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Abstract

A relation is established in the present paper between Dicke states in a d-dimensional space

and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimen-

sion d. This provides a natural way to deal with the separable and entangled states of a system

of N = d − 1 symmetric qubit states. Using the decomposition property of Dicke states, it is

shown that the separable states coincide with the Perelomov coherent states associated with the

generalized Weyl-Heisenberg algebra considered in this paper. In the so-called Majorana scheme,

the qudit (d-level) states are represented by N points on the Bloch sphere; roughly speaking, it

can be said that a qudit (in a d-dimensional space) is describable by a N -qubit vector (in a N -

dimensional space). In such a scheme, the permanent of the matrix describing the overlap between

the N qubits makes it possible to measure the entanglement between the N qubits forming the

qudit. This is confirmed by a Fubini-Study metric analysis. A new parameter, proportional to

the permanent and called perma-concurrence, is introduced for characterizing the entanglement

of a symmetric qudit arising from N qubits. For d = 3 (⇔ N = 2), this parameter constitutes

an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A

connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.
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1 Introduction

Geometrical representations are of particular interest in various problems of quantum mechanics. For

instance, the Bloch representation is widely used in the context of characterizing quantum correlations

in multiqubit systems [1, 2, 3]. This representation is based on the idea of Majorana to visualize a

j-spin as a set of 2j points in a sphere [4]. The Bloch sphere was used in the study of entanglement

quantification and classification in multiqubit systems [5, 6, 7]. The investigation and the under-

standing of quantum correlations in multipartite quantum systems are essential in several branches

of quantum information such as quantum cryptography [8], quantum teleportation [9] and quantum

communication [10, 11].

The separability for two-qubit states can be addressed with the concept of the Wootters concur-

rence [12, 13]. However, for multiqubit quantum systems, the measure of quantum correlations is

very challenging. Several ways to understand the main features of entangled multiqubit states were

employed in the literature [14, 15].

Algebraic and geometrical methods were intensively used in quantum mechanics [16, 17, 18, 19]

and continue nowadays to contribute to our understanding of entanglement properties in multipartite

quantum systems (for instance, see [20, 21, 22, 23]). In this spirit, several works were devoted to

geometrical analysis of entangled multipartite states to find the best measure to quantify the amount

of entanglement in a multiqubit system [5, 20, 24, 25, 26, 27, 28, 29, 30]. The classification of mul-

tipartite entangled states was investigated from several perspectives using different geometrical tools

[31, 32, 33] to provide the appropriate way to approach the quantum correlations in multiqubit states.

Among these quantum states, j-spin coherent states are of special interest [34]. Indeed, they are the

most classical (in contrast to quantum) states and can be viewed as 2j-qubit states which are com-

pletely separable. In this sense, spin coherent states can be used to characterize the entanglement in

totally symmetric multiqubit systems [35].

The multipartite quantum states, invariant under permutation symmetry, have attracted a consid-

erable attention during the last decade. This is essentially motivated by their occurrence in the context

of multipartite entanglement [7, 27, 36, 37, 38, 39, 40, 41] and quantum tomography [42, 43, 44]. In

fact, the dimension 2N of the Hilbert space for an ensemble of N qubits system reduces to N +1 when

the whole system possesses the exchange symmetry. The appropriate representations to deal with the

totally symmetric states are the Dicke basis [45, 46, 47] and Majorana representation [4].

In the present paper, we consider a realization of the generalized Weyl-Heisenberg algebra, intro-

duced in [48, 49, 50], by means of an ensemble of two-qubit operators. We investigate the correspon-

dence between the vectors of the representation space of the Weyl-Heisenberg algebra and the Dicke

states. Using the decomposition properties of Dicke states, we show that the separable states are

necessarily the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra.

The coherent states are written as tensor products of single qubit coherent states. We also discuss the

separability in terms of the permanent of the matrix of the overlap between spin coherent states.
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2 Qubits and generalized Weyl-Heisenberg algebra

2.1 Bosonic and fermionic algebras

The study of bosonic and fermionic many particle states is simplified by considering the algebraic

structures of the corresponding raising and lowering operators. On the one hand, for bosons the

creation operators b+i and the annihilation operators b−i satisfy the commutation relations

[b−i , b
+
j ] = δijI, [b−i , b

−
j ] = [b+i , b

+
j ] = 0, (1)

where I stands for the identity operator. On the other hand, fermions are specified by the following

anti-commutation relations

{f−i , f+j } = δijI, {f+i , f+j } = {f−i , f−j } = 0 (2)

of the creation operators f+i and the annihilation operators f−i . The properties of Fock states follow

from the commutation and anti-commutation relations which impose only one particle in each state for

fermions (in a two-dimensional space) and an arbitrary number of particles for bosons (in an infinite-

dimensional space). Following Wu and Lidar [51], there is a crucial difference between fermions and

qubits (two level systems). In fact, a qubit is a vector in a two-dimensional Hilbert space as for

fermions and the Hilbert space of a multiqubit system has a tensor product structure like for bosons.

In this respect, the raising and lowering operators commutation rules for qubits are neither specified

by relations of bosonic type (1) nor of fermionic type (2).

2.2 Qubit algebra

The algebraic structure relations for qubits are different from those defining Fermi and Bose operators.

Indeed, denoting by |0〉 and |1〉 the states of a two-level system (qubit), the lowering (q−), raising

(q+), and number (K) operators defined by

q− = |0〉〈1| ⇒ q−|1〉 = |0〉, q−|0〉 = 0 (3)

q+ = |1〉〈0| ⇒ q+|0〉 = |1〉, q+|1〉 = 0 (4)

K = |1〉〈1| ⇒ K|1〉 = |1〉, K|0〉 = 0 (5)

satisfy the relations

(q−)† = q+, K† = K, [q−, q+] = I− 2K, [K, q+] = +q+, [K, q−] = −q− (6)

(we use A† to denote the adjoint of A). Furthermore, the creation and the annihilation operators

satisfy the nilpotency conditions

(q+)2 = (q−)2 = 0, (7)

as in the case of fermions.
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We note that the commutation relations in (6) coincide with those defining the algebra introduced

in [52] to provide an alternative algebraic description of qubits instead of the parafermionic formulation

considered in [51]. In addition, the generalized oscillator algebra Aκ introduced in [49] as a particular

case of the generalized Weyl-Heisenberg algebra of bosonic type [48] provides an alternative description

of qubits (in [50], the algebra Aκ is also denoted as Aκ(1) in view of its extension to Aκ(2)). In fact,

Eqs. (6) correspond to κ = −1.

2.3 Qudit algebra

To give an algebraic description of d-dimensional quantum systems (d ≥ 2), we consider a set of

N = d−1 qubits. We denote as q+i , q
−
i , and Ki the raising, lowering, and number operators associated

with the i-th qubit. They satisfy relations similar to (6), namely,

(q−i )
† = q+i , (Ki)

† = Ki, [q−i , q
+
j ] = (I− 2Ki)δij , [Ki, q

+
j ] = +δijq

+
i , [Ki, q

−
j ] = −δijq−i (8)

and

[q−i , q
−
j ] = [q+i , q

+
j ] = 0 (9)

for i, j = 1, 2, · · · , N .

