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Abstract This paper describes the implementation and per-
formance of a particle flow algorithm applied to 20.2 fb−1 of
ATLAS data from 8 TeV proton–proton collisions in Run
1 of the LHC. The algorithm removes calorimeter energy
deposits due to charged hadrons from consideration dur-
ing jet reconstruction, instead using measurements of their
momenta from the inner tracker. This improves the accu-
racy of the charged-hadron measurement, while retaining the
calorimeter measurements of neutral-particle energies. The
paper places emphasis on how this is achieved, while min-
imising double-counting of charged-hadron signals between
the inner tracker and calorimeter. The performance of par-
ticle flow jets, formed from the ensemble of signals from
the calorimeter and the inner tracker, is compared to that of
jets reconstructed from calorimeter energy deposits alone,
demonstrating improvements in resolution and pile-up sta-
bility.
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1 Introduction

Jets are a key element in many analyses of the data collected
by the experiments at the Large Hadron Collider (LHC) [1].
The jet calibration procedure should correctly determine the
jet energy scale and additionally the best possible energy and
angular resolution should be achieved. Good jet reconstruc-
tion and calibration facilitates the identification of known
resonances that decay to hadronic jets, as well as the search
for new particles. A complication, at the high luminosities
encountered by the ATLAS detector [2], is that multiple inter-
actions can contribute to the detector signals associated with
a single bunch-crossing (pile-up). These interactions, which
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are mostly soft, have to be separated from the hard interaction
that is of interest.

Pile-up contributes to the detector signals from the col-
lision environment, and is especially important for higher-
intensity operations of the LHC. One contribution arises
from particle emissions produced by the additional proton–
proton (pp) collisions occurring in the same bunch crossing
as the hard-scatter interaction (in-time pile-up). Further pile-
up influences on the signal are from signal remnants in the
ATLAS calorimeters from the energy deposits in other bunch
crossings (out-of-time pile-up).

In Run 1 of the LHC, the ATLAS experiment used either
solely the calorimeter or solely the tracker to reconstruct
hadronic jets and soft particle activity. The vast majority of
analyses utilised jets that were built from topological clus-
ters of calorimeter cells (topo-clusters) [3]. These jets were
then calibrated to the particle level using a jet energy scale
(JES) correction factor [4–7]. For the final Run 1 jet calibra-
tion, this correction factor also took into account the tracks
associated with the jet, as this was found to greatly improve
the jet resolution [4]. ‘Particle flow’ introduces an alterna-
tive approach, in which measurements from both the tracker
and the calorimeter are combined to form the signals, which
ideally represent individual particles. The energy deposited
in the calorimeter by all the charged particles is removed. Jet
reconstruction is then performed on an ensemble of ‘particle
flow objects’ consisting of the remaining calorimeter energy
and tracks which are matched to the hard interaction.

The chief advantages of integrating tracking and calori-
metric information into one hadronic reconstruction step are
as follows:

• The design of the ATLAS detector [8] specifies a
calorimeter energy resolution for single charged pions
in the centre of the detector of

σ(E)

E
= 50%√

E
⊕ 3.4% ⊕ 1%

E
, (1)

while the design inverse transverse momentum resolution
for the tracker is

σ

(
1

pT

)
· pT = 0.036% · pT ⊕ 1.3%, (2)

where energies and transverse momenta are measured in
GeV. Thus for low-energy charged particles, the momen-
tum resolution of the tracker is significantly better than
the energy resolution of the calorimeter. Furthermore,
the acceptance of the detector is extended to softer par-
ticles, as tracks are reconstructed for charged particles
with a minimum transverse momentum pT > 400 MeV,
whose energy deposits often do not pass the noise thresh-
olds required to seed topo-clusters [9].

• The angular resolution of a single charged particle, recon-
structed using the tracker is much better than that of the
calorimeter.

• Low-pT charged particles originating within a hadronic
jet are swept out of the jet cone by the magnetic field by
the time they reach the calorimeter. By using the track’s
azimuthal coordinate1 at the perigee, these particles are
clustered into the jet.

• When a track is reconstructed, one can ascertain whether
it is associated with a vertex, and if so the vertex from
which it originates. Therefore, in the presence of multiple
in-time pile-up interactions, the effect of additional parti-
cles on the hard-scatter interaction signal can be mitigated
by rejecting signals originating from pile-up vertices.2

The capabilities of the tracker in reconstructing charged par-
ticles are complemented by the calorimeter’s ability to recon-
struct both the charged and neutral particles. At high ener-
gies, the calorimeter’s energy resolution is superior to the
tracker’s momentum resolution. Thus a combination of the
two subsystems is preferred for optimal event reconstruc-
tion. Outside the geometrical acceptance of the tracker, only
the calorimeter information is available. Hence, in the for-
ward region the topo-clusters alone are used as inputs to the
particle flow jet reconstruction.

However, particle flow introduces a complication. For any
particle whose track measurement ought to be used, it is nec-
essary to correctly identify its signal in the calorimeter, to
avoid double-counting its energy in the reconstruction. In
the particle flow algorithm described herein, a Boolean deci-
sion is made as to whether to use the tracker or calorime-
ter measurement. If a particle’s track measurement is to be
used, the corresponding energy must be subtracted from the
calorimeter measurement. The ability to accurately subtract
all of a single particle’s energy, without removing any energy
deposited by any other particle, forms the key performance
criterion upon which the algorithm is optimised.

Particle flow algorithms were pioneered in the ALEPH
experiment at LEP [10]. They have also been used in the
H1 [11], ZEUS [12,13] and DELPHI [14] experiments. Sub-
sequently, they were used for the reconstruction of hadronic
τ -lepton decays in the CDF [15], D0 [16] and ATLAS [17]

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam direction. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upward. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
�R = √

(�φ)2 + (�η)2.
2 The standard ATLAS reconstruction defines the hard-scatter primary
vertex to be the primary vertex with the largest

∑
p2

T of the associated
tracks. All other primary vertices are considered to be contributed by
pile-up.
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experiments. In the CMS experiment at the LHC, large gains
in the performance of the reconstruction of hadronic jets and
τ leptons have been seen from the use of particle flow algo-
rithms [18–20]. Particle flow is a key ingredient in the design
of detectors for the planned International Linear Collider [21]
and the proposed calorimeters are being optimised for its
use [22]. While the ATLAS calorimeter already measures jet
energies precisely [6], it is desirable to explore the extent to
which particle flow is able to further improve the ATLAS
hadronic-jet reconstruction, in particular in the presence of
pile-up interactions.

This paper is organised as follows. A description of the
detector is given in Sect. 2, the Monte Carlo (MC) simulated
event samples and the dataset used are described in Sects. 3
and 4, while Sect. 5 outlines the relevant properties of topo-
clusters. The particle flow algorithm is described in Sect. 6.
Section 7 details the algorithm’s performance in energy sub-
traction at the level of individual particles in a variety of
cases, starting from a single pion through to dijet events. The
building and calibration of reconstructed jets is covered in
Sect. 8. The improvement in jet energy and angular reso-
lution is shown in Sect. 9 and the sensitivity to pile-up is
detailed in Sect. 10. A comparison between data and MC
simulation is shown in Sect. 11 before the conclusions are
presented in Sect. 12.

