscedas-
tic assumption. Thus, according to these hypotheses, the
errors follow a gaussian distribution with zero mean and
variance σ2. Highly convenient regression corollaries de-
rive from these two prior assumptions:

E [BExp] = F · p (10)

COV [BExp] = σ2I, (11)

where I is the identity matrix.

C. Unbiased sample estimates

As usual, it is assumed that only a restricted sample of
all existing nuclei is known and an even smaller sample is
actually considered here, as a result, all of the quantities
upon which this study is based, will be sample estimates.
It is conventional for these estimates to wear hats in or-
der to distinguish them from quantities inferred from the
whole population, i.e., all of the existing nuclei. When-
ever, a quantity p, is estimated from a sample, it is said
to be a sample estimate and will be noted p̂. Hence, a
more appropriate notation for Eq. (8) would be,

p̂ =
(
FT · F

)−1 · FT ·BExp. (12)

Furthermore, if the mean of a sample estimate, i.e.,
E[p̂], is equal the corresponding population quantity, i.e.,
p, the estimate is said to be unbiased. Using the first
regression hypothesis, one can indeed show that E[p̂]=p,
thus, making p̂ an unbiased sample estimate of p.

D. Uncertainty in the parameters

The parameters uncertainties are deduced from the
Np×Np covariance matrix,

COV [p̂] = COV
[(
FT · F

)−1 · FT ·BExp

]
= σ2

(
FT · F

)−1
,

(13)

where F is a constant matrix while BExp is a random vec-
tor, implicitly carrying the variability, or said differently
the variance, coming from the errors, cf. Eq. (9). The
diagonal elements of COV[p̂] are the variances of the
parameters, i.e., the square of their uncertainties, while
the off-diagonal elements are the covariances between the
parameters and characterize their mutual influence. This
relation concentrates within a unique formula, uncertain-
ties and covariances which are absolutely essential ingre-
dients to any thorough uncertainty analysis.

The corresponding correlation matrix can always be
deduced from the covariance matrix through the ensuing
expression,

COR [p̂] = VAR [p̂]
− 1

2 ·COV [p̂] ·VAR [p̂]
− 1

2 , (14)

where VAR[p̂] is formed from the diagonal of COV[p̂].

E. Uncertainties in the observables

Once the covariance of the parameters is known, one
can determine the uncertainties in the binding energies
expressed in terms of the Nn×Nn covariance matrix,

COV
[
B̂Th

]
= COV [F · p̂]

= F ·COV [p̂] · FT.
(15)

This expression only accounts for the uncertainty in the
model, describing the corrected binding energies. How-
ever, it is also possible to include the uncertainty coming
from the error of the model. Thus, further including all
the flaws of the model yields the Nn×Nn covariance ma-
trix,

COV
[
B̂Th + ε

]
= COV

[
B̂Th

]
+ σ2I. (16)

Note that this expression differs from second corollary
because it involves the estimates of the parameters, i.e.,
B̂Th = F · p̂ instead of BTh = F ·p in Eqs. (9) and (11).

Accordingly, separation energies and Q−values, de-
duced from differences between binding energies, i.e.,
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ŜTh = B̂Th,M − B̂Th,D = −Q̂Th, have the following
Nn×Nn covariance matrix,

COV
[
ŜTh

]
= COV

[
Q̂Th

]
= FMD ·COV [p̂] · FT

MD

(17)

where FMD = FM −FD and FM together with FD, refer
to matrices similar to F, cf. Eq. (5), and respectively,
containing only information regarding the mother and
daughter nuclei.

F. Error estimates

Notice the presence of σ2, i.e., the variance of the
errors, in all of the previous expressions involving
COV[p̂] = σ2(FTF)−1. However, in practice, these rela-
tions cannot be applied since we do not dispose of an ac-
tual estimate, for either the errors or their variance. For-
tunately, intuitive sample estimates for the errors, also
known as residuals, can be found to be

ε̂ = BExp − F · p̂. (18)

Furthermore, one can show that the following expression,

σ̂2 =
(BExp − F · p̂)

T · (BExp − F · p̂)

Nn −Np
, (19)

is an unbiased sample estimate of the variance of these
errors and therefore, is a precise measure of the variability
left unexplained. It also turns out that this relation is the
square of a well-known quantity, the root-mean-square
deviation (RMS), usually characterizing the goodness-of-
fit.

Replacing the variance of the errors by its estimate,
i.e., σ2 becomes σ̂2 in the preceding expressions, we
gather a new set of useful formulas for the unbiased sam-
ple estimates of the covariance matrices, listed above, and
at the heart of the present work.

Previously, we have introduced the error of the model
that is distinguished from the uncertainty in the model.
In the spirit of the international standards presented in
Ref. [15] the error was defined as the difference between
the “true” experimental binding energy and its theoret-
ical estimate. On the other hand, the theoretical un-
certainty characterizes the dispersion of the theoretical
binding energy. We have also seen that all the uncer-
tainties are proportional to the standard deviation of the
errors. However, note that these two quantities are never
equal.

IV. PRIMARY RESULTS

The formalism presented in Sect. III is now exploited
in order to examine the uncertainties and the correla-
tions of the parameters entering the liquid drop model,

cf. Eq. (1). A particular emphasis is given to the pa-
rameters, their uncertainties and correlations, as well as
a diversity of observables.

The following results are based on the nuclear binding
energies deduced from the atomic mass excesses found
in Refs. [12, 13] for all nuclei satisfying N,Z ≥ 8 with
uncertainties below 150 keV, thus, a total of 2315 nuclei
are considered.

Note that the uncertainties in the experimental binding
energies, the shell corrections and the pairing energies are
disregarded at this stage.