Let us denote as H2 the two-dimensional Hilbert space for a single qubit. An orthonormal basis

of H2 is given by the set

{|n〉 : n = 0, 1}.

The multiqubit 2N -dimensional Hilbert space H2N for the N qubits has the following tensor product

structure

H2N = H2 ⊗H2 ⊗ · · · ⊗ H2

(with N ≥ 1 factors), like for bosons. In other words, the set

{|n1n2 · · ·nN 〉 : ni = 0, 1 (i = 1, 2, · · · , N)},

where

|n1n2 · · ·nN 〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nN 〉,

constitutes an orthonormal basis of H2N . The Dicke states shall be defined in Section 3 as linear

combinations of the states |n1n2 · · ·nN 〉.

We define the collective lowering, raising and number operators in the Hilbert space H2N as follows

q− =

N∑

i=1

q−i , q+ =

N∑

i=1

q+i , K =

N∑

i=1

Ki (10)

in terms of the annihilation, creation, and number operators q−i , q
+
i , and Ki. In Eq. (10), q±i should

be understood as the operator I⊗ · · · ⊗ I⊗ q±i ⊗ I⊗ · · · ⊗ I, where q±i stands, among the N operators,

at the i-th position from the left. It is trivial to check that

q−|00 · · · 0〉 = 0, q+|11 · · · 1〉 = 0.
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The action of q− and q+ on vectors |n1n2 · · ·nN 〉 involving qubits |0〉 and |1〉, as for Dicke states, shall

be considered in Section 3.

By using Eqs. (7), (9), and (10), we obtain

(q−)k = k!
∑

i1<i2<···<ik

q−i1q
−
i2
· · · q−ik , (q+)k = k!

∑

i1<i2<···<ik

q+i1q
+
i2
· · · q+ik (11)

for k = 1, 2, · · · , N . In particular, for k = N , the relations (11) give

(q−)N = N !q−1 q
−
2 · · · q−N , (q+)N = N !q+1 q

+
2 · · · q+N ,

which lead to the nilpotency relations

(q−)N+1 = (q+)N+1 = 0. (12)

Equation (12) for N = 1 (⇔ d = 2) gives back Eq. (7) which is reminiscent of the Pauli exclusion

principle for fermions.

In view of (8) and (10), the qudit operators q+, q−, and K satisfy the commutation rules

[q−, q+] = NI− 2K, [K, q+] = +q+, [K, q−] = −q−, (13)

which are similar to the relations defining the generalized Weyl-Heisenberg algebra Aκ introduced in

[49]. More precisely, let us put

a± =
1√
N
q±. (14)

Then, we have the relations

[a−, a+] = I+ 2κK, [K,a±] = ±a±, (a−)† = a+, K† = K, (15)

where the parameter κ is

κ = − 1

N
. (16)

Therefore, the operators a−, a+, and K generate the algebra Aκ with κ = − 1
N
. This shows that the

algebra Aκ can be described by a set of N qubits. According to the analysis in [49], since − 1
N
< 0, the

algebra Aκ admits finite-dimensional representations. Indeed, we shall show that the representation

constructed on the basis {|N ; k〉 : k = 0, 1, · · · , N} of the Dicke states (see Section 3) is of dimension

d = N + 1.

Note that the lowering and raising operators q+ and q− close the following trilinear commutation

relations

[q−, [q+, q−]] = +2q−, [q+, [q+, q−]] = −2q+

like in a para-fermionic algebra [53]. Note also that the definition (10) is identical to the decomposition

used by Green for defining para-fermions from ordinary fermions [54].
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3 Dicke states

3.1 Definitions

The Hilbert space H2N can be partitioned as

H2N =

N⊕

k=0

FN,k, (17)

where the sub-space FN,k is spanned by the orthonormal set

{|n1n2 · · ·nN 〉 : n1 + n2 + · · · + nN = k}.

Each vector |n1n2 · · ·nN 〉 of FN,k contains N − k qubits |0〉 and k qubits |1〉. The dimension of the

space FN,k is given by

dimFN,k = Ck
N =

N !

k!(N − k)!
,

in terms of the binomial coefficient Ck
N , and satisfies

dimH2N =

N∑

k=0

dimFN,k = 2N .

Clearly, FN,k is invariant under any of the N ! permutations of the N qubits. The orthogonal decom-

position (17) of H2N turns out to be useful in the definition of Dicke states.

To each FN,k it is possible to associate a Dicke state |N ; k〉 which is the sum (up to a normalization

factor) of the various states of FN,k. To be more precise, let us define the Dicke state |N ; k〉 as follows
[46, 47]

|N ; k〉 =
√

k!(N − k)!

N !

∑

{σ}
σ| 00 · · · 0

︸ ︷︷ ︸

N−k

11 · · · 1
︸ ︷︷ ︸

k

〉, 0 ≤ k ≤ N, (18)

where the number of 0 and 1 in the vector |00 · · · 011 · · · 1〉 are N−k and k, respectively. Furthermore,

the summation over {σ} runs on the permutations σ of the symmetric group SN restricted to the

identity permutation and the permutations between the 0’s and 1’s (the permutations between the

various 0’s as well as those between the various 1’s are excluded, only the permutations between the

0’s and 1’s leading to distinct vectors are permitted). Each vector in (18) involves (N − k) + k = N

qubits. A Dicke state |N ; k〉 is thus a normalized symmetrical superposition of the states of FN,k.

More precisely, Eq. (18) means

|N ; k〉 =
√

k!(N − k)!

N !

∑

|x〉∈FN,k

|x〉.

Indeed, each Dicke state |N ; k〉 and, more generally, any linear combination of the N +1 Dicke states

|N ; k〉 (with k = 0, 1, · · · , N) transform as the totally symmetric irreducible representation [N ] of the

group SN of the permutations of the N = d− 1 qubits.
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As a trivial example, for N = 1 the Dicke states |1; 0〉 and |1; 1〉 are nothing but the one-qubit states
|0〉 and |1〉, respectively (these qubit states are generally associated with the angular momentum states

|12 , 12) and |12 ,−1
2), respectively). As a more instructive example, for N = 4 we have the d = N +1 = 5

Dicke states

|4; 0〉 = |0000〉,
|4; 1〉 =

1

2
(|0001〉 + |0010〉 + |0100〉 + |1000〉),

|4; 2〉 =
1√
6
(|0011〉 + |0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉),

|4; 3〉 =
1

2
(|0111〉 + |1011〉 + |1101〉 + |1110〉),

|4; 4〉 = |1111〉.

Each vector |4; k〉 is a symmetric (with respect to S4) linear combination of the vectors of F4,k.

For fixed N , we have

〈N ; k|N ; ℓ〉 = δk,ℓ, k, ℓ = 0, 1, · · · , N,

so that the set {|N ; k〉 : k = 0, 1, · · · , N} constitutes an orthonormal system in the space H2N . Let us

denote as Gd the space of dimension d = N + 1 spanned by the N + 1 symmetric vectors |N ; k〉 with
k = 0, 1, · · · , N . Then, the set {|N ; k〉 : k = 0, 1, · · · , N} is an orthonormal basis of Gd.