2 ATLAS detector

The ATLAS experiment features a multi-purpose detector
designed to precisely measure jets, leptons and photons pro-
duced in the pp collisions at the LHC. From the inside out,
the detector consists of a tracking system called the inner
detector (ID), surrounded by electromagnetic (EM) sampling

calorimeters. These are in turn surrounded by hadronic sam-
pling calorimeters and an air-core toroid muon spectrometer
(MS). A detailed description of the ATLAS detector can be
found in Ref. [2].

The high-granularity silicon pixel detector covers the
vertex region and typically provides three measurements
per track. It is followed by the silicon microstrip tracker
which usually provides eight hits, corresponding to four
two-dimensional measurement points, per track. These sili-
con detectors are complemented by the transition radiation
tracker, which enables radially extended track reconstruc-
tion up to |η| = 2.0. The ID is immersed in a 2 T axial mag-
netic field and can reconstruct tracks within the pseudorapid-
ity range |η| < 2.5. For tracks with transverse momentum
pT < 100 GeV, the fractional inverse momentum resolution
σ(1/pT)· pT measured using 2012 data, ranges from approx-
imately 2–12% depending on pseudorapidity and pT [23].

The calorimeters provide hermetic azimuthal coverage
in the range |η| < 4.9. The detailed structure of the
calorimeters within the tracker acceptance strongly influ-
ences the development of the shower subtraction algorithm
described in this paper. In the central barrel region of the
detector, a high-granularity liquid-argon (LAr) electromag-
netic calorimeter with lead absorbers is surrounded by a
hadronic sampling calorimeter (Tile) with steel absorbers and
active scintillator tiles. The same LAr technology is used
in the calorimeter endcaps, with fine granularity and lead
absorbers for the EM endcap (EMEC), while the hadronic
endcap (HEC) utilises copper absorbers with reduced gran-
ularity. The solid angle coverage is completed with forward
copper/LAr and tungsten/LAr calorimeter modules (FCal)
optimised for electromagnetic and hadronic measurements
respectively. Figure 1 shows the physical location of the
different calorimeters. To achieve a high spatial resolution,

Fig. 1 Cut-away view of the
ATLAS calorimeter system
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Table 1 The granularity in �η × �φ of all the different ATLAS calorimeter layers relevant to the tracking coverage of the inner detector

EM LAr calorimeter

Barrel Endcap

Presampler 0.025 × π/32 |η| < 1.52 0.025 × π/32 1.5 < |η| < 1.8

PreSamplerB/E

1st layer 0.025/8 × π/32 |η| < 1.4 0.050 × π/32 1.375 < |η| < 1.425

EMB1/EME1 0.025 × π/128 1.4 < |η| < 1.475 0.025 × π/32 1.425 < |η| < 1.5

0.025/8 × π/32 1.5 < |η| < 1.8

0.025/6 × π/32 1.8 < |η| < 2.0

0.025/4 × π/32 2.0 < |η| < 2.4

0.025 × π/32 2.4 < |η| < 2.5

0.1 × π/32 2.5 < |η| < 3.2

2nd layer 0.025 × π/128 |η| < 1.4 0.050 × π/128 1.375 < |η| < 1.425

EMB2/EME2 0.075 × π/128 1.4 < |η| < 1.475 0.025 × π/128 1.425 < |η| < 2.5

0.1 × π/32 2.5 < |η| < 3.2

3rd layer 0.050 × π/128 |η| < 1.35 0.050 × π/128 1.5 < |η| < 2.5

EMB3/EME3

Tile calorimeter

Barrel Extended barrel

1st layer 0.1 × π/32 |η| < 1.0 0.1 × π/32 0.8 < |η| < 1.7

TileBar0/TileExt0

2nd layer 0.1 × π/32 |η| < 1.0 0.1 × π/32 0.8 < |η| < 1.7

TileBar1/TileExt1

3rd layer 0.2 × π/32 |η| < 1.0 0.2 × π/32 0.8 < |η| < 1.7

TileBar2/TileExt2

Hadronic LAr calorimeter
Endcap

1st layer 0.1 × π/32 1.5 < |η| < 2.5

HEC0 0.2 × π/16 2.5 < |η| < 3.2

2nd layer 0.1 × π/32 1.5 < |η| < 2.5

HEC1 0.2 × π/16 2.5 < |η| < 3.2

3rd layer 0.1 × π/32 1.5 < |η| < 2.5

HEC2 0.2 × π/16 2.5 < |η| < 3.2

4th layer 0.1 × π/32 1.5 < |η| < 2.5

HEC3 0.2 × π/16 2.5 < |η| < 3.2

the calorimeter cells are arranged in a projective geometry
with fine segmentation in φ and η. Additionally, each of
the calorimeters is longitudinally segmented into multiple
layers, capturing the shower development in depth. In the
region |η| < 1.8, a presampler detector is used to correct
for the energy lost by electrons and photons upstream of the
calorimeter. The presampler consists of an active LAr layer of
thickness 1.1 cm (0.5 cm) in the barrel (endcap) region. The
granularity of all the calorimeter layers within the tracker
acceptance is given in Table 1.

The EM calorimeter is over 22 radiation lengths in depth,
ensuring that there is little leakage of EM showers into

the hadronic calorimeter. The total depth of the complete
calorimeter is over 9 interaction lengths in the barrel and over
10 interaction lengths in the endcap, such that good contain-
ment of hadronic showers is obtained. Signals in the MS are
used to correct the jet energy if the hadronic shower is not
completely contained. In both the EM and Tile calorimeters,
most of the absorber material is in the second layer. In the
hadronic endcap, the material is more evenly spread between
the layers.

The muon spectrometer surrounds the calorimeters and is
based on three large air-core toroid superconducting magnets
with eight coils each. The field integral of the toroids ranges
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from 2.0 to 6.0 Tm across most of the detector. It includes a
system of precision tracking chambers and fast detectors for
triggering.

3 Simulated event samples

A variety of MC samples are used in the optimisation and
performance evaluation of the particle flow algorithm. The
simplest samples consist of a single charged pion generated
with a uniform spectrum in the logarithm of the generated
pion energy and in the generated η. Dijet samples generated
with Pythia 8 (v8.160) [24,25], with parameter values set
to the ATLAS AU2 tune [26] and the CT10 parton distribu-
tion functions (PDF) set [27], form the main samples used to
derive the jet energy scale and determine the jet energy res-
olution in simulation. The dijet samples are generated with
a series of jet pT thresholds applied to the leading jet, recon-
structed from all stable final-state particles excluding muons
and neutrinos, using the anti-kt algorithm [28] with radius
parameter 0.6 using FastJet (v3.0.3) [29,30].

For comparison with collision data, Z → μμ events are
generated with Powheg- Box (r1556) [31] using the CT10
PDF and are showered with Pythia 8, with the ATLAS AU2
tune. Additionally, top quark pair production is simulated
with MC@NLO (v4.03) [32,33] using the CT10 PDF set,
interfaced with Herwig (v6.520) [34] for parton showering,
and the underlying event is modelled by Jimmy (v4.31) [35].
The top quark samples are normalised using the cross-section
calculated at next-to-next-to-leading order (NNLO) in QCD
including resummation of next-to-next-to-leading logarith-
mic soft gluon terms with top++2.0 [36–43], assuming a top
quark mass of 172.5 GeV. Single-top-quark production pro-
cesses contributing to the distributions shown are also simu-
lated, but their contributions are negligible.