A. Parameters

The parameters obtained using Eq. (12) are displayed
in Table I. They are specific to the model considered in
this study and cannot be directly compared to the param-
eters of other LD formulas. The corresponding uncertain-
ties, also appearing in this table, were inferred from the
diagonal elements of the covariance matrix, cf. Eq. (13),
given in appendix A. Careful examination of the relative
uncertainties establishes that the parameters, p6, p8 and
to an even greater extent p7, are loosely constrained with
respect to the other parameters.

On the one hand, the parameters p1 and p5 are the
most constrained as they correspond to the robust vol-
ume and Coulomb terms respectively. On the other hand,
the parameter p7 is the less constrained which means that
the corresponding term is not well grounded. In Ref.
[11], its value changes drastically when other terms are
removed or added to the LD formula. Other observables
than the mass should be considered to better establish
such a term.

TABLE I. The parameters along with their uncertainties and
relative uncertainties.

p̂ [MeV] û(p̂)[MeV] |û(p̂)/p̂| [%]

p̂1 15.4829 0.0145 0.1
p̂2 -27.8219 0.0843 0.3
p̂3 -17.5783 0.0505 0.3
p̂4 31.1447 0.3797 1.2
p̂5 -0.7058 0.0008 0.1
p̂6 0.9251 0.0288 3.1
p̂7 -0.2942 0.0293 10.0
p̂8 2.7265 0.1693 6.2

From the covariance matrix, cf. Table XI, one can
deduce the correlation matrix, cf. Eq. (14), given in Ta-
ble II. At first glance, it appears that all the parameters
entering the liquid drop model are strongly correlated
with one another. Meticulous inspection of this table,
shows the existence of two correlation groups, i.e., sets
of parameters with particularly strong correlations. The
first involving p1, p3, p5 and p7, the second comprising
p2, p4 and p8. Notice, p6 is less correlated with the other
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parameters and the two groups are linked through the
partial intrusion of p1 in the second group and p8 in the
first group. Besides the Wigner term p7, the first group,
contains the historical liquid drop parameters while the
second group, consists of isospin dependent corrections.
Such an observation may be sufficient to physically ex-
plain the emergence of these two groups. Although not
referred to as correlation groups, their existence has been
studied in Ref. [7] by either removing or adding parame-
ters to the regression and debating the corresponding ef-
fects on the remaining parameters. In the current analy-
sis, a similar conclusion is drawn, directly, from a detailed
examination of the correlation matrix shown Table II.

TABLE II. (Color online) Correlation matrix of the parame-
ters deduced from the covariance matrix, cf. Table XI.
Notations: group 1, group 2 and intruders.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

p̂1 1.00 -0.71 -0.93 0.47 -0.87 -0.32 0.74 0.82
p̂2 -0.71 1.00 0.62 -0.92 0.39 0.51 -0.24 -0.87
p̂3 -0.93 0.62 1.00 -0.48 0.95 -0.05 -0.81 -0.70
p̂4 0.47 -0.92 -0.48 1.00 -0.22 -0.25 0.07 0.72
p̂5 -0.87 0.39 0.95 -0.22 1.00 -0.15 -0.85 -0.52
p̂6 -0.32 0.51 -0.05 -0.25 -0.15 1.00 0.15 -0.55
p̂7 0.74 -0.24 -0.81 0.07 -0.85 0.15 1.00 0.40
p̂8 0.82 -0.87 -0.70 0.72 -0.52 -0.55 0.40 1.00

B. Observables

1. Theoretical binding energies

Once the parameters are determined, one can easily
compute the theoretical binding energy of each nucleus
along with its uncertainty.

The root-mean-square deviation associated with the
binding energies is σ̂=602 keV. As already mentioned, it
is an estimate of the standard deviation of the errors and
quantifies the goodness-of-fit.

The uncertainties in the binding energy predictions, as
deduced from Eq. (15), range from 21 keV to 124 keV
with a mean of 33 keV. Those uncertainties are shown
Fig. 1. Notice, the increase of uncertainties away from
the mean proton number of the sample, i.e., 57.9. This
is a well-known feature of regression procedures, even
extending beyond the regression interval, thus, making
extrapolations further and further away from the known
data more and more uncertain.

Thus, the uncertainties in the predicted binding en-
ergies are rather small compared to the errors of the
model (σ̂). This suggests that once the shell corrections
and the average pairing have been specified, the liquid-
drop model is extremely constrained. Note that shell
corrections were included in the corrected binding ener-
gies, however, they were excluded from the uncertainty
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FIG. 1. (Color online) Uncertainties in the predicted binding
energies (blue dots) as a function of proton number Z along
with the mean of the uncertainties (red line).

analysis. When available, the latter should increase the
uncertainties in the model constructed from, both, the
liquid-drop and the shell corrections.

Adding the error of the model to the predicted binding
energies as in Eq. (16) leads to uncertainties ranging from
602 to 615 keV because they are dominated by the error
term.

The correlations between the binding energy of 208Pb
and the binding energies of the 2315 nuclei is depicted in
Fig. 2. As expected, the correlations with neighbouring
nuclei are very strong and fade away from this region.
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FIG. 2. (Color online) Correlations between the theoretical
binding energy of 208Pb and the 2315 binding energies. No-
tice, the extreme correlations in the region of 208Pb and their
downfall away from this region. The position of 208Pb is in-
dicated by the red dashed lines.
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2. Other observables

Additional observables can be deduced from the bind-
ing energies. We have selected here a few mass filters for
which experimental values are available over the whole
nuclear chart.

For each observable the uncertainties in the predictions
of the model were calculated. We present in Table III, the
minimum and maximum uncertainties over the nuclear
chart, as well as, a statistical indicator, the mean of the
uncertainties, defined as

MU =
1

Nn

Nn∑
i=1

VAR[OTh,i]
1
2 , (20)

for the observable O. Note that the indicator MU, has
no profound statistical significance, and was only intro-
duced, as a substitute for tables of unreasonable length,
containing 2315 uncertainties for each observable. It ap-
pears that observables based on the difference between
binding energies are less uncertain than the binding en-
ergies themselves. This is a consequence of the severe
correlations existing between binding energies of neigh-
bouring nuclei, cf. Fig. 2.