3.2 Dicke states and representations of Aκ

The nilpotency relations (12) imply that the representation space of the generalized Weyl-Heisenberg

algebra Aκ with κ = − 1
N
, see Eqs. (13)-(16), is of dimension d = N + 1. The representation vectors

can be determined using repeated actions of the raising operator q+ combined with the actions of the

operators q−i and q+i defined by relations similar to (3)-(5). It can be shown that these representation

vectors are Dicke states. The proof is as follows.

First, the action of the operator q+ on the ground state |00 · · · 0〉 of Gd yields

q+|00 · · · 0〉 = |10 · · · 0〉+ |01 · · · 0〉+ · · ·+ |00 · · · 1〉

or equivalently

q+|N ; 0〉 =
√
N |N ; 1〉. (19)

Second, the action of (q+)2 on |00 · · · 0〉 gives

(q+)2|00 · · · 0〉 = 2 (|110 · · · 0〉+ |101 · · · 0〉+ · · ·+ |00 · · · 011〉)

or

(q+)2|N ; 0〉 =
√

2N(N − 1)|N ; 2〉.
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From repeated application of the raising operator q+ on the state |00 · · · 0〉 of Gd, we obtain

(q+)k|N ; 0〉 =
√

k!N !

(N − k)!
|N ; k〉. (20)

By using Eq. (20), we finally get the ladder relation

q+|N ; k〉 =
√

(k + 1)(N − k)|N ; k + 1〉. (21)

Similarly, for the lowering operator q−, we have

q−|N ; k〉 =
√

k(N − k + 1)|N ; k − 1〉. (22)

Equations (21) and (22) can be rewritten as

q+|N ; k〉 =

√

F (N, k + s+
1

2
)|N ; k + 1〉, (23)

q−|N ; k〉 =

√

F (N, k + s− 1

2
)|N ; k − 1〉, (24)

where s = 1
2 and

F (N, ℓ) = ℓ(N − ℓ+ 1), 0 ≤ ℓ ≤ N + 1.

Note that

q+|N ;N〉 = q−|N ; 0〉 = 0

gives the action of the raising and lowering qubit operators on the extremal Dicke states |N ;N〉 and
|N ; 0〉 of Gd.

The Dicke states are eigenstates of the operator K defined in (10), see also (5) in the case N = 1.

Indeed, we have

K|N ; k〉 = k|N ; k〉, k = 0, 1, · · · , N, (25)

in agreement with the fact that K is a number operator: it counts the number of qubits of type |1〉
in the Dicke state |N ; k〉. From Eqs. (23), (24), and (25), we recover the commutation relations (13).

Therefore, the generalized Weyl-Heisenberg algebra Aκ, with κ = − 1
N
, generated by the operators

1√
N
q+, 1√

N
q−, K, and I provides an algebraic description of a qudit (d-level) system viewed as a

collection of N = d− 1 qubits. As a matter of fact, the vectors of the representation space Gd of the

algebra Aκ are the Dicke states |N ; k〉 which are symmetric superpositions of states of a multiqubit

system.

3.3 Decomposition of Dicke states

Let us consider again the action of q+ on the ground state |00 · · · 0〉 involving N qubits |0〉. We have

seen that

q+|00 · · · 0〉 = q+|N ; 0〉 =
√
N |N ; 1〉, (26)
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see Eq. (19). On another side, we have

q+|00 · · · 0〉 = (q+1 + q+2 + · · ·+ q+N )|00 · · · 0〉.

This gives

q+|00 · · · 0〉 = |10 · · · 0〉+ |01 · · · 0〉+ · · ·+ |00 · · · 1〉,

which can be rewritten as

q+|00 · · · 0〉 = (|10 · · · 0〉+ |01 · · · 0〉+ · · ·+ |00 · · · 1〉) ⊗ |0〉+ |00 · · · 0〉 ⊗ |1〉,

where the states | × × · · · ×〉 on the right-hand side member contains N − 1 qubits. Thus, we get

q+|00 · · · 0〉 =
√
N − 1|N − 1; 1〉 ⊗ |0〉+ |N − 1; 0〉 ⊗ |1〉. (27)

A comparison of (26) and (27) yields

√
N |N ; 1〉 =

√
N − 1|N − 1; 1〉 ⊗ |0〉+ |N − 1; 0〉 ⊗ |1〉. (28)

By applying the creation operator q+ on both sides of (28) and by using (21), we obtain

√

2N(N − 1)|N ; 2〉 =
√

2(N − 1)(N − 2)|N − 1; 2〉 ⊗ |0〉+ 2
√
N − 1|N − 1; 1〉 ⊗ |1〉.

Repeating this process k times, we end up with

√

N !

k!(N − k)!
|N ; k〉 =

√

(N − 1)!

k!(N − k − 1)!
|N − 1; k〉 ⊗ |0〉

+

√

(N − 1)!

(k − 1)!(N − k)!
|N − 1; k − 1〉 ⊗ |1〉. (29)

Equation (29) can be simplified to give

|N ; k〉 =
√

N − k

N
|N − 1; k〉 ⊗ |0〉+

√

k

N
|N − 1; k − 1〉 ⊗ |1〉, (30)

where 0 ≤ k ≤ N .

For k 6= 0 and k 6= N , there are two terms in the decomposition of |N ; k〉: one is a tensor product

involving the qubit |0〉 and the other a tensor product involving the qubit |1〉. The decomposition

(30) of the Dicke states |N ; k〉 is trivial in the cases k = 0 and k = N . For k = 0 and k = N , the

significance of (30) is clear. These two particular cases correspond to a factorization of the Dicke state

|N ; k〉 for N qubits into the tensor product of a Dicke state for N−1 qubits with a state for one qubit.

3.4 Dicke states and angular momentum states

To close this section, a link between Dicke states and angular momentum states is in order. The Lie

algebra su(2) of the group SU(2) can be realized by means of the angular momentum operators J+,
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J−, and Jz . The irreducible representation (j) of su(2) can be constructed from the set {|j,m) : m =

−j,−j + 1, · · · , j} of angular momentum states. We know that

J+|j,m) =
√

(j −m)(j +m+ 1)|j,m+ 1), (31)

J−|j,m) =
√

(j +m)(j −m+ 1)|j,m− 1), (32)

Jz|j,m) = m|j,m), (33)

according to the Condon and Shortley phase convention [55]. Let us put

k = j −m, N − k = j +m ⇔ j =
N

2
, m = −k + N

2
.

Therefore, the state |j,m) can be denoted as |N ; k〉 since, for fixed j, then N is fixed and −j ≤ m ≤ j

implies 0 ≤ k ≤ N . Consequently, Eqs. (31)-(33) can be rewritten as

J+|N ; k〉 =
√

k(N − k + 1)|N ; k − 1〉,
J−|N ; k〉 =

√

(N − k)(k + 1)|N ; k + 1〉,

Jz|N ; k〉 =

(
N

2
− k

)

|N ; k〉,

to be compared with Eqs. (21), (22), and (25). This leads to the identification

J+ = q−, J− = q+, Jz =
N

2
I −K

which establishes a link between the Weyl-Heisenberg algebra Aκ with κ = − 1
N

and the Lie algebra

su(2). The rewriting of the Dicke state |N ; k〉, see Eq. (18), in terms of the variables j and m yields

|j,m) =

√

(j −m)!(j +m)!

(2j)!