3.1 Detector simulation and pile-up modelling

All samples are simulated using Geant4 [44] within the
ATLAS simulation framework [45] and are reconstructed
using the noise threshold criteria used in 2012 data-taking [3].
Single-pion samples are simulated without pile-up, while
dijet samples are simulated under three conditions: with no
pile-up; with pile-up conditions similar to those in the 2012
data; and with a mean number of interactions per bunch cross-
ing 〈μ〉 = 40, where μ follows a Poisson distribution. In
2012, the mean value of μ was 20.7 and the actual number of
interactions per bunch crossing ranged from around 10 to 35
depending on the luminosity. The bunch spacing was 50 ns.
When compared to data, the MC samples are reweighted to
have the same distribution of μ as present in the data. In all
the samples simulated including pile-up, effects from both
the same bunch crossing and previous/subsequent crossings

are simulated by overlaying additional generated minimum-
bias events on the hard-scatter event prior to reconstruction.
The minimum-bias samples are generated using Pythia 8
with the ATLAS AM2 tune [46] and the MSTW2009 PDF
set [47], and are simulated using the same software as the
hard-scatter event.

3.2 Truth calorimeter energy and tracking information

For some samples the full Geant4 hit information [44] is
retained for each calorimeter cell such that the true amount
of hadronic and electromagnetic energy deposited by each
generated particle is known. Only the measurable hadronic
and electromagnetic energy deposits are counted, while the
energy lost due to nuclear capture and particles escaping from
the detector is not included. For a given charged pion the sum
of these hits in a given cluster i originating from this particle
is denoted by Eclus i

true, π .
Reconstructed topo-cluster energy is assigned to a given

truth particle according to the proportion of Geant4 hits sup-
plied to that topo-cluster by that particle. Using the Geant4
hit information in the inner detector a track is matched to a
generated particle based on the fraction of hits on the track
which originate from that particle [48].

4 Data sample

Data acquired during the period from March to December
2012 with the LHC operating at a pp centre-of-mass energy
of 8 TeV are used to evaluate the level of agreement between
data and Monte Carlo simulation of different outputs of the
algorithm. Two samples with a looser preselection of events
are reconstructed using the particle flow algorithm. A tighter
selection is then used to evaluate its performance.

First, a Z → μμ enhanced sample is extracted from
the 2012 dataset by selecting events containing two recon-
structed muons [49], each with pT > 25 GeV and |η| < 2.4,
where the invariant mass of the dimuon pair is greater than
55 GeV, and the pT of the dimuon pair is greater than 30
GeV.

Similarly, a sample enhanced in t t̄ → bb̄qq̄μν events
is obtained from events with an isolated muon and at least
one hadronic jet which is required to be identified as a jet
containing b-hadrons (b-jet). Events are selected that pass
single-muon triggers and include one reconstructed muon
satisfying pT > 25 GeV, |η| < 2.4, for which the sum
of additional track momenta in a cone of size �R = 0.2
around the muon track is less than 1.8 GeV. Additionally, a
reconstructed calorimeter jet is required to be present with
pT > 30 GeV, |η| < 2.5, and pass the 70% working point

of the MV1 b-tagging algorithm [50].
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For both datasets, all ATLAS subdetectors are required to
be operational with good data quality. Each dataset corre-
sponds to an integrated luminosity of 20.2 fb−1. To remove
events suffering from significant electronic noise issues,
cosmic rays or beam background, the analysis excludes
events that contain calorimeter jets with pT > 20 GeV
which fail to satisfy the ‘looser’ ATLAS jet quality crite-
ria [51,52].

5 Topological clusters

The lateral and longitudinal segmentation of the calorimeters
permits three-dimensional reconstruction of particle show-
ers, implemented in the topological clustering algorithm [3].
Topo-clusters of calorimeter cells are seeded by cells whose
absolute energy measurements |E | exceed the expected noise
by four times its standard deviation. The expected noise
includes both electronic noise and the average contribution
from pile-up, which depends on the run conditions. The topo-
clusters are then expanded both laterally and longitudinally
in two steps, first by iteratively adding all adjacent cells with
absolute energies two standard deviations above noise, and
finally adding all cells neighbouring the previous set. A split-
ting step follows, separating at most two local energy max-
ima into separate topo-clusters. Together with the ID tracks,
these topo-clusters form the basic inputs to the particle flow
algorithm.

The topological clustering algorithm employed in ATLAS
is not designed to separate energy deposits from different
particles, but rather to separate continuous energy showers
of different nature, i.e. electromagnetic and hadronic, and
also to suppress noise. The cluster-seeding threshold in the
topo-clustering algorithm results in a large fraction of low-
energy particles being unable to seed their own clusters. For
example, in the central barrel ∼25% of 1 GeV charged pions
do not seed their own cluster [9].

While the granularity, noise thresholds and employed
technologies vary across the different ATLAS calorimeters,
they are initially calibrated to the electromagnetic scale (EM
scale) to give the same response for electromagnetic show-
ers from electrons or photons. Hadronic interactions produce

responses that are lower than the EM scale, by amounts
depending on where the showers develop. To account for
this, the mean ratio of the energy deposited by a particle to
the momentum of the particle is determined based on the
position of the particle’s shower in the detector, as described
in Sect. 6.4.

A local cluster (LC) weighting scheme is used to calibrate
hadronic clusters to the correct scale [3]. Further develop-
ment is needed to combine this with particle flow; therefore,
in this work the topo-clusters used in the particle flow algo-
rithm are calibrated at the EM scale.

6 Particle flow algorithm

A cell-based energy subtraction algorithm is employed to
remove overlaps between the momentum and energy mea-
surements made in the inner detector and calorimeters,
respectively. Tracking and calorimetric information is com-
bined for the reconstruction of hadronic jets and soft activ-
ity (additional hadronic recoil below the threshold used in
jet reconstruction) in the event. The reconstruction of the
soft activity is important for the calculation of the missing
transverse momentum in the event [53], whose magnitude is
denoted by Emiss

T .
The particle flow algorithm provides a list of tracks and

a list of topo-clusters containing both the unmodified topo-
clusters and a set of new topo-clusters resulting from the
energy subtraction procedure. This algorithm is sketched
in Fig. 2. First, well-measured tracks are selected follow-
ing the criteria discussed in Sect. 6.2. The algorithm then
attempts to match each track to a single topo-cluster in the
calorimeter (Sect. 6.3). The expected energy in the calorime-
ter, deposited by the particle that also created the track, is
computed based on the topo-cluster position and the track
momentum (Sect. 6.4). It is relatively common for a sin-
gle particle to deposit energy in multiple topo-clusters. For
each track/topo-cluster system, the algorithm evaluates the
probability that the particle energy was deposited in more
than one topo-cluster. On this basis it decides if it is nec-
essary to add more topo-clusters to the track/topo-cluster
system to recover the full shower energy (Sect. 6.5). The

Fig. 2 A flow chart of how the particle flow algorithm proceeds, start-
ing with track selection and continuing until the energy associated with
the selected tracks has been removed from the calorimeter. At the end,

charged particles, topo-clusters which have not been modified by the
algorithm, and remnants of topo-clusters which have had part of their
energy removed remain
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expected energy deposited in the calorimeter by the particle
that produced the track is subtracted cell by cell from the set
of matched topo-clusters (Sect. 6.6). Finally, if the remaining
energy in the system is consistent with the expected shower
fluctuations of a single particle’s signal, the topo-cluster rem-
nants are removed (Sect. 6.7).