We have also compared the predicted values to the
experimental ones. As a statistical indicator, the root-
mean-square deviation (RMS) of an observable O, de-
fined as

RMS =

[
1

Nn −Np

Nn∑
i=1

[OTh,i −OExp,i]
2

] 1
2

, (21)

is presented in Table III. As the model was adjusted
to experimental binding energies, it is natural that this
quantity possesses the smallest root-mean-square devia-
tion.

TABLE III. The minimum, mean and maximum of the uncer-
tainties (MinU, MU and MaxU) are presented in the upper-
most portion of the table and the root-mean-square deviation
(RMS) appears below, for the 2315 nuclei.

B̂Th Ŝn Ŝ2n Ŝp Ŝ2p Q̂α Q̂β

MinU [keV] 21 2 3 3 5 2 4
MU [keV] 33 6 11 8 15 5 13

MaxU [keV] 124 72 120 70 120 36 120

RMS [keV] 602 1273 1050 1367 985 1346 1847

The correlations between the theoretical Qα-value of
208Pb and the 2315Qα-values is exposed in Fig. 3. As for-
merly argued, the correlations with neighbouring nuclei
are very strong and vanish away from this region. How-
ever, one can also distinguish more sophisticated patterns
which were absent from the correlations between binding
energies, cf. Fig. 2. Notice, these observations can fur-
ther be extended to the remaining observables considered

here. These complex patterns are owed to the involve-
ment of twice as many nuclei. Indeed, binding energy
correlations, only, involve two distinct nuclei while those
between separation energies, or Q-values, require four,
thus, making the structure much more intricate.
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FIG. 3. (Color online) Correlations between the theoretical
Qα-value of 208Pb and the 2315 Qα-values. Notice, the ex-
treme correlations in the region of 208Pb and their downfall
away from this region, as well as the complex patterns due to
the involvement of a greater number of nuclei. The position
of 208Pb is indicated by the red dashed lines.

C. Assessment of the regression hypotheses

The results presented beforehand were procured
through regression analysis which is based on hypothe-
ses, regarding the distribution of the errors, as described
in Sect. III B. This distribution of errors, associated with
the binding energies, is shown Fig. 4. The corresponding
mean and standard deviation are, respectively, 2 keV
and σ̂ = 602 keV. These values were used to plot the
normal distribution that exhibits a fair agreement with
the histogram representing the distribution of the errors.

Other, more elaborate, methods are available to sup-
port the normality of the errors. The quantile-quantile
plot is a graphical tool used to confirm that a set of data
follows a specific probability distribution, e.g., a nor-
mal distribution. This is usually done by plotting the
quantiles of the observed distribution of errors against
the quantiles of the normal distribution having the same
mean and variance, i.e., 2 keV and 602 keV. Indeed, if
the observed errors do follow a normal distribution, then,
the quantiles should be equal and the plot should form
a straight line. The corresponding quantile-quantile plot
is given Fig. 5 and confirms that most of the observed
errors follow a normal distribution. However, the plot
also makes it clear that the tails of distribution of the er-
rors do not correspond to those of a normal distribution.
Nevertheless, the central part, ε̂ ∈ [-1,1] MeV containing
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FIG. 4. (Color online) Histogram (blue bars) formed of 50
bins restricted to ε̂ ∈ [-2.1;2.1] MeV and representing the
distribution of the errors (ε̂ = BExp − F · p̂). The normal
distribution constructed from the mean (2 keV) and the stan-
dard deviation (σ̂ = 602 keV) of the errors, is also provided
(red line).

around 95% of the errors, does follow a normal distri-
bution. Thus, the normality assumption, although not
perfectly satisfied, should be enough to insure that the
outcome of the current endeavour offers serious results.
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FIG. 5. (Color online) Quantile-quantile plot (blue dots) for
the distribution of the errors restricted to ε̂ ∈ [-2.1;2.1] MeV
and the expected theoretical straight line (dashed blue) in the
case where normality is perfectly satisfied.

Notice, the mean of these errors does not exactly
vanish and one can show that this hypothesis is only
strictly satisfied by models including an intercept which
macroscopic models do not, in general, contain. We now
investigate the impact of adding a constant parameter
p0 to the liquid drop model, Eq. (1).

The parameters and their uncertainties were recalcu-
lated and the results are reported in Table IV. It appears
that the additional intercept does not significantly alter

the previous outcome, i.e., p6, p7 and p8 are still loosely
constrained as well as the intercept p0.

TABLE IV. The parameters along with their uncertainties
and relative uncertainties obtained for the model with inter-
cept.

p̂ [MeV] û(p̂)[MeV] |û(p̂)/p̂| [%]

p̂0 1.5896 0.3542 22.3
p̂1 15.5399 0.0193 0.1
p̂2 -27.9838 0.0914 0.3
p̂3 -17.9250 0.0922 0.5
p̂4 31.8989 0.4138 1.3
p̂5 -0.7088 0.0010 0.1
p̂6 1.0017 0.0334 3.3
p̂7 -0.3448 0.0313 9.1
p̂8 2.5587 0.1727 6.7

Table V reveals noticeable changes in the correla-
tions, however, the group structure remains quite similar.
There are still two correlation groups, a first consisting of
p1, p3 and p5, the second involving p2 and p4. Parame-
ters, outside these groups, display moderate correlations
and there are no intruders in this particular case.