×
∑

{σ}
σ






|1
2
,
1

2
)⊗ |1

2
,
1

2
)⊗ · · · ⊗ |1

2
,
1

2
)

︸ ︷︷ ︸

j+m

⊗ |1
2
,−1

2
)⊗ |1

2
,−1

2
)⊗ · · · ⊗ |1

2
,−1

2
)

︸ ︷︷ ︸

j−m






,

where the summation over {σ} runs on the permutations σ of the symmetric group S2j restricted to

the identity permutation and the permutations between the states |12 , 12 ) and |12 ,−1
2) exclusively (only

the permutations leading to distinct vectors are permitted).

4 Separable qudit states

4.1 Factorization of a qudit

In this section, we start from a qudit (d-level state) and study on which condition such a state is

separable in the direct product of d− 1 qubit states.

The most general state in the space Gd can be considered as a qudit |ψd〉 constituted from N = d−1

qubits. In other words, in terms of Dicke states we have

|ψd〉 =
N∑

k=0

ck|N ; k〉, N = d− 1, ck ∈ C. (34)
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We may ask the question: on which condition the vector |ψd〉 can be factorized as

|ψd〉 = |φd−1〉 ⊗ |ϕ1〉

involving a state |φd−1〉 for N − 1 qubits and a state |ϕ1〉 for one qubit?

The use of Eq. (30) yields

|ψd〉 =
N∑

k=0

ck

[√

N − k

N
|N − 1; k〉 ⊗ |0〉+

√

k

N
|N − 1; k − 1〉 ⊗ |1〉

]

,

which can be rewritten as

|ψd〉 = |u〉 ⊗ |0〉+ |v〉 ⊗ |1〉,

where

|u〉 =
N−1∑

k=0

ck

√

N − k

N
|N − 1; k〉, |v〉 =

N∑

k=1

ck

√

k

N
|N − 1; k − 1〉. (35)

Clearly, the state |ψd〉 is separable if there exists z in C such that

|v〉 = z|u〉. (36)

Then

|ψd〉 = |u〉 ⊗ (|0〉+ z|1〉), (37)

where

|u〉 ≡ |φd−1〉, |0〉 + z|1〉 ≡ |ϕ1〉.

It is easy to show that Eq. (36) implies

N−1∑

k=0

ck+1

√
k + 1|N − 1; k〉 = z

N−1∑

k=0

ck
√
N − k|N − 1; k〉.

Consequently, we get the recurrence relation

zck
√
N − k = ck+1

√
k + 1

that admits the solution

ck = c0z
k
√

Ck
N ,

where the coefficient c0 can be calculated from the normalization condition 〈ψd|ψd〉 = 1. This leads to

ck =
zk

(1 + z̄z)
N
2

√

N !

k!(N − k)!
, k = 0, 1, · · · , N (38)

10



up to a phase factor. Thus, the introduction of (38) into (34) leads to the separable state

|ψd〉 =
1

(1 + z̄z)
N
2

N∑

k=0

zk

√

N !

k!(N − k)!
|N ; k〉. (39)

In order to identify the various factors occurring in the decomposition of the separable state (39), as

a tensor product, we note that the use of (38) in (35) gives

|u〉 = 1√
1 + z̄z

|ψd−1〉.

Hence, Eq. (37) takes the form

|ψd〉 = |ψd−1〉 ⊗ |z〉, (40)

where

|z〉 = 1√
1 + z̄z

(|0〉 + z|1〉) (41)

stands for a single qubit in the Majorana representation [4] (the vector |z〉 is nothing but a SU(2)

coherent state for a spin j = 1
2 as can be seen by identifying the qubits |n〉 = |0〉 and |1〉 to the spin

states |j,m) = |12 , 12) and |12 ,−1
2 ), respectively). By iteration of Eq. (40), we obtain

|ψd〉 = |z〉 ⊗ |z〉 ⊗ · · · ⊗ |z〉,

with N factors |z〉.

As a résumé, we have the following result. If the qudit state |ψd〉 given by Eq. (34) is separable,

then it can be written

|ψd〉 =
1

(1 + z̄z)
N
2

N∑

k=0

zk

√

N !

k!(N − k)!
|N ; k〉 = |z〉 ⊗ |z〉 ⊗ · · · ⊗ |z〉, (42)

so that |ψd〉 is completely separable into the tensor product of N identical SU(2) coherent states for

a spin j = 1
2 .

4.2 Separable states and coherent states

Let us consider the unitary displacement operator

D(ξ) = exp(ξq+i − ξ̄q−i ), ξ ∈ C

for the i-th qubit. The action of D(ξ) on the i-th qubit |0〉 can be calculated to be

D(ξ)|0〉 = cos(|ξ|)|0〉 + ξ

|ξ| sin(|ξ|)|1〉. (43)

By introducing

z =
ξ

|ξ| tan(|ξ|) ⇒ cos2(|ξ|) = 1

1 + z̄z

11



in (43), we obtain

D(ξ)|0〉 = 1√
1 + z̄z

(|0〉 + z|1〉).

Hence, we have

D(ξ)|0〉 = |z〉,

where |z〉 is the coherent state defined in (41). This well-known result can be extended to the case

of N qubits. The action of the operator exp(ξq+ − ξ̄q−), where q+ and q− are given in (10), on the

Dicke state |N ; 0〉 = |00 · · · 0〉 reads

exp(ξq+ − ξ̄q−)|N ; 0〉 = |z〉 ⊗ |z〉 ⊗ · · · ⊗ |z〉.

Therefore, the separable state |ψd〉 given by (42) can be written in three different forms, namely

|ψd〉 =
1

(1 + z̄z)
N
2

N∑

k=0

zk

√

N !

k!(N − k)!
|N ; k〉 = |z〉 ⊗ |z〉 ⊗ · · · ⊗ |z〉 = exp(ξq+ − ξ̄q−)|N ; 0〉,

where the last member coincides, modulo some changes of notation, with the Perelomov coherent state

derived in [56] (see formulas (122) and (123) in [56]).

5 Majorana description

We now go back to the general case where the qudit state |ψd〉 of Gd is not necessarily a separable

state. This state (normalized to unity) can be written in two different forms, namely, as in Eq. (34)

|ψd〉 = c0|N ; 0〉+ c1|N ; 1〉 + · · ·+ cN |N ;N〉, N = d− 1,

N∑

k=0

|ck|2 = 1 (44)

or, according to the Majorana description [4], as

|ψd〉 = Nd

∑

σ∈SN

σ(|z1〉 ⊗ |z2〉 ⊗ · · · ⊗ |zN 〉) (45)

(see Annexe for a discussion of the equivalence between (44) and (45) in the framework of the Bargmann

function associated with |ψd〉 and the so-called Majorana stars). In Eq. (45), the state |zi〉 (with

i = 1, 2, · · · , N) is given by (41) with z = zi. Furthermore, Nd is a normalization factor and the sum

over σ runs here over all the permutations of the symmetric group SN . The coefficients c0, c1, c2, · · · , cN
can be expressed in terms of the coefficients Nd, z1, z2, · · · , zN . The case where N is arbitrary is rather

intricate. Therefore, for pedagogical reasons we start with the case of N = 2 qubits.