This procedure is applied to tracks sorted in descending
pT-order, firstly to the cases where only a single topo-cluster
is matched to the track, and then to the other selected tracks.
This methodology is illustrated in Fig. 3.

Details about each step of the procedure are given in the
rest of this section. After some general discussion of the prop-
erties of topo-clusters in the calorimeter, the energy sub-
traction procedure for each track is described. The proce-
dure is accompanied by illustrations of performance metrics
used to validate the configuration of the algorithm. The sam-
ples used for the validation are single-pion and dijet MC
samples without pile-up, as described in the previous sec-
tion. Charged pions dominate the charged component of
the jet, which on average makes up two-thirds of the vis-
ible jet energy [54,55]. Another quarter of the jet energy
is contributed by photons from neutral hadron decays, and
the remainder is carried by neutral hadrons that reach the
calorimeter. Because the majority of tracks are generated by
charged pions [56], particularly at low pT, the pion mass
hypothesis is assumed for all tracks used by the particle
flow algorithm to reconstruct jets. Likewise the energy sub-
traction is based on the calorimeter’s response to charged
pions.

In the following sections, the values for the parameter
set and the performance obtained for the 2012 dataset are
discussed. These parameter values are not necessarily the
product of a full optimisation, but it has been checked that
the performance is not easily improved by variations of these
choices. Details of the optimisation are beyond the scope of
the paper.

6.1 Containment of showers within a single topo-cluster

The performance of the particle flow algorithm, especially
the shower subtraction procedure, strongly relies on the
topological clustering algorithm. Hence, it is important to
quantify the extent to which the clustering algorithm dis-
tinguishes individual particles’ showers and how often it
splits a single particle’s shower into more than one topo-
cluster. The different configurations of topo-clusters contain-
ing energy from a given single pion are classified using two
variables.

For a given topo-cluster i , the fraction of the particle’s
true energy contained in the topo-cluster (see Sect. 3.2), with
respect to the total true energy deposited by the particle in
all clustered cells, is defined as

εclus
i = Eclus i

true, π

Eall topo−clusters
true, π

, (3)

where Eclus i
true, π is the true energy deposited in topo-cluster i by

the generated particle under consideration and Eall topo−clusters
true, π

is the true energy deposited in all topo-clusters by that truth
particle. For each particle, the topo-cluster with the highest
value of εclus

i is designated the leading topo-cluster, for which
εclus

lead = εclus
i . The minimum number of topo-clusters needed

to capture at least 90% of the particle’s true energy, i.e. such
that

∑n
i=0 εclus

i > 90%, is denoted by n90
clus.

Topo-clusters can contain contributions from multiple par-
ticles, affecting the ability of the subtraction algorithm to
separate the energy deposits of different particles. The purity
ρclus
i for a topo-cluster i is defined as the fraction of true

energy within the topo-cluster which originates from the par-
ticle of interest:

ρclus
i = Eclus i

true, π

Eclus i
true, all particles

. (4)

For the leading topo-cluster, defined by having the highest
εclus
i , the purity value is denoted by ρclus

lead.
Only charged particles depositing significant energy (at

least 20% of their true energy) in clustered cells are consid-
ered in the following plots, as in these cases there is signifi-
cant energy in the calorimeter to remove. This also avoids the
case where insufficient energy is present in any cell to form
a cluster, which happens frequently for very low-energy par-
ticles [3].

Figure 3 illustrates how the subtraction procedure is
designed to deal with cases of different complexity. Four dif-
ferent scenarios are shown covering cases where the charged
pion deposits its energy in one cluster, in two clusters, and
where there is a nearby neutral pion which either deposits its
energy in a separate cluster or the same cluster as the charged
pion.

Several distributions are plotted for the dijet sample in
which the energy of the leading jet, measured at truth level,
is in the range 20 < plead

T < 500 GeV. The distribution of
εclus

lead is shown in Fig. 4 for different ptrue
T and ηtrue bins.

It can be seen that εclus
lead decreases as the pT of the particle

increases and very little dependence on η is observed. Figure
5 shows the distribution of n90

clus. As expected, n90
clus increases

with particle pT. It is particularly interesting to know the
fraction of particles for which at least 90% of the true energy
is contained in a single topo-cluster (n90

clus = 1) and this is
shown in Fig. 6. Lastly, Fig. 7 shows the distribution of ρclus

lead.
This decreases as ptrue

T increases and has little dependence
on |ηtrue|.

For more than 60% of particles with 1 < ptrue
T < 2 GeV,

the shower is entirely contained within a single topo-cluster
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Fig. 3 Idealised examples of how the algorithm is designed to deal
with several different cases. The red cells are those which have energy
from the π+, the green cells energy from the photons from the π0

decay, the dotted lines represent the original topo-cluster boundaries
with those outlined in blue having been matched by the algorithm to

the π+, while those in black are yet to be selected. The different layers
in the electromagnetic calorimeter (Presampler, EMB1, EMB2, EMB3)
are indicated. In this sketch only the first two layers of the Tile calorime-
ter are shown (TileBar0 and TileBar1)
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(a) (b) (c)

Fig. 4 Distribution of the fraction of the total true energy in the leading
topo-cluster, εclus

lead, for charged pions which deposit significant energy
(20% of the particle’s energy) in the clustered cells for three different
ptrue

T bins in three |ηtrue| regions. The data are taken from a dijet sample

without pile-up with 20 < plead
T < 500 GeV and the statistical uncer-

tainties on the number of MC simulated events are shown as a hatched
band

(a) (b) (c)

Fig. 5 Distributions of the number of topo-clusters required to con-
tain > 90% of the true deposited energy of a single charged pion which
deposits significant energy (20% of the particle’s energy) in the clus-
tered cells. The distributions are shown for three ptrue

T bins in three

|ηtrue| regions. The data are taken from a dijet sample without pile-up
with 20 < plead

T < 500 GeV and the statistical uncertainties on the
number of MC simulated events are shown as a hatched band

(εclus
lead ∼ 1). This fraction falls rapidly with particle pT, reach-

ing ∼ 25% for particles in the range 5 < ptrue
T < 10 GeV. For

particles with ptrue
T < 2 GeV, 90% of the particle energy can

be captured within two topo-clusters in ∼ 95% of cases. The
topo-cluster purity also falls as the pion pT increases, with
the target particle only contributing between 38 and 45% of
the topo-cluster energy when 5 < ptrue

T < 10 GeV. This is in
part due to the tendency for high-pT particles to be produced
in dense jets, while softer particles from the underlying event
tend to be isolated from nearby activity.

In general, the subtraction of the hadronic shower is easier
for cases with topo-clusters with high ρclus

i , and high εclus
i ,

since in this configuration the topo-clustering algorithm has
separated out the contributions from different particles.