TABLE V. (Color online) Correlation matrix obtained for the
model with intercept deduced from the covariance matrix, cf.
Table XII.
Notations: group 1 and group 2 .

p̂0 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

p̂0 1.00 0.66 -0.39 -0.84 0.41 -0.64 0.51 -0.36 -0.22
p̂1 0.66 1.00 -0.75 -0.93 0.59 -0.93 0.13 0.28 0.46
p̂2 -0.39 -0.75 1.00 0.64 -0.93 0.53 0.20 -0.06 -0.70
p̂3 -0.84 -0.93 0.64 1.00 -0.58 0.94 -0.45 -0.11 -0.19
p̂4 0.41 0.59 -0.93 -0.58 1.00 -0.42 0.01 -0.09 0.55
p̂5 -0.64 -0.93 0.53 0.94 -0.42 1.00 -0.43 -0.38 -0.25
p̂6 0.51 0.13 0.20 -0.45 0.01 -0.43 1.00 -0.07 -0.57
p̂7 -0.36 0.28 -0.06 -0.11 -0.09 -0.38 -0.07 1.00 0.44
p̂8 -0.22 0.46 -0.70 -0.19 0.55 -0.25 -0.57 0.44 1.00

Regarding the binding energy, the mean uncertainty
and root-mean-square deviation, respectively, become
MU = 34 keV and σ̂=600 keV. Thus, the differences
between the uncertainties and the predictions obtained
with and without an intercept are negligible. Note that,
apart from the binding energy, the other observables are
not affected by the intercept.

This assessment confirms that, although a more rig-
orous analysis should include an intercept in order to
satisfy the first regression hypothesis, not doing so, does
not significantly affect the outcomes of the study.
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D. The impact of shell effects

In this study, an attempt was made to examine the
impact of shell effects by using both, the Thomas-Fermi
[5] and the Nix-Möller [6] microscopic corrections. The
results show that the parameters marginally vary with
the change of shell corrections, similarly, the absolute
and relative uncertainties are barely altered and the cor-
relation matrices are identical. The meagre influence of
shell corrections is not surprising since they are identi-
cal for nuclei having N, Z > 30 in Refs. [5] and [6]. As
only light nuclei contribute to this change, the effects
are rather limited. Therefrom, no conclusions could be
drawn about the exact impact of shell effects on either the
estimation of the parameters, their uncertainties or even
their correlations. Nevertheless, the outcome of the study
suggested that the parameters could be significantly af-
fected by the microscopic corrections while uncertainties
and correlations suffered more minor changes.

E. Primary comments

It should be mentioned that, for all observables con-
sidered in this work, the uncertainties in the model pre-
dictions are insufficiently broad to account for the errors,
thus, pointing towards some missing variability. Indeed,
Fig. 6 reveals errors spreading way beyond the bounds of
uncertainties which is coherent with prior results and can
be understood from the root-mean-square deviation be-
ing virtually 20 times larger than the mean uncertainty.

Certainly, the scope of our uncertainty analysis,
i.e., disregarding pairing and shell corrections, may
be too crude and the resulting uncertainties too mod-
est, to properly describe the uncertainties of the en-
tire “macroscopic-microscopic” model. Nevertheless, it
serves to distinguish the precision of the predictions from
the uncertainties originating from only a limited por-
tion of the model. This suggests that, once the micro-
scopic corrections have been fixed, the experimental data
leaves hardly any room for macroscopic variability, i.e.,
the macroscopic model is extremely constrained. Conse-
quently, any further improvement of such model must be
focused on constraining and evaluating uncertainties in
the microscopic corrections.

Moreover, there is no model in nuclear physics that is
able to reproduce the mass of the nuclei of the complete
chart with a RMS lower than few hundreds of keV. Al-
though it is a great achievement, this shows shortcomings
in our understanding of the binding energy.

V. WEIGHTED REGRESSION

At this stage, experimental uncertainties or correla-
tions were not taken into account. In the present section,
we extend the regression analysis exposed in Sect. III to
encompass this empirical evidence. Considering both the
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FIG. 6. (Color online) The errors (ε̂ = BExp−F·p̂) restricted
to ε̂ ∈ [-2.1;2.1] MeV are shown (blue dots) as a function of
proton number Z. The mean of the errors (red line) and the
standard deviation of the errors (red band), i.e., the root-
mean-square deviation, are also displayed.

uncertainties and correlations or only the uncertainties is
investigated in the following. Strong support for such an
extension can be found in Bayesian inference [16].

Unfortunately, the uncertainties or the correlations re-
garding microscopic corrections are not currently known,
however, when available, these contributions may be in-
cluded through this extended formalism. For now, we
shall focus on experimental uncertainties and their cor-
relations.

A. Generalized regression

The uncertainties in the corrected binding energies
were disregarded in the previous analysis and can be
accounted for through a weighting matrix. In the cur-
rent study, only experimental uncertainties are included.
In this section, we present such a method where Nn ex-
perimental binding energies along with their uncertain-
ties and correlations are used to determine Np param-
eters. The formalism developed hereafter can be found
in Ref. [10]. In this weighted formulation, the sum of
squared errors becomes,

S = (BExp − F · p)
T ·W · (BExp − F · p) , (22)

where W is referred to as a weight matrix and assigns
a weight to each nucleus or pair of nuclei if their exper-
imental binding energies are correlated. Minimizing this
expression with respect to the parameters leads to,

p̂ = (FT ·W · F)−1 · (FT ·W ·BExp). (23)

Note that the regression assumptions are revised in this
extension and the corollaries now become:

E [BExp] = BTh (24)

COV [BExp] = σ2W−1. (25)
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As before, the parameters are correlated and the co-
variance matrix reads,

COV [p̂] = σ2 (FT ·W · F)−1. (26)

The covariance matrix of the binding energies can be
obtained from Eq. (15) and accordingly, observables de-
duced from differences between binding energies have the
covariance matrix given by Eq. (17) where in both cases
COV[p̂] is now defined by Eq. (26) instead of Eq. (13).

For all practical purposes, the estimate for the variance
of the errors is,

σ̂2 =
(BExp − F · p̂)T ·W · (BExp − F · p̂)

Nn −Np
. (27)

B. Empirical weights

The experimental binding energies are correlated
through the specific method employed by the mass
evaluation, these correlations are contained in the em-
pirical covariance matrix ECM[BExp] also included in
Refs. [12, 13] and having the structure below,

ECM [BExp] =


u2
1 u1,2 . . . u1,n

u1,2 u2
2 . . . u2,n

...
...