5.1 The case N = 2

For N = 2 (⇔ d = 3), on the one hand we have

|ψ3〉 = c0|2; 0〉 + c1|2; 1〉 + c2|2; 2〉, |c0|2 + |c1|2 + |c2|2 = 1,

12



where the Dicke states |2; k〉 with k = 0, 1, 2 are

|2; 0〉 = |00〉, |2; 1〉 = 1√
2
(|01〉 + |10〉), |2; 2〉 = |11〉. (46)

On the other hand

|ψ3〉 = N3(|z1〉 ⊗ |z2〉+ |z2〉 ⊗ |z1〉).

Therefore, we have to compare

|ψ3〉 = c0|00〉 + c1
1√
2
(|01〉 + |10〉) + c2|11〉

with

|ψ3〉 = N3
1

√

1 + |z1|2
1

√

1 + |z2|2
[2|00〉 + (z1 + z2)(|01〉 + |10〉) + 2z1z2|11〉] .

This leads to

1

2
c0 = N3

1
√

1 + |z1|2
1

√

1 + |z2|2
,

1√
2
c1 = N3

1
√

1 + |z1|2
1

√

1 + |z2|2
(z1 + z2), (47)

1

2
c2 = N3

1
√

1 + |z1|2
1

√

1 + |z2|2
z1z2.

Of course, the complex numbers z1 and z2 are the roots of the equation

z2 − (z1 + z2)z + z1z2 = 0. (48)

Therefore, by combining Eqs. (47) and (48), we end up with the quadratic equation

c0z
2 −

√
2c1z + c2 = 0, (49)

so that z1 and z2 are given by

z1 = z+, z2 = z−, z± =
c1 ±

√

c21 − 2c0c2√
2c0

(50)

for c0 6= 0 (z = 1√
2
c2
c1

for c0 = 0). Observe that, when the so-called concurrence C defined by (see

Ref. [13])

C = |c21 − 2c0c2| (51)

vanishes, we have z1 = z2 = z. Therefore, the state

|ψ3〉 = |z〉 ⊗ |z〉 = 1

1 + z̄z

[
|00〉 + z(|01〉 + |10〉) + z2|11〉

]

is separable.
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5.2 The case N arbitrary

The case N arbitrary is very much involved. Equations (47) and (49) for N = 2 can be generalized as

follows. In the general case of N qubits, the vector |ψd〉 of the space Gd, normalized via 〈ψd|ψd〉 = 1,

is given by (44) in terms of Dicke states or by (45) in the Majorana representation. The coefficients

c0, c1, c2, · · · , cN are connected to the complex numbers Nd, z1, z2, · · · , zN through

ck = N !N1N2 · · ·NNNd

√

k!(N − k)!

N !
sk(z1z2 · · · zN ),

where sk(z1z2 · · · zN ) is the elementary symmetric polynomial (invariant under SN ) in N variables

z1, z2, · · · , zN defined as

s0(z1z2 · · · zN ) = 1, sk(z1z2 · · · zN ) =
∑

1≤i1<i2<···<ik≤N

zi1zi2 · · · zik , k = 1, 2, · · · , N

and the normalization factors N1, N2, · · · , NN ,Nd are given by

Ni =
1√

1 + z̄izi
, i = 1, 2, · · · , N (52)

and

|Nd|−2 = N !
∑

σ∈SN

N∏

i=1

〈zi|zσ(i)〉, 〈zi|zσ(i)〉 =
1 + z̄izσ(i)

√

(1 + z̄izi)(1 + z̄σ(i)zσ(i))
. (53)

Note that

|Nd|−2 = N !perm(AN ), (54)

where

perm(AN ) =
∑

σ∈SN

N∏

i=1

〈zi|zσ(i)〉 =
1

∏N
j=1(1 + z̄jzj)

∑

σ∈SN

N∏

i=1

(1 + z̄izσ(i)) (55)

stands for the permanent of the N ×N matrix AN of elements

(AN )ij = 〈zi|zj〉, i, j = 1, 2, · · · , N.

Finally, for fixed c0, c1, · · · , cN , the numbers z1, z2, · · · , zN are the roots (Majorana roots) of the poly-

nomial equation of degree N

N∑

k=0

(−1)k

√

N !

k!(N − k)!
ckz

N−k = 0, (56)

which generalizes (49).

The complete proof of (56) is based on the fact that two generic qubit states |zi〉 and |zj〉, with
j 6= i, are orthogonal if and only if the variables zi and zj satisfy zj = − 1

z̄i
. The state |ψd〉 is orthogonal

to the N states | − 1
z̄i
〉 ⊗ | − 1

z̄i
〉 ⊗ · · · ⊗ | − 1

z̄i
〉 for i = 1, 2, · · · , N . This orthogonality condition shows
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that the variables zi are indeed solutions of Eq. (56).

To sum up, we have the following central result. Any vector |ψd〉 in the space Gd reads

|ψd〉 =
N∑

k=0

ck|N ; k〉 ⇔ |ψd〉 = N !N1N2 · · ·NNNd

N∑

k=0

√

k!(N − k)!

N !
sk(z1z2 · · · zN )|N ; k〉, (57)

where the normalization factors N1, N2, · · · , NN , and Nd (with d = N + 1) can be calculated from

Eqs. (52) and (53) and the variables z1, z2, · · · , zN are given in terms of c0, c1, · · · , cN by Eq. (56).

Note that (53) can be rewritten as

|Nd|−2 =
N !

(1 + z̄1z1)(1 + z̄2z2) · · · (1 + z̄NzN )

∑

σ∈SN

N∏

i=1

(1 + z̄izσ(i)),

so that

|N !N1N2 · · ·NNNd|−2 =
1

N !

∑

σ∈SN

N∏

i=1

(1 + z̄izσ(i)).

Therefore, Eq. (57) becomes

|ψd〉 =
√

N !
∑

σ∈SN

∏N
i=1(1 + z̄izσ(i))

N∑

k=0

√

k!(N − k)!

N !
sk(z1z2 · · · zN )|N ; k〉 (58)

up to a phase factor.

As a check of the last result, note that the introduction of (38) into (56) yields a trivial identity.

Furthermore, in the particular case where the solutions of (56) are identical, i.e.,

z = z1 = z2 = · · · = zN ⇒ sk(zz · · · z) =
N !

k!(N − k)!
zk,

then Eq. (58) leads to the completely separable state (42). In this particular case, from Eq. (55) we

have

perm(AN ) = N !

(which is the maximum value of perm(AN )). Therefore, in the general case the quantity

Pd =
1

N !
perm(AN ) =

1

N !

∑

σ∈SN

N∏

i=1

〈zi|zσ(i)〉 (59)

can be used for characterizing the degree of entanglement of the state |ψd〉.