6.2 Track selection

Tracks are selected which pass stringent quality criteria: at
least nine hits in the silicon detectors are required, and tracks

must have no missing Pixel hits when such hits would be
expected [57]. This selection is designed such that the num-
ber of badly measured tracks is minimised and is referred
to as ‘tight selection’. No selection cuts are made on the
association to the hard scatter vertex at this stage Addition-
ally, tracks are required to be within |η| < 2.5 and have
pT > 0.5 GeV. These criteria remain efficient for tracks

from particles which are expected to deposit energy below
the threshold needed to seed a topo-cluster or particles that
do not reach the calorimeter. Including additional tracks by
reducing the pT requirement to 0.4 GeV leads to a substan-
tial increase in computing time without any corresponding
improvement in jet resolution. This is due to their small con-
tribution to the total jet pT.

Tracks with pT > 40 GeV are excluded from the algo-
rithm, as such energetic particles are often poorly isolated
from nearby activity, compromising the accurate removal
of the calorimeter energy associated with the track. In such
cases, with the current subtraction scheme, there is no advan-
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Fig. 6 The probability that a single topo-cluster contains > 90% of
the true deposited energy of a single charged pion, which deposits sig-
nificant energy (20% of the particle’s energy) in the clustered cells.
The distributions are shown as a function of ptrue

T in three |ηtrue|
regions. The data are taken from a dijet sample without pile-up with
20 < plead

T < 500 GeV and the statistical uncertainties on the number
of MC simulated events are shown as a hatched band

tage in using the tracker measurement. This requirement was
tuned both by monitoring the effectiveness of the energy sub-
traction using the true energy deposited in dijet MC events,
and by measuring the jet resolution in MC simulation. The
majority of tracks in jets with pT between 40 and 60 GeV
have pT below 40 GeV, as shown later in Sect. 11.

In addition, any tracks matched to candidate electrons [58]
or muons [49], without any isolation requirements, identified
with medium quality criteria, are not selected and therefore
are not considered for subtraction, as the algorithm is opti-
mised for the subtraction of hadronic showers. The energy
deposited in the calorimeter by electrons and muons is hence

taken into account in the particle flow algorithm and any
resulting topo-clusters are generally left unsubtracted.

Figure 8 shows the charged-pion track reconstruction effi-
ciency, for the tracks selected with the criteria described
above, as a function of ηtrue and ptrue

T in the dijet MC sample,
with leading jets in the range 20 < plead

T < 1000 GeV and
with similar pile-up to that in the 2012 data. The Monte Carlo
generator information is used to match the reconstructed
tracks to the generated particles [48]. The application of the
tight quality criteria substantially reduces the rate of poorly
measured tracks, as shown in Fig. 9. Additionally, using the
above selection, the fraction of combinatorial fake tracks
arising from combining ID hits from different particles is
negligible [48].

6.3 Matching tracks to topo-clusters

To remove the calorimeter energy where a particle has formed
a single topo-cluster, the algorithm first attempts to match
each selected track to one topo-cluster. The distances �φ and
�η between the barycentre of the topo-cluster and the track,
extrapolated to the second layer of the EM calorimeter, are
computed for each topo-cluster. The topo-clusters are ranked
based on the distance metric

�R′ =
√(

�φ

σφ

)2

+
(

�η

ση

)2

, (5)

where ση and σφ represent the angular topo-cluster widths,
computed as the standard deviation of the displacements of
the topo-cluster’s constituent cells in η and φ with respect
to the topo-cluster barycentre. This accounts for the spa-
tial extent of the topo-clusters, which may contain energy
deposits from multiple particles.

The distributions of ση and σφ for single-particle samples
are shown in Fig. 10. The structure seen in these distribu-

(a) (b) (c)

Fig. 7 The purity ρclus
lead, defined for a selected charged pion as the frac-

tional contribution of the chosen particle to the total true energy in the
leading topo-cluster, shown for pions with εclus

lead >50%. Distributions are
shown for several ptrue

T bins and in three |ηtrue| regions. The data are

taken from a dijet sample without pile-up with 20 < plead
T < 500 GeV

and the statistical uncertainties on the number of MC simulated events
are shown as a hatched band
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Fig. 8 The track reconstruction efficiency for charged pions after
applying the tight quality selection criteria to the tracks. Subfigure
(a) shows the efficiency for 1–2 GeV, 2–5 GeV and 5–10 GeV parti-
cles as a function of η, while (b) shows the track reconstruction effi-

ciency as a function of pT in three |η| bins. A simulated dijet sample
is used, with similar pile-up to that in the 2012 data, and for which
20 < plead

T < 1000 GeV. The statistical uncertainties in the number of
MC simulated events are shown in a darker shading
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Fig. 9 The difference between the reconstructed pT of the track from
a charged pion and the particle’s true pT for two bins in truth particle pT
and |η|, determined in dijet MC simulation with similar pile-up to that
in the 2012 data. The shaded bands represent the statistical uncertainty.
The tails in the residuals are substantially diminished upon the applica-

tion of the more stringent silicon detector hit requirements. A simulated
dijet sample with 20 < plead

T < 1000 GeV is used, and the statistical
uncertainties in the number of MC simulated events are shown as a
hatched band

tions is related to the calorimeter geometry. Each calorime-
ter layer has a different cell granularity in both dimensions,
and this sets the minimum topo-cluster size. In particular,
the granularity is significantly finer in the electromagnetic
calorimeter, thus particles that primarily deposit their energy
in either the electromagnetic and hadronic calorimeters form
distinct populations. High-energy showers typically spread
over more cells, broadening the corresponding topo-clusters.
If the computed value of ση or σφ is smaller than 0.05, it is
set to 0.05.

A preliminary selection of topo-clusters to be matched to
the tracks is performed by requiring that Eclus/ptrk > 0.1,

where Eclus is the energy of the topo-cluster and ptrk is the
track momentum. The distribution of Eclus/ptrk for the topo-
cluster with at least 90% of the true energy from the particle
matched to the track – the “correct” one to match to – and for
the closest other topo-cluster in �R′ is shown in Fig. 11. For
very soft particles, it is common that the closest other topo-
cluster carries Eclus/ptrk comparable to (although smaller
than) the correct topo-cluster. About 10% of incorrect topo-
clusters are rejected by the Eclus/ptrk cut for particles with
1 < pT < 2 GeV. The difference in Eclus/ptrk becomes
much more pronounced for particles with pT > 5 GeV,
for which there is a very clear separation between the cor-
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(a) (b) (c)

(d) (e) (f)

Fig. 10 The distribution of ση and σφ , for charged pions, in three dif-
ferent regions of the detector for three particle pT ranges. The data are
taken from a dijet sample without pile-up with 20 < plead

T < 500 GeV

and the statistical uncertainties on the number of MC simulated events
are shown as a hatched band

rect and incorrect topo-cluster matches, resulting in a 30–
40% rejection rate for the incorrect topo-clusters. This is
because at lower pT clusters come from both signal and elec-
tronic or pile-up noise. Furthermore, the particle pT spec-
trum is peaked towards lower values, and thus higher- pT

topo-clusters are rarer. The Eclus/ptrk > 0.1 requirement
rejects the correct cluster for far less than 1% of particles.