. . .
...

u1,n u2,n . . . u2
n

 (28)

where u2
i and ui,j are, respectively, the variance of the ith

binding energy and the covariance between the ith and
the jth binding energies. The uncertainties, deduced from
the diagonal of the empirical covariance matrix, range
from 160 meV to 149 keV with a mean of 7 keV, thus,
spanning 6 orders of magnitude and making some nuclei
significantly more important than other in the regression.
It should also be mentioned that most of the binding
energies are weakly correlated, e.g., 94% of the entries
in the corresponding correlation matrix are in the range
[-0.01;0.01].

We hereby describe three possible choices for the
weight matrix all of which are constructed from the em-
pirical covariance matrix.

(i) When all binding energies are presumed equivalent,
i.e., experimental uncertainties and correlations are
ignored, the weight matrix is simply the identity,
W1=I. This is the favored literature standard in-
vestigated beforehand in Sects. III and IV, also cor-
responding to the homoscedastic hypothesis.

(ii) While neglecting correlations and only considering
experimental uncertainties, the weight matrix pre-
serves its diagonal form, the ith element being the
inverse uncertainty squared associated with the ith
binding energy, i.e., u−2i . Accordingly, the weight
matrix is in fact the inverse of the empirical vari-
ance matrix, i.e., W2=EVM[BExp]−1. Thus, in

this particular weighing scheme, binding energies
having larger uncertainties lose their influence over
the regression.

(iii) Finally, the inclusion of correlations along
with uncertainties leads to the weight matrix,
W3=ECM[BExp]−1. This weighing scheme in-
corporates every single empirical evidence at our
disposal. Binding energies having larger uncertain-
ties or being correlated, both lose their leverage
over the regression. The latter is important such
that no over-counting of information occurs.

As argued in Ref. [8], macroscopic models, such as
the one considered in the present work, together with
microscopic corrections deliver fairly inaccurate predic-
tions, i.e., away from the measured values and far be-
yond experimental uncertainties, usually making the re-
gression (ii) inadequate. Nevertheless, the approach (iii)
has never been studied and could turn out to be more
attractive while going further than approach (ii) through
the inclusion of empirical correlations.

VI. SECONDARY RESULTS

The extended formalism exposed in Sect. V is applied
in order to determine the uncertainties and the corre-
lations in the parameters entering the model. A spe-
cial attention is directed towards the choices of empirical
weights and their effects on the outcomes.

The subsequent results are based on the nuclear bind-
ing energies deduced from the atomic mass excesses found
in Refs. [12, 13] for all nuclei satisfying N,Z ≥ 8 with un-
certainties below 150 keV and present in the empirical
covariance matrix. Thus, a total of 1088 nuclei were con-
sidered.

A. The parameters

The parameters obtained using Eq. (23) are presented
in Table VI with the corresponding uncertainties, de-
duced from the diagonal elements of the covariance ma-
trix, cf. Eq. (26), given in appendix B.

Since the sets of nuclei involved are not identical, the
parameters obtained with the regression (i) differ from
those obtained in Sect. IV A. The inclusion of experimen-
tal uncertainties, i.e., regressions (ii) and (iii), changes
the weight of each nucleus, thus, influencing the values
taken by the parameters. In particular, p2, p4, p7 and
p8 suffer dramatic changes and correspond to isospin de-
pendent terms. On the one hand, exotic nuclei, charac-
terized by larger isospins, have larger uncertainties and
therefore, loose their influence over the regression. On
the other hand, p1 and p5 are quite stable as the volume
and Coulomb terms are constrained by larger number of
nuclei, i.e., all nuclei independently of their isospin. This
is consistent with the fact that they have the smallest
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relative uncertainty. The prior argument is supported by
the Fig. 7 proving that exotic nuclei have larger uncer-
tainties. Furthermore, the distribution of the uncertain-
ties presented in Fig. 8 is very peaked around the origin
where nearly half of the population is grouped. Com-
bining the conclusions drawn from Figs. 7 and 8 demon-
strates that exotic nuclei should significantly loose their
influence over the regressions (ii) and (iii).
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FIG. 7. (Color online) The 1088 nuclei involved in the study
were divided into two equal groups each containing 544 nuclei.
The first group (blue) includes those having a binding energy
uncertainty below 2.6 keV while the second (red) contains
those having a binding energy uncertainty above 2.6 keV. The
second group is composed of more exotic nuclei than the first
group.
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FIG. 8. (Color online) Histogram formed of 25 bins, rep-
resenting distribution of the binding energies uncertainties,
restricted to the range [0;25] keV and including 1029 nuclei.
A fourth of the 1088 nuclei have uncertainties below 1 keV
and half below 2.6 keV.

The inclusion of experimental covariances seems to re-
duce the effects of the experimental uncertainties, con-
sequently, the departure away from the results obtained
with the homoscedastic regression (i) is diminished.

TABLE VI. The parameters along with their uncertainties
and relative uncertainties as determined using the regres-
sions (i), (ii) and (iii).

p̂ [MeV] û(p̂) [MeV] |û(p̂)/p̂| [%]
W1 W2 W3 W1 W2 W3 W1 W2 W3

p̂1 15.343 15.651 15.599 0.025 0.020 0.016 0.2 0.1 0.1
p̂2 -27.034 -44.040 -38.012 0.141 0.635 0.531 0.5 1.4 1.4
p̂3 -16.980 -19.340 -18.540 0.087 0.162 0.159 0.5 0.8 0.9
p̂4 27.423 118.319 87.799 0.633 3.820 3.488 2.3 3.2 4.0
p̂5 -0.698 -0.683 -0.690 0.001 0.002 0.002 0.2 0.3 0.2
p̂6 0.840 1.188 0.739 0.045 0.130 0.151 5.3 11.0 20.4
p̂7 -0.669 -0.070 -0.445 0.060 0.110 0.117 8.9 157.6 26.3
p̂8 1.365 12.130 9.858 0.255 0.401 0.385 18.7 3.3 3.9