5.3 The cases d = 2, 3, 4, and 5

5.3.1 Case d = 2

The state

|ψ2〉 = c0|1; 0〉 + c1|1; 1〉, |1; 0〉 = |0〉, |1; 1〉 = |1〉

is the most general qubit (linear combination of the basic qubits |0〉 and |1〉). Of course, the notion of

separability does not apply in this case.
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5.3.2 Case d = 3

The general normalized qutrit vector is

|ψ3〉 = c0|2; 0〉 + c1|2; 1〉 + c2|2; 2〉,
2∑

k=0

|ck|2 = 1,

where the Dicke states |2; k〉 with k = 0, 1, 2 are

|2; 0〉 = |0〉 ⊗ |0〉, |2; 1〉 = 1√
2
(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉), |2; 2〉 = |1〉 ⊗ |1〉,

cf. (46). In the Majorana description, Eqs. (45), (54), and (59) gives

|ψ3〉 =
1

2
√
P3

(|z1〉 ⊗ |z2〉+ |z2〉 ⊗ |z1〉),

with

P3 =
1

2
perm(A2),

=
1

2
(1 + |〈z1|z2〉|2),

=
1

2

(1 + z̄1z1)(1 + z̄2z2) + (1 + z̄1z2)(1 + z̄2z1)

(1 + z̄1z1)(1 + z̄2z2)
,

where z1 and z2 are the roots (50) of the quadratic equation (49).

It can be shown that

|〈z1|z2〉|2 =
1− C

1 + C
⇔ P3 =

1

1 + C
⇔ C =

1

P3
− 1,

where the concurrence C for a two-qubit system is defined by Eq. (51). Thus, another expression for

C is

C =
(1 + z̄1z1)(1 + z̄2z2)− (1 + z̄1z2)(1 + z̄2z1)

(1 + z̄1z1)(1 + z̄2z2) + (1 + z̄1z2)(1 + z̄2z1)
.

The possible values of C and P3 are

1

2
≤ P3 ≤ 1 ⇔ 1 ≥ C ≥ 0.

Therefore, a vanishing concurrence C = 0 (which reflects the absence of entanglement) corresponds to

P3 = 1; in the particular case P3 = 1 ⇔ C = 0, we have z = z1 = z2 ⇔ 〈z1|z2〉 = 1 that leads to the

separable state |ψ3〉 = |z〉 ⊗ |z〉. Furthermore, for C = 1 (which characterizes entangled states), we

have P3 = 1
2 ⇔ 〈z1|z2〉 = 0. Consequently, in the general case (z1 and z2 arbitrary), P3 constitutes

an alternative to the concurrence C for measuring the degree of entanglement of the general qutrit |ψ3〉.

It is interesting to note that P3 can be alternatively written as

P3 =
1

4
(3 + n1.n2)
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where the vectors

nk =

(
zk + z̄k

1 + zkz̄k
,−i

zk − z̄k

1 + zkz̄k
,
1− zkz̄k

1 + zkz̄k

)

(60)

(with k = 1, 2 and i =
√
−1) are unit vectors in the space R3 which serve to locate points on the Bloch

sphere. Therefore, entangled states are obtained for n1.n2 = −1 (in this case, P3 takes its minimal

value 1
2).

Note the following relation

ni.nj = 2|〈zi|zj〉|2 − 1 (61)

valid for arbitrary i and j. This relation will be useful for deriving closed-form expressions of Pd in

higher dimensional cases.

5.3.3 Case d = 4

In this case, the general state |ψ4〉 of G4 is made of N = 3 qubits. It takes the form

|ψ4〉 = c0|3; 0〉 + c1|3; 1〉 + c2|3; 2〉 + c3|3; 3〉,
3∑

k=0

|ck|2 = 1,

where the Dicke states |3; k〉 with k = 0, 1, 2, 3 are

|3; 0〉 = |0〉 ⊗ |0〉 ⊗ |0〉,
|3; 1〉 =

1√
3
(|0〉 ⊗ |0〉 ⊗ |1〉+ |0〉 ⊗ |1〉 ⊗ |0〉+ |1〉 ⊗ |0〉 ⊗ |0〉),

|3; 2〉 =
1√
3
(|0〉 ⊗ |1〉 ⊗ |1〉+ |1〉 ⊗ |0〉 ⊗ |1〉+ |1〉 ⊗ |1〉 ⊗ |0〉),

|3; 3〉 = |1〉 ⊗ |1〉 ⊗ |1〉.

In the Majorana representation, we have

|N4|−1|ψ4〉 = |z1〉 ⊗ |z2〉 ⊗ |z3〉+ |z2〉 ⊗ |z1〉 ⊗ |z3〉+ |z1〉 ⊗ |z3〉 ⊗ |z2〉
+ |z3〉 ⊗ |z2〉 ⊗ |z1〉+ |z2〉 ⊗ |z3〉 ⊗ |z1〉+ |z3〉 ⊗ |z1〉 ⊗ |z2〉,

where the states |zi〉 are given by (41) with z = z1, z2, z3 and the complex numbers z1, z2, z3 are

solutions of the polynomial equation of degree 3

c0z
3 −

√
3c1z

2 +
√
3c2z − c3 = 0.

The normalization factor N4 reads

|N4|−2 = 3!perm(A3) = (3!)2P4,

with

P4 =
1

6

(
1 + |〈z1|z2〉|2 + |〈z2|z3〉|2 + |〈z3|z1〉|2 + 〈z1|z2〉〈z2|z3〉〈z3|z1〉+ 〈z1|z3〉〈z3|z2〉〈z2|z1〉

)

or alternatively

P4 =
1

6
(3 + n1.n2 + n2.n3 + n3.n1),
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where the components of the vectors ni (i = 1, 2, 3) are given by (60). From Eq. (61), we get

P4 =
1

3
(|〈z1|z2〉|2 + |〈z2|z3〉|2 + |〈z3|z1〉|2)

that clearly shows that

1

3
≤ P4 ≤ 1

The case of complete separability corresponds to P4 = 1. The minimal value P4 = 1
3 is obtained for

entangled states.

5.3.4 Case d = 5

In this case, the variables zi (i = 1, 2, 3, 4) are solutions of the equation of degree 4

c0z
4 −

√
4c1z

3 +
√
6c2z

2 −
√
4c3z + c4 = 0.

The calculation of P5 yields

P5 =
1

4!

(

− 6 + 4(|〈z1|z2〉|2 + |〈z1|z3〉|2 + |〈z1|z4〉|2 + |〈z2|z3〉|2 + |〈z2|z4〉|2 + |〈z3|z4〉|2)

+ 2(|〈z1|z2〉|2|〈z3|z4〉|2 + |〈z1|z3〉|2|〈z2|z4〉|2 + |〈z1|z4〉|2|〈z2|z3〉|2)
)

or

P5 =
1

4!

(
15

2
+

5

2
(n1.n2 + n1.n3 + n1.n4 + n2.n3 + n2.n4 + n3.n4)

+
1

2
((n1.n2)(n3.n4) + (n1.n3)(n2.n4) + (n1.n4)(n2.n3))

)

with
1

4
≤ P5 ≤ 1.

The minimal value P5 =
1
4 can be obtained from

〈z1|z2〉 = 〈z1|z3〉 = 〈z1|z4〉 = 0 (62)

or from any analogue equality deduced from (62) by permutations of the indices 1, 2, 3, 4.

5.3.5 Case d arbitrary

The general case is approached in Section (5.2). For d arbitrary, it can be shown that

1

N
≤ Pd ≤ 1,

the situation where Pd = 1 corresponding to complete separability and Pd = 1
N

to entangled states.