Next, an attempt is made to match the track to one of
the preselected topo-clusters using the distance metric �R′
defined in Eq. 5. The distribution of �R′ between the track
and the topo-cluster with > 90% of the truth particle energy
and to the closest other preselected topo-cluster is shown
in Fig. 12 for the dijet MC sample. From this figure, it is
seen that the correct topo-cluster almost always lies at a
small �R′ relative to other clusters. Hence, the closest pres-
elected topo-cluster in �R′ is taken to be the matched topo-
cluster. This criterion selects the correct topo-cluster with a
high probability, succeeding for virtually all particles with
pT > 5 GeV. If no preselected topo-cluster is found in a

cone of size �R′ = 1.64, it is assumed that this particle did
not form a topo-cluster in the calorimeter. In such cases the
track is retained in the list of tracks and no subtraction is
performed. The numerical value corresponds to a one-sided
Gaussian confidence interval of 95%, and has not been opti-
mised. However, as seen in Fig. 12, this cone size almost

always includes the correct topo-cluster, while rejecting the
bulk of incorrect clusters.

6.4 Evaluation of the expected deposited particle energy
through 〈Eclus

ref /ptrk
ref 〉 determination

It is necessary to know how much energy a particle with
measured momentum ptrk deposits on average, given by
〈Edep〉 = ptrk 〈Eclus

ref /ptrk
ref 〉, in order to correctly subtract

the energy from the calorimeter for a particle whose track
has been reconstructed. The expectation value 〈Eclus

ref /ptrk
ref〉

(which is also a measure of the mean response) is determined
using single-particle samples without pile-up by summing
the energies of topo-clusters in a �R cone of size 0.4 around
the track position, extrapolated to the second layer of the EM
calorimeter. This cone size is large enough to entirely capture
the energy of the majority of particle showers. This is also
sufficient in dijet events, as demonstrated in Fig. 13, where
one might expect the clusters to be broader due to the pres-
ence of other particles. The subscript ‘ref’ is used here and in
the following to indicate Eclus/ptrk values determined from
single-pion samples.

Variations in 〈Eclus
ref /ptrk

ref〉 due to detector geometry and
shower development are captured by binning the measure-
ment in the pT and η of the track as well as the layer of
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(a) (b) (c)

(d) (e) (f)

Fig. 11 The distributions of Eclus/ptrk for the topo-cluster with >

90% of the true energy of the particle and the closest other topo-cluster
in �R′. The data are taken from a dijet sample without pile-up with
20 < plead

T < 500 GeV and the statistical uncertainties on the number

of MC simulated events are shown as a hatched band. A track is only
used for energy subtraction if a topo-cluster is found inside a cone of
�R′ = 1.64 for which Eclus/ptrk > 0.1, as indicated by the vertical
dashed line

highest energy density (LHED), defined in the next section.
The LHED is also used to determine the order in which cells
are subtracted in subsequent stages of the algorithm.

The spread of the expected energy deposition, denoted by
σ(Edep), is determined from the standard deviation of the
Eclus

ref /ptrk
ref distribution in single-pion samples. It is used in

order to quantify the consistency of the measured Eclus/ptrk

with the expectation from 〈Eclus
ref /ptrk

ref 〉 in both the split-
shower recovery (Sect. 6.5) and remnant removal (Sect. 6.7).

6.4.1 Layer of highest energy density

The dense electromagnetic shower core has a well-defined
ellipsoidal shape in η–φ. It is therefore desirable to locate this
core, such that the energy subtraction may be performed first
in this region before progressing to the less regular shower
periphery. The LHED is taken to be the layer which shows
the largest rate of increase in energy density, as a function of
the number of interaction lengths from the front face of the
calorimeter. This is determined as follows:

• The energy density is calculated for the j th cell in the i th
layer of the calorimeter as

ρi j = Ei j

Vi j

(
GeV/X3

0

)
, (6)

with Ei j being the energy in and Vi j the volume of the cell
expressed in radiation lengths. The energy measured in
the Presampler is added to that of the first layer in the EM
calorimeter. In addition, the Tile and HEC calorimeters
are treated as single layers. Thus, the procedure takes
into account four layers – three in the EM calorimeter
and one in the hadronic calorimeter. Only cells in the
topo-clusters matched to the track under consideration
are used.

• Cells are then weighted based on their proximity to the
extrapolated track position in the layer, favouring cells
that are closer to the track and hence more likely to con-
tain energy from the selected particle. The weight for
each cell, wi j , is computed from the integral over the
cell area in η–φ of a Gaussian distribution centred on the
extrapolated track position with a width in �R of 0.035,
similar to the Molière radius of the LAr calorimeter.

• A weighted average energy density for each layer is cal-
culated as
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(a) (b) (c)

(d) (e) (f)

Fig. 12 The distributions of �R′ for the topo-cluster with > 90% of
the true energy of the particle and the closest other topo-cluster, both
satisfying Eclus/ptrk > 0.1. The data are taken from a dijet sample
without pile-up with 20 < plead

T < 500 GeV and the statistical uncer-

tainties on the number of MC simulated events are shown as a hatched
band. A track is only used for energy subtraction if a topo-cluster is
found with Eclus/ptrk > 0.1 inside a cone of �R′ < 1.64, as indicated
by the vertical dashed line

(a) (b) (c)

Fig. 13 The cone size �R around the extrapolated track required to
encompass both the leading and sub-leading topo-clusters, for π± when
< 70% of their true deposited energy in topo-clusters is contained in the
leading topo-cluster, but > 90% of the energy is contained in the two

leading topo-clusters. The data are taken from a dijet sample without
pile-up with 20 < plead

T < 500 GeV and the statistical uncertainties on
the number of MC simulated events are shown as a hatched band

〈ρ′〉i =
∑
j

wi jρi j . (7)

• Finally, the rate of increase in 〈ρ′〉i in each layer is deter-
mined. Taking di to be the depth of layer i in interaction
lengths, the rate of increase is defined as

�ρ′
i = 〈ρ′〉i − 〈ρ′〉i−1

di − di−1
, (8)

where the values 〈ρ′〉0 = 0 and d0 = 0 are assigned, and
the first calorimeter layer has the index i = 1.

The layer for which�ρ′ is maximal is identified as the LHED.
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(a) (b) (c)

(d) (e) (f)

Fig. 14 The significance of the difference between the energy of the
matched topo-cluster and the expected deposited energy 〈Edep〉 and
that of the matched topo-cluster, for π± when < 70% and > 90% of
the true deposited energy in topo-clusters is contained in the matched
topo-cluster for different ptrue

T and |ηtrue| ranges. The vertical line indi-
cates the value below which additional topo-clusters are matched to the
track for cell subtraction. Subfigures a–f indicate that a single cluster is

considered (93, 95, 95, 94, 95, 91) % of the time when εclus
matched > 90%;

while additional topo-clusters are considered (49, 39, 46, 56, 52, 60) %
of the time when εclus

matched < 70%. The data are taken from a dijet sample
without pile-up with 20 < plead

T < 500 GeV and the statistical uncer-
tainties on the number of MC simulated events are shown as a hatched
band

6.5 Recovering split showers

Particles do not always deposit all their energy in a single
topo-cluster, as seen in Fig. 5. Clearly, handling the multiple
topo-cluster case is crucial, particularly the two topo-cluster
case, which is very common. The next stages of the algo-
rithm are therefore firstly to determine if the shower is split
across several clusters, and then to add further clusters for
consideration when this is the case.