A cautious analysis of the correlation matrices, given
in Tables VII, VIII and IX, shows, in the case of
homoscedastic regression (i), the same two correlation
groups as in Sect. IV A. The first involving p1, p3, p5

and p7 and the second implicating p2, p4 and p8 while p6

is almost uncorrelated with the other parameters. These
two groups communicate mostly through the incursions
of p1 in the second group and p8 in the first group. For
both regressions (ii) and (iii), two groups can also be dis-
tinguished, a weakly correlated first group consisting of
p1, p5 and a second with stronger correlations contain-
ing all of the six remaining parameters. In both cases,
the two groups are well separated and are not coupled
through decisive correlations, i.e., there are no intrud-
ers. Notice, regression (i) leads to overall weaker corre-
lations than regression (iii) which, itself, leads to weaker
correlations than regression (ii). Thus, the empirical ev-
idence, contained in the weights matrices, seems to glob-
ally strengthen the correlations and to change the group
structure.

TABLE VII. (Color online) Correlation matrix deduced from
the covariance matrix, cf. Table XIII, with regression (i).
Notations: group 1, group 2 and intruders.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

p̂1 1.00 -0.75 -0.94 0.52 -0.89 -0.27 0.76 0.88
p̂2 -0.75 1.00 0.67 -0.92 0.47 0.44 -0.43 -0.90
p̂3 -0.94 0.67 1.00 -0.55 0.96 -0.07 -0.84 -0.79
p̂4 0.52 -0.92 -0.55 1.00 -0.32 -0.18 0.33 0.74
p̂5 -0.89 0.47 0.96 -0.32 1.00 -0.16 -0.83 -0.65
p̂6 -0.27 0.44 -0.07 -0.18 -0.16 1.00 0.17 -0.44
p̂7 0.76 -0.43 -0.84 0.33 -0.83 0.17 1.00 0.55
p̂8 0.88 -0.90 -0.79 0.74 -0.65 -0.44 0.55 1.00
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TABLE VIII. (Color online) Correlation matrix deduced from
the covariance matrix, cf. Table XIV, with regression (ii).
Notations: group 1 and group 2 .

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

p̂1 1.00 -0.42 -0.58 0.37 -0.76 0.20 0.44 0.54
p̂2 -0.42 1.00 0.91 -0.99 0.17 -0.85 -0.88 -0.94
p̂3 -0.58 0.91 1.00 -0.94 0.47 -0.91 -0.97 -0.99
p̂4 0.37 -0.99 -0.94 1.00 -0.22 0.92 0.92 0.96
p̂5 -0.76 0.17 0.47 -0.22 1.00 -0.26 -0.33 -0.38
p̂6 0.20 -0.85 -0.91 0.92 -0.26 1.00 0.94 0.90
p̂7 0.44 -0.88 -0.97 0.92 -0.33 0.94 1.00 0.98
p̂8 0.54 -0.94 -0.99 0.96 -0.38 0.90 0.98 1.00

TABLE IX. (Color online) Correlation matrix deduced from
the covariance matrix, cf. Table XV, with regression (iii).
Notations: group 1 and group 2.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

p̂1 1.00 -0.37 -0.32 0.25 -0.71 -0.00 0.04 0.26
p̂2 -0.37 1.00 0.90 -0.98 0.39 -0.79 -0.80 -0.91
p̂3 -0.32 0.90 1.00 -0.95 0.56 -0.94 -0.95 -0.99
p̂4 0.25 -0.98 -0.95 1.00 -0.41 0.89 0.90 0.96
p̂5 -0.71 0.39 0.56 -0.41 1.00 -0.41 -0.39 -0.48
p̂6 -0.00 -0.79 -0.94 0.89 -0.41 1.00 0.99 0.94
p̂7 0.04 -0.80 -0.95 0.90 -0.39 0.99 1.00 0.96
p̂8 0.26 -0.91 -0.99 0.96 -0.48 0.94 0.96 1.00

B. The observables

The set of observables considered in Sect. IV B is reex-
amined with special care regarding the impact of empir-
ical weights on predictions as well as uncertainties. The
same statistical indicators are summarized in Table X.

In the case of the homoscedastic regression (i), the
regression encompasses a reduced number of nuclei and
leads to a smaller root-mean-square deviation than in the
primary analysis. Since it is no longer the the quantity
being minimized, the RMS in the heteroscedastics regres-
sions (ii) and (iii) are far larger than in the homoscedas-
tic (i) one. On the other hand, the uncertainties in the
prediction of the model are larger for the homoscedastic
regression (i). A closer look at Table X shows a differ-
ent outcome regarding regressions (ii) and (iii) where the
binding energy exhibits the worst predictions as well as
the most uncertain ones, i.e., associated with the largest
RMS and mean uncertainty.

Analyzing the values obtained for the RMS, shows that
regression (iii) yields systematically superior predictions
than regression (ii).

TABLE X. The root-mean-square deviation (RMS) as well as
the mean of the uncertainties (MU) are calculated for various
observables and for the regressions (i), (ii) and (iii).

B̂Th Ŝn Ŝ2n Ŝp Ŝ2p Q̂α Q̂β

MU [keV]
W1 42 8 14 11 19 7 17
W2 258 35 68 53 106 42 86
W3 296 29 55 42 83 33 68

RMS [keV]
W1 524 1333 1158 1394 986 1371 1758
W2 4841 1480 1658 1670 1918 1500 2261
W3 2365 1371 1267 1465 1165 1400 1891

C. Secondary comments

Although, the weights considered did not improve the
adjustment of the model, incoming theoretical develop-
ments, leading to enhanced model precision and the fu-
ture, large scale, mass measurements campaigns, will
further increase the importance of empirical uncertain-
ties and correlations, consequently, weighted regression
should replace standard regression. Moreover, uncertain-
ties in microscopic corrections are expected to be highly
correlated, therefore, when available, their inclusion will
require the use of regression (iii). Finally, as the parame-
ters seem to be better constrained and the corresponding
predictions are more accurate, the present work seems to
suggest that employing regression (iii) may be preferable
to using regression (ii).