Therefore, the parameter Pd can serve as a measure of the entanglement of the symmetric qudit state

|ψd〉 described by N = d− 1 qubits.
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The minimal value of Pd can be obtained when

〈z1|z2〉 = 〈z1|z3〉 = · · · = 〈z1|zN 〉 = 0. (63)

Thus, Eq. (59) can be reduced to

Pd =
1

N !

∑

σ∈SN−1

N∏

i=2

〈zi|zσ(i)〉.

The condition (63) implies that

z2 = z3 = · · · = zN .

In this case, we have
∑

σ∈SN−1

N∏

i=2

〈zi|zσ(i)〉 = (N − 1)!

and the minimal value of Pd is

Pd =
(N − 1)!

N !
=

1

N
.

The same result can be obtained equally well, due to the invariance of Pd under permutation symmetry,

from any of the following conditions

〈z2|z1〉 = 〈z2|z3〉 = · · · = 〈z2|zN 〉 = 0,

〈z3|z1〉 = 〈z3|z2〉 = · · · = 〈z3|zN 〉 = 0,

...

〈zN |z1〉 = 〈zN |z2〉 = · · · = 〈zN |zN−1〉 = 0.

instead of the condition (63).

6 Fubini-Study metric

6.1 The separable case

The adequate approach to deal with the geometrical properties of a quantum state manifold is based

on the derivation of the corresponding Fubini-Study metric [57]. The Fubini-Study metric is defined

by the infinitesimal distance ds between two neighboring quantum states. This derivation is simplified

by adopting the coherent states formalism. Indeed, for a single qubit coherent state |z〉 this is realized
in the following way. Let us define the Kähler potential K(z̄; z) as

K(z̄; z) = ln(〈0|z〉)−2. (64)

Using the expression (41) of the coherent state |z〉, we have

K(z̄; z) = ln(1 + z̄z)

and the metric tensor

g =
∂2K

∂z∂z̄
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becomes

g =
1

(1 + z̄z)2
,

so that the Fubini-Study metric ds2 reads

ds2 = gdzdz̄ =
1

(1 + z̄z)2
dzdz̄,

which coincides with the metric of the unit sphere. This provides us with a simple way to describe

the 2-sphere S2, or equivalently the complex projective space CP 1, usually regarded as the space of

states of a 1
2 -spin particle.

This can be generalized to the completely separable state

|z1z2 · · · zN 〉 = |z1〉 ⊗ |z2〉 ⊗ · · · ⊗ |zN 〉

constructed from the tensor product of N qubit coherent states. In this case, the Kähler potential is

given by

K(z̄1z̄2 · · · z̄N ; z1z2 · · · zN ) = ln(〈00 · · · 0|z1z2 · · · zN 〉)−2. (65)

This leads to

K(z̄1z̄2 · · · z̄N ; z1z2 · · · zN ) =

N∑

i=1

ln(1 + z̄izi). (66)

The metric tensor g is defined via its components

gij =
∂2K

∂zi∂z̄j
⇒ gij = δi,j

1

(1 + z̄izi)2
.

Finally, the Fubini-Study line element ds2 is

ds2 = gijdzidz̄j =

N∑

i=1

1

(1 + z̄izi)2
dzidz̄i (67)

associated with the complex space CP 1 ×CP 1 × · · · × CP 1.

In the special case where the complex variables zi are identical, i.e., z1 = z2 = · · · = zN = z, the

state |z1z2 · · · zN 〉 reduces to the coherent state given by (42). In this case, the Fubini-Study metric

takes the form

ds2 = N
1

(1 + z̄z)2
dzdz̄,

which describes the unit 2-sphere, of radius
√
N , written in stereographic coordinates.
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6.2 The arbitrary case

We now apply the just described geometrical picture to calculate the Fubini-Study metric for an

arbitrary multiqubit symmetric state |ψd〉. Here, we define the Kähler potential through

K(z̄1z̄2 · · · z̄N ; z1z2 · · · zN ) = ln(〈00 · · · 0|ψd〉)−2

as a generalization of (64) and (65). It is easy to show that

(〈00 · · · 0|ψd〉)−2 =
1

N !

∑

σ∈SN

N∏

i=1

〈zi|zσ(i)〉
N∏

j=1

(1 + z̄jzj),

=
1

N !
perm(AN )

N∏

i=1

(1 + z̄izi),

= Pd

N∏

i=1

(1 + z̄izi).

Hence, we otain

K(z̄1z̄2 · · · z̄N ; z1z2 · · · zN ) = lnPd +
N∑

i=1

ln(1 + z̄izi)

in terms of the parameter Pd defined by (59). As a result, the Kähler potential splits into two parts:

one term is the Kähler potential corresponding to a completely separable state involving N qubits,

cf. (66), and the other term depends exclusively on the parameter Pd which characterizes the degree

of entanglement of the state |ψd〉. Then, the components of the corresponding metric tensor g are

gij =
∂2K

∂zi∂z̄j
=
∂2 lnPd

∂zi∂z̄j
+ δi,j

1

(1 + z̄izi)2

and the Fubini-Study line element ds2 is

ds2 = gijdzidz̄j =
∂2 lnPd

∂zi∂z̄j
dzidz̄j +

N∑

i=1

1

(1 + z̄izi)2
dzidz̄i.

In the special case where Pd = 1, corresponding to a completely separable state, the last equation

gives back (67) valid for a multiqubit separable state. This is a further indication that the parameter

Pd encodes the geometrical aspects due to the entanglement of a multiqubit symmetric state.

Annexe: Majorana stars and zeros of the Bargmann function

The main idea

An arbitrary normalized state |ψd〉 of the space Gd can be written either in terms of the Dicke states

|N ; k〉 with k = 0, 1, · · · , N = d − 1 (see Eq. (44)) or in terms of the coherent states |zi〉 for i =

1, 2, · · · , N (see Eq. (45)). The variables zi, called Majorana stars [58], can be determined from the

zeros of the Bargmann function ψ : z 7→ ψ(z) associated with the state |ψd〉. In fact, denoting by ωi
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the zeros of the Bargmann function ψ, we shall show that the Majorana stars zi can be obtained from

the Bargmann zeros ωi via

zi = − 1

ωi

, i = 1, 2, · · · , kmax ≤ N

and we shall give the equation satisfied by the variables zi.

Determining the Bargmann zeros

In the analytic Fock-Bargmann representation [59], an arbitrary normalized state |ψd〉 of Gd is repre-

sented by the Bargmann function ψ defined by

ψ(z) = 〈N : z̄|ψd〉, (68)

where the bra 〈N : z̄| follows from the coherent state

|N : z〉 = 1

(1 + z̄z)
N
2

N∑

k=0

zk

√

N !

k!(N − k)!
|N ; k〉 = |z〉 ⊗ |z〉 ⊗ · · · ⊗ |z〉

corresponding to the completely separable state (42). Thus, we have

ψ(z) =
1

(1 + z̄z)
N
2

N∑

k=0

√

N !

k!(N − k)!
ckz

k,

which can be decomposed as

ψ(z) =
1

(1 + z̄z)
N
2

P(z), (69)

where

P(z) =

N∑

k=0

dkz
k,

with

dk =

√

N !

k!(N − k)!
ck.