The discriminant used to distinguish the single and mul-
tiple topo-cluster cases is the significance of the difference
between the expected energy and that of the matched topo-
cluster (defined using the algorithm in Sect. 6.3),

S(Eclus) = Eclus − 〈Edep〉
σ(Edep)

. (9)

The distribution of S(Eclus) is shown in Fig. 14 for two cat-
egories of matched topo-clusters: those with εclus

i > 90%

and those with εclus
i < 70%. A clear difference is observed

between the S(Eclus) distributions for the two categories,
demonstrating the separation between showers that are and
are not contained in a single cluster. More than 90% of
clusters with εclus

i > 90% have S(Eclus) > −1. Based on
this observation a split shower recovery procedure is run if
S(Eclus) < −1: topo-clusters within a cone of �R = 0.2
around the track position extrapolated to the second EM
calorimeter layer are considered to be matched to the track.
As can be seen in the figure, the split shower recovery proce-
dure is typically run 50% of the time when εclus

matched < 70%.
The full set of matched clusters is then considered when the
energy is subtracted from the calorimeter.

6.6 Cell-by-cell subtraction

Once a set of topo-clusters corresponding to the track has
been selected, the subtraction step is executed. If 〈Edep〉
exceeds the total energy of the set of matched topo-clusters,
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Fig. 15 An idealised example of how the cell-by-cell subtraction
works. Cells in two adjacent calorimeter layers (EMB2 and EMB3)
are shown in grey if they are not in clusters, red if they belong to a
π+ cluster and in green if contributed by a π0 meson. Rings are placed
around the extrapolated track (represented by a star) and then the cells
in these are removed ring by ring starting with the centre of the shower

(a), where the expected energy density is highest and moving outwards,
and between layers. This sequence of ring subtraction is shown in sub-
figures (a) through (g). The final ring contains more energy than the
expected energy, hence this is only partially subtracted (g), indicated
by a lighter shading

then the topo-clusters are simply removed. Otherwise, sub-
traction is performed cell by cell.

Starting from the extrapolated track position in the LHED,
a parameterised shower shape is used to map out the most
likely energy density profile in each layer. This profile is
determined from a single π± MC sample and is dependent
on the track momentum and pseudorapidity, as well as on
the LHED for the set of considered topo-clusters. Rings are
formed in η–φ space around the extrapolated track. The rings
are just wide enough to always contain at least one calorime-
ter cell, independently of the extrapolated position, and are
confined to a single calorimeter layer. Rings within a single
layer are equally spaced in radius. The average energy den-
sity in each ring is then computed, and the rings are ranked
in descending order of energy density, irrespective of which
layer each ring is in. Subtraction starts from the ring with
the highest energy density (the innermost ring of the LHED)
and proceeds successively to the lower-density rings. If the

energy in the cells in the current ring is less than the remain-
ing energy required to reach 〈Edep〉, these cells are simply
removed and the energy still to be subtracted is reduced by
the total energy of the ring. If instead the ring has more energy
than is still to be removed, each cell in the ring is scaled down
in energy by the fraction needed to reach the expected energy
from the particle, then the process halts. Figure 15 shows a
cartoon of how this subtraction works, removing cells in dif-
ferent rings from different layers until the expected energy
deposit is reached.

6.7 Remnant removal

If the energy remaining in the set of cells and/or topo-clusters
that survive the energy subtraction is consistent with the
width of the Eclus

ref /ptrk
ref distribution, specifically if this energy

is less than 1.5σ(Edep), it is assumed that the topo-cluster sys-
tem was produced by a single particle. The remnant energy
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(a) (b) (c)

(d) (e) (f)

Fig. 16 The significance of the difference between the energy of the
matched topo-cluster and the expected deposited energy 〈Edep〉 for
π± with either < 70% or > 90% of the total true energy in the
matched topo-cluster originating from the π± for different ptrue

T and
|ηtrue| ranges. The vertical line indicates the value below which the
remnant topo-cluster is removed, as it is assumed that in this case
no other particles contribute to the topo-cluster. Subfigures a–f indi-

cate that when ρclus
matched > 90% the remnant is successfully removed

(91, 89, 94, 89, 91, 88) % of the time; while when ρclus
matched < 70% the

remnant is retained (81, 80, 76, 84, 83, 91) % of the time. The data are
taken from a dijet sample without pile-up with 20 < plead

T < 500 GeV
and the statistical uncertainties on the number of MC simulated events
are shown as a hatched band

therefore originates purely from shower fluctuations and so
the energy in the remaining cells is removed. Conversely,
if the remaining energy is above this threshold, the remnant
topo-cluster(s) are retained – it being likely that multiple par-
ticles deposited energy in the vicinity. Figure 16 shows how
this criterion is able to separate cases where the matched topo-
cluster has true deposited energy only from a single particle
from those where there are multiple contributing particles.

After this final step, the set of selected tracks and the
remaining topo-clusters in the calorimeter together should
ideally represent the reconstructed event with no double
counting of energy between the subdetectors.

7 Performance of the subtraction algorithm at truth
level

The performance of each step of the particle flow algorithm is
evaluated exploiting the detailed energy information at truth

level available in Monte Carlo generated events. For these
studies a dijet sample with leading truth jet pT between 20
and 500 GeV without pile-up is used.

7.1 Track–cluster matching performance

Initially, the algorithm attempts to match the track to a
single topo-cluster containing the full particle energy. Fig-
ure 17 shows the fraction of tracks whose matched cluster
has εclus

lead > 90% or εclus
lead > 50%. When almost all of the

deposited energy is contained within a single topo-cluster,
the probability to match a track to this topo-cluster (matching
probability) is above 90% in all η regions, for particles with
pT > 2 GeV. The matching probability falls to between 70

and 90% when up to half the particle’s energy is permitted to
fall in other topo-clusters. Due to changes in the calorimeter
geometry, the splitting rate and hence the matching proba-
bility vary significantly for particles in different pseudora-
pidity regions. In particular, the larger cell size at higher |η|
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(a) (b)

Fig. 17 The probability to match the track to the leading topo-cluster
(a) when εclus

lead > 90% and (b) when εclus
lead > 50%. The data are taken

from a dijet sample without pile-up with 20 < plead
T < 500 GeV and

the statistical uncertainties on the number of MC simulated events are
shown as a hatched band

(a) (b) (c)

Fig. 18 The fraction of the true energy of a given particle contained
within the initially matched topo-cluster for particles where the split
shower recovery procedure is run (SSR run) and where it is not (No
SSR). For cases where most of the energy is contained in the initially

matched topo-cluster the procedure is less likely to be run. The data are
taken from a dijet sample without pile-up with 20 < plead

T < 500 GeV
and the statistical uncertainties on the number of MC simulated events
are shown as a hatched band

enhances the likelihood of capturing soft particle showers in
a single topo-cluster, as seen in Figs. 4 and 5, which results
in the matching efficiency increasing at low pT for |η| > 2.

7.2 Split-shower recovery performance

Frequently, a particle’s energy is not completely contained
within the single best-match topo-cluster, in which case the
split shower recovery procedure is applied. The effectiveness
of the recovery can be judged based on whether the procedure
is correctly triggered, and on the extent to which the energy
subtraction is improved by its execution.