VII. CONCLUSION

Mass models are widely used in nuclear physics espe-
cially when it comes to make predictions. However, we
have seen that the errors of the model lead to uncer-
tainties in the predictions which should be taken into
account in order to make comparisons with experimen-
tal data [17]. In our case, we are specially interested in
improving the predictive power of the models used to es-
timate the fusion-evaporation cross-sections to synthesize
super-heavy elements by the mean of uncertainty analysis
[18].

Regression analysis is a standard method based on a
large mathematical corpus that accounts for the errors of
the model in the uncertainty estimate. Thus, we applied
it to the liquid drop model which lead us to the covari-
ance of the parameters and more precisely, to their un-
certainties and correlations which were then propagated
onto observables, thus, providing all of the elements for
a thorough uncertainty analysis.

The first part of the present work confirms the pres-
ence of strong correlations between the parameters and
furthermore, the emergence of correlation groups, i.e., in-
volving many parameters and coupled together through
the intrusion of members of other groups. It was also
shown that although some parameters are better con-
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strained than others, once the microscopic corrections
are fixed, the experimental evidence leaves hardly any
room for macroscopic variability, consequently, further
research must be focused on constraining microscopic
corrections in order to improve the model as a whole.

The second part, focuses on the influence of empiri-
cal uncertainties and correlations on the results obtained
in the first part of the study. The errors being much
greater than the empirical variances or covariances, the
weights did not improve the adjustment of the model.
Nevertheless, it was shown that the inclusion of empir-
ical correlations yields more suitable results than those
obtained only accounting for experimental uncertainties.
With future experimental and theoretical achievements,
weighted regression, involving empirical correlations, will
prove to be more attractive than only considering experi-
mental uncertainties. This method opens the doors to the
inclusion of uncertainties associated with the microscopic
corrections which are expected to be highly correlated.

Independently of the method, the errors of the model
are far larger than the uncertainties in the liquid drop
model. The extent of our uncertainty analysis, i.e.,
neglecting pairing and shell corrections, may be too
coarse to properly describe the uncertainties of the entire
“macroscopic-microscopic” model. Moreover, the coher-
ence, between the macroscopic and microscopic contri-
butions, can only be achieved if the same deformation
is assumed for both of these components. In this de-
velopment, this coherence was lost, as the macroscopic
model considered above, bears no deformation while mi-
croscopic corrections do, thus making the two contribu-
tions inconsistent with one another. Furthermore, the
present work disregards any uncertainty or correlation for
either the shell or the pairing corrections and are hereby,
presumed, independent of the macroscopic component.
As such, all of the conclusions drawn from this analysis
were reached consciously neglecting these inconsistencies
and hoping that further investigations will fill those holes.

Finally, it is worth recalling that no model can reduce
the RMS on the whole nuclear chart to values lower than
few hundreds keV. Therefore, extended uncertainty eval-
uation to the microscopic part of the model will still give

results that remain lower than the errors of the model.
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Appendix A: Covariance of primary results

In this appendix, the covariance between the parame-
ters, obtained from regression analysis using Eq. (13), are
provided in their matrix form. These results correspond
to those contained in the first part of the present study.

In the case of the model without an intercept, the cor-
relations between the parameters, presented in Table II,
can be deduced from the covariance matrix given Ta-
ble XI, using Eq. (14).

In the case of the model with an intercept, the correla-
tions between the parameters, presented in Table V, can
be deduced from the covariance matrix given Table XII,
using Eq. (14).

Appendix B: Covariance of secondary results

In this appendix, the covariance between the param-
eters, obtained from weighted regression analysis using
Eq. (26), are provided in their matrix form. These re-
sults correspond to those contained in the second part of
the present study, using the regressions i, ii and iii which
were defined in Sect. V B.

The correlations between the parameters, presented in
Table VII, can be deduced from the covariance matrix
given Table XIII, using Eq. (14).

The correlations between the parameters, presented in
Table VIII, can be deduced from the covariance matrix
given Table XIV, using Eq. (14).

The correlations between the parameters, presented in
Table IX, can be deduced from the covariance matrix
given Table XV, using Eq. (14).
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Nucl. Data Tables 59, 185 (1995).
[7] M. Kirson, Nucl. Phys. A 798, 29 (2008).
[8] J. Toivanen, J. Dobaczewski, M. Kortelainen, and

K. Mizuyama, Phys. Rev. C 78, 426 (2008).
[9] S. Chatterjee and A. S. Hadi, Regression analysis by ex-

ample (Wiley, 2006).

[10] Y. Dodge and V. Rousson, Analyse de régression ap-
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TABLE XI. Covariance matrix between the parameters for the model without intercept.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.0002112255 -0.0008757963 -0.0006794524 0.0025757144 -0.0000102194 -0.0001320633 0.0003152269 0.0020147598
-0.0008757963 0.0071133452 0.0026224132 -0.0293433212 0.0000265519 0.0012374354 -0.0005926571 -0.0124508863
-0.0006794524 0.0026224132 0.0025454952 -0.0092533611 0.0000386468 -0.0000681243 -0.0012004781 -0.0059446316
0.0025757144 -0.0293433212 -0.0092533611 0.1441782758 -0.0000678873 -0.0027366304 0.0007282969 0.0460073012
-0.0000102194 0.0000265519 0.0000386468 -0.0000678873 0.0000006481 -0.0000035655 -0.0000200434 -0.0000701814
-0.0001320633 0.0012374354 -0.0000681243 -0.0027366304 -0.0000035655 0.0008284236 0.0001229168 -0.0026805039
0.0003152269 -0.0005926571 -0.0012004781 0.0007282969 -0.0000200434 0.0001229168 0.0008585116 0.0019737292
0.0020147598 -0.0124508863 -0.0059446316 0.0460073012 -0.0000701814 -0.0026805039 0.0019737292 0.0286534371