In fact, the polynomial

P(z) =
N∑

k=0

√

N !

k!(N − k)!
ckz

k (70)

is of degree kmax ≤ N , where kmax is the maximum value of the index k for which ck 6= 0. Therefore,

the polynomial P(z) can be factorized as

P(z) = dkmax
(z − ω1)(z − ω2) · · · (z − ωkmax

)

where ωi (i = 1, 2, · · · , kmax) are called the Bargmann zeros.
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Expression of |ψd〉 in terms of the Bargmann zeros

We now look for the expression of the state vector |ψd〉 in terms of the Bargmann zeros ωi (i =

1, 2, · · · , kmax). To this end, we remark that the scalar product between the state

|ωi〉 =
1√

1 + ω̄iωi

(|1〉 − ωi|0〉)

and the coherent state |z̄〉 ≡ |1 : z̄〉 (see Eq. (41)) is

〈z̄|ωi〉 =
z − ωi

√

(1 + z̄z)(1 + ω̄iωi)
, i = 1, 2, · · · , kmax.

Thus, the polynomial P(z) can be written as

P(z) = dkmax
(1 + z̄z)

kmax
2

kmax∏

i=1

√
1 + ω̄iωi〈z̄|ωi〉.

Furthermore, by noting that

〈z̄|0〉 = 1√
1 + z̄z

,

we extend the definition of the states |ωi〉 (initially defined for i = 1, 2, · · · , kmax) by taking

|ωi〉 = |0〉, i = kmax + 1, kmax + 2, · · · , N,

so that the Bargmann function takes the form

ψ(z) = dkmax

kmax∏

i=1

√
1 + ω̄iωi

N∏

j=1

〈z̄|ωj〉.

Since the representation ψd 7→ ψ is unique up to permutations of the |ωi〉, the Bargmann function can

be rewritten as

ψ(z) = dkmax

kmax∏

i=1

√
1 + ω̄iωi

1

N !

∑

σ∈SN

N∏

j=1

〈z̄|ωσ(j)〉

or alternatively as

ψ(z) = Nd

∑

σ∈SN

〈N : z̄|ωσ(1)ωσ(2) · · ·ωσ(N)〉, (71)

where the normalization constant Nd is given by

Nd =
1

N !
dkmax

kmax∏

i=1

√
1 + ω̄iωi.

Comparing Eqs. (68) and (71), we find that the state |ψd〉 can be expressed as

|ψd〉 = Nd

∑

σ∈SN

σ(|ω1〉 ⊗ |ω2〉 ⊗ · · · ⊗ |ωN 〉) (72)

in terms of the kmax zeros ωi for i = 1, 2, · · · , kmax of the Bargmann function ψ and of their extension

ωkmax+1
= ωkmax+2

= · · · = ωN = 0.
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Expression of |ψd〉 in terms of the Majorana stars

We note that the states |ωi〉 with i = 1, 2, · · · , kmax can be written in terms of the coherent states

|zi〉 ≡ |1 : zi〉 by putting

zi =







− 1
ωi

if i = 1, 2, · · · , kmax,

0 if i = kmax + 1, kmax + 2, · · · , N.

We verify that

|ωi〉 = |zi〉, i = 1, 2, · · · , N

up to irrelevant phase factors. Hence, the symmetric qudit state |ψd〉 given by (72) can be expressed

as

|ψd〉 = Nd

∑

σ∈SN

σ(|z1〉 ⊗ |z2〉 ⊗ · · · ⊗ |zN 〉) (73)

in terms of the coherent states |zi〉. Equation (73) is identical to (45): we thus recover Eq. (45).

Equation satisfied by the Majorana stars

The zeros ωi of the Bargmann function (69) satisfy P(ωi) = 0. From Eq. (70), we thus get

kmax∑

k=0

√

N !

k!(N − k)!
ckω

k
i = 0 ⇒

N∑

k=0

√

N !

k!(N − k)!
ckω

k
i = 0

or in terms of the zi

kmax∑

k=0

(−1)k

√

N !

k!(N − k)!
ckz

N−k
i = 0 ⇒

N∑

k=0

(−1)k

√

N !

k!(N − k)!
ckz

N−k
i = 0

in agreement with Eq. (56).

7 Concluding remarks

In this paper we discussed the role of a specific generalized Weyl-Heisenberg algebra in the algebraic

structure of qubits and qudits. The use of this generalized Weyl-Heisenberg algebra is based on the

fact that qubits are neither fermions nor bosons. Indeed, in the standard theoretical approach of

quantum information, a qubit is a vector in a two-dimensional Hilbert space as for fermions and the

Hilbert space of a multiqubit system has a tensor product structure like for bosons. In this respect,

the commutation rules of the raising and lowering operators for qubits are not specified by relations

of bosonic type or of fermionic type.

By using a collection of N = d−1 qubits, we gave a realization of the d-dimensional representation

space of the generalized Weyl-Heisenbeg algebra. In particular, we demonstrated that the vectors

of this representation space coincide with the Dicke states. These states are of special interest for

describing multiqubit quantum systems possessing exchange symmetry. Another advantage of this
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algebraic description via the generalized Weyl-Heisenberg algebra concerns the separability of multi-

qubit states invariant under permutations. Hence, starting from the decomposition of Dicke states,

we investigated the condition for the separability of symmetric qudits made of N = d−1 qubit states.

Our results show that exchange symmetry implies that the superposition of Dicke states are globally

entangled unless they are fully separable and coincide with the coherent states, in the Perelomov sense,

associated with the generalized Weyl-Heisenberg algebra.

In the Majorana description of a symmetric qudit state in terms of symmetrized tensor products

of N = d− 1 qubits, we introduced a parameter Pd connected to the permanent of the matrix charac-

terizing the overlap between the N qubits. This parameter provides us with a quantitative measure

of the entanglement for the qudit arising from N qubits. This was illustrated in the special case

d = 3, for which the parameter Pd constitutes an alternative to the Wootters concurrence C for N = 2

qubits. Therefore, we propose that Pd be called perma-concurrence as a contraction of permanent and

concurrence. Other examples of Pd were given for d = 4 and 5. The results highlight the interest of

the perma-concurrence Pd for measuring the entanglement of a symmetric qudit state developed in

terms of tensor products of qubit coherent states.

In the annexe, we further investigated the formalism of qubit coherent states to describe qudit

states in the Fock-Hilbert space corresponding to the generalized Weyl-Heisenberg algebra. More

precisely, we used the Fock-Bargmann representation for describing any symmetric qudit constructed

from N = d − 1 qubits with the help of an analytic function, the so-called Bargmann function. The

zeros of the Bargmann function were related to the Majorana stars which provide an alternative way to

describe Fock-Hilbert states as tensor products of qubit coherent states labeled by complex variables,

namely, Majorana stars on the Bloch sphere.

Recently, new entropic and information inequalities for one qudit, which differs from a multiqubit

system, have been developed [60]. Therefore, it will be a challenge to ask whether the qudit picture

proposed in this paper can be adapted in terms of linear combinations of Dicke states.

To close this paper, note that it might be interesting to introduce Dicke states in the construction

of the so-called mutually unbiased bases used in quantum information. This approach, feasible in view

of the connection between mutually unbiased bases and angular momentum states [61], could be the

object of a future work.
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[42] G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter, Permutation-

ally invariant quantum tomography, Phys. Rev. Lett. 105, 250403 (2010).
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