Figure 18 shows the fraction εclus
matched of the true deposited

energy contained within the matched topo-cluster, separately
for cases where the split shower recovery procedure is and
is not triggered, as determined by the criteria described in

Sect. 6.5. In the cases where the split shower recovery pro-
cedure is not run, εclus

matched is found to be high, confirming
that the comparison of topo-cluster energy and 〈Eclus

ref /ptrk
ref〉

is successfully identifying good topo-cluster matches. Con-
versely, the split shower recovery procedure is activated when
εclus

matched is low, particularly for higher-pT particles, which are
expected to split their energy between multiple topo-clusters
more often. Furthermore, as the particle pT rises, the width
of the calorimeter response distribution decreases, making it
easier to distinguish the different cases.

Figure 19 shows the fraction f clus
sub of the true deposited

energy of the pions considered for subtraction, in the set of
clusters matched to the track, as a function of true pT. For
particles with pT > 20 GeV, with split shower recovery
active, f clus

sub is greater than 90% on average. The subtraction
algorithm misses more energy for softer showers, which are
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Fig. 19 The fraction of the true energy of a given particle considered
in the subtraction procedure f clus

sub after the inclusion of the split shower
recovery algorithm. The data are taken from a dijet sample without pile-
up with 20 < plead

T < 500 GeV and the statistical uncertainties on the
number of MC simulated events are shown as a hatched band

harder to capture completely. While f clus
sub could be increased

by simply attempting recovery more frequently, expanding
the topo-cluster matching procedure in this fashion increases
the risk of incorrectly subtracting neutral energy; hence the
split shower recovery procedure cannot be applied indiscrim-
inately. The settings used in the studies presented in this paper
are a reasonable compromise between these two cases.

7.3 Accuracy of cell subtraction

The cell subtraction procedure removes the expected calor-
imeter energy contribution based on the track properties. It is
instructive to identify the energy that is incorrectly subtracted
from the calorimeter, to properly understand and optimise the
performance of the algorithm.

Truth particles are assigned reconstructed energy in topo-
clusters as described in Sect. 3.2, and then classified depend-
ing on whether or not a track was reconstructed for the
particle. The reconstructed energy assigned to each parti-
cle is computed both before subtraction and after the sub-
traction has been performed, using the remaining cells.
In the ideal case, the subtraction should remove all the
energy in the calorimeter assigned to stable truth particles
which have reconstructed tracks, and should not remove
any energy assigned to other particles. The total transverse
momentum of clusters associated with particles in a truth
jet where a track was reconstructed before (after) subtrac-
tion is defined as p±

T,pre−sub(p
±
T,post−sub). Similarly, the trans-

verse momentum of clusters associated with the other par-
ticles in a truth jet, neutral particles and those that did not
create selected, reconstructed tracks, before (after) subtrac-

tion as p0
T,pre−sub(p

0
T,post−sub). The corresponding transverse

momentum fractions are defined as f ± = p±
T,pre−sub/p

jet,true
T

( f 0 = p0
T,pre−sub/p

jet,true
T ).

Three measures are established, to quantify the degree to
which the energy is incorrectly subtracted. The incorrectly
subtracted fractions for the two classes of particles are:

R± = p±
T,post−sub

pjet,true
T

(10)

and

R0 = p0
T,pre−sub − p0

T,post−sub

pjet,true
T

, (11)

such that R± corresponds to the fraction of surviving momen-
tum associated with particles where the track measurement
is used, which should have been removed, while R0 gives
the fraction of momentum removed that should have been
retained as it is associated with particles where the calorime-
ter measurement is being used. These two variables are com-
bined into the confusion term

C = R± − R0, (12)

which is equivalent to the net effect of both mistakes on
the final jet transverse momentum, as there is a potential
cancellation between the two effects. An ideal subtraction
algorithm would give zero for all three quantities.

Figure 20 shows the fractions associated with the different
classes of particle, before and after the subtraction algorithm
has been executed for jets with a true energy in the range 40–
60 GeV. The confusion term is also shown, multiplied by the
jet energy scale factor that would be applied to these recon-
structed jets, such that its magnitude (C × JES) is directly
comparable to the reconstructed jet resolution.

Clearly, the subtraction does not perform perfectly, but
most of the correct energy is removed – the mean value of
the confusion is −1%, with an RMS of 7.6%. The slight
bias towards negative values suggests that the subtraction
algorithm is more likely to remove additional neutral energy
rather than to miss charged energy and the RMS gives an indi-
cation of the contribution from this confusion to the overall
jet resolution.

Figure 21 shows C × JES as a function of pT. The
mean value of the JES weighted confusion remains close
to zero and always within ±1.5%, showing that on aver-
age the algorithm removes the correct amount of energy
from the calorimeter. The RMS decreases with increasing
pT. This is due to a combination of the particle pT spec-
trum becoming harder, such that the efficiency of match-
ing to the correct cluster increases; the increasing difficulty
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Fig. 20 The fractions of the jet calorimeter energy that have been
incorrectly subtracted by the cell subtraction algorithm, for jets with
40 < ptrue

T < 60 GeV and |η| < 1.0 in dijet MC simulation without
pile-up. The statistical uncertainty is indicated by the hatched bands.
Subfigure (a) shows the fraction of jet transverse momentum carried
by reconstructed tracks before subtraction f ± (hashed) and the cor-

responding fraction after subtraction R± (solid); b shows the fraction
of jet transverse momentum carried by particles without reconstructed
tracks before subtraction f 0 (hashed) and the corresponding fraction
after subtraction R0 (solid); and c shows the confusion C = R± − R0,
scaled up by the jet energy scale, derived as discussed in Sect. 8
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Fig. 21 As a function of the jet pT, subfigure a shows the mean of the
confusion termC = R± −R0, scaled up by the jet energy scale, derived
as discussed in Sect. 8, and (b) shows the RMS of this distribution. The

error bars denote the statistical uncertainty. The MC samples used do
not include pile-up

of subtracting the hadronic showers in the denser environ-
ments of high-pT jets; and the fact that no subtraction is per-
formed for tracks above 40 GeV, resulting in the fraction of
the jet considered for subtraction decreasing with increasing
jet pT.

7.4 Visualising the subtraction

For a concrete demonstration of successes and failures of the
subtraction algorithm, it is instructive to look at a specific
event in the calorimeter. Figure 22 illustrates the action of the
algorithm in the second layer of the EM calorimeter, where
the majority of low-energy showers are contained. The focus
is on a region where a 30 GeV truth jet is present. In general,
the subtraction works well in the absence of pile-up, as the

two topo-clusters inside the jet radius with energy mainly
associated with charged particles at truth level are entirely
removed. Nevertheless, examples can be seen where small
mistakes are made. For example, the algorithm additionally
removes some cells containing neutral-particle energy from
the topo-cluster just above the track at (η, φ) = (0.0, 1.8).

The figure also shows the same event, overlaid with pile-up
corresponding to μ = 40. Pile-up contributions are identi-
fied by subtracting the energy reconstructed without pile-up
and are illustrated in blue. The pile-up supplies many more
energy deposits and tracks within the region under scrutiny.
However, the subtraction continues to function effectively,
removing energy in the vicinity of pile-up tracks and hence
the post-subtraction cell distribution more closely resem-
bles that without pile-up, especially inside the jet radius.
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Fig. 22 A graphical display of the second layer of the EM calorime-