TABLE XII. Covariance matrix between the parameters for the model with an intercept.

p̂0 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.1254667086 0.0044991307 -0.0127792513 -0.0273692844 0.0595335998 -0.0002367796 0.0060480260 -0.0039936493 -0.0132486054
0.0044991307 0.0003708226 -0.0013268437 -0.0016553016 0.0046893470 -0.0000186260 0.0000859004 0.0001694244 0.0015230991
-0.0127792513 -0.0013268437 0.0083564328 0.0053885001 -0.0351656109 0.0000504503 0.0006112401 -0.0001810128 -0.0109990240
-0.0273692844 -0.0016553016 0.0053885001 0.0084948821 -0.0221638752 0.0000899799 -0.0013868790 -0.0003194269 -0.0030056724
0.0595335998 0.0046893470 -0.0351656109 -0.0221638752 0.1712405408 -0.0001796800 0.0001556571 -0.0011726707 0.0393423395
-0.0002367796 -0.0000186260 0.0000504503 0.0000899799 -0.0001796800 0.0000010896 -0.0000149500 -0.0000123417 -0.0000446014
0.0060480259 0.0000859004 0.0006112401 -0.0013868790 0.0001556571 -0.0000149500 0.0011131480 -0.0000706053 -0.0032970883
-0.0039936493 0.0001694244 -0.0001810128 -0.0003194269 -0.0011726707 -0.0000123417 -0.0000706053 0.0009785672 0.0023791976
-0.0132486054 0.0015230991 -0.0109990240 -0.0030056724 0.0393423395 -0.0000446014 -0.0032970883 0.0023791976 0.0298166653

[18] H. Lü, D. Boilley, Y. Abe, and C. Shen, Phys. Rev. C
94, 034616 (2016).
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TABLE XIII. Covariance matrix between the parameters using regression (i).

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.0006082522 -0.0025984253 -0.0020193653 0.0081677050 -0.0000304887 -0.0002948485 0.0011131294 0.0055410398
-0.0025984253 0.0199312841 0.0082768795 -0.0824713403 0.0000920849 0.0027833281 -0.0036521942 -0.0322768133
-0.0020193653 0.0082768795 0.0076229685 -0.0306027904 0.0001158646 -0.0002666849 -0.0043696777 -0.0176287206
0.0081677050 -0.0824713403 -0.0306027904 0.4000871096 -0.0002827051 -0.0051879688 0.0123767162 0.1200788307
-0.0000304887 0.0000920849 0.0001158646 -0.0002827051 0.0000019082 -0.0000097643 -0.0000681658 -0.0002287967
-0.0002948485 0.0027833281 -0.0002666849 -0.0051879688 -0.0000097643 0.0019854801 0.0004409849 -0.0050006166
0.0011131294 -0.0036521942 -0.0043696777 0.0123767162 -0.0000681658 0.0004409849 0.0035569094 0.0082877888
0.0055410398 -0.0322768133 -0.0176287206 0.1200788307 -0.0002287967 -0.0050006166 0.0082877888 0.0649826247

TABLE XIV. Covariance matrix between the parameters using regression (ii).

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.0003819971 -0.0052531624 -0.0018352767 0.0277998983 -0.0000260665 0.0004993266 0.0009365340 0.0042188415
-0.0052531624 0.4034694831 0.0940782882 -2.3921066309 0.0001885700 -0.0699538700 -0.0617906364 -0.2389822932
-0.0018352767 0.0940782882 0.0262915121 -0.5825888711 0.0001329309 -0.0191423309 -0.0173332023 -0.0645221741
0.0277998983 -2.3921066309 -0.5825888711 14.5912280071 -0.0014604903 0.4572853381 0.3881599979 1.4663478275
-0.0000260665 0.0001885700 0.0001329309 -0.0014604903 0.0000030415 -0.0000600708 -0.0000636914 -0.0002641005
0.0004993266 -0.0699538700 -0.0191423309 0.4572853381 -0.0000600708 0.0169847741 0.0134145574 0.0472166671
0.0009365340 -0.0617906364 -0.0173332023 0.3881599979 -0.0000636914 0.0134145574 0.0121098120 0.0431063890
0.0042188415 -0.2389822932 -0.0645221741 1.4663478275 -0.0002641005 0.0472166671 0.0431063890 0.1604514629

TABLE XV. Covariance matrix between the parameters using regression (iii).

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.0002444162 -0.0030966569 -0.0007898135 0.0138980286 -0.0000171969 -0.0000074066 0.0000744017 0.0015884903
-0.0030966569 0.2820927098 0.0756541571 -1.8124261615 0.0003224603 -0.0631928071 -0.0495966682 -0.1865929987
-0.0007898135 0.0756541571 0.0252066878 -0.5265266243 0.0001383686 -0.0225791476 -0.0176880512 -0.0607295316
0.0138980286 -1.8124261615 -0.5265266243 12.1680573525 -0.0021906101 0.4706768938 0.3653808853 1.2958749960
-0.0000171969 0.0003224603 0.0001383686 -0.0021906101 0.0000023828 -0.0000955509 -0.0000702254 -0.0002826310
-0.0000074066 -0.0631928071 -0.0225791476 0.4706768938 -0.0000955509 0.0227856426 0.0174302753 0.0548222841
0.0000744017 -0.0495966682 -0.0176880512 0.3653808853 -0.0000702254 0.0174302753 0.0136646136 0.0432448396
0.0015884903 -0.1865929987 -0.0607295316 1.2958749960 -0.0002826310 0.0548222841 0.0432448396 0.1484077708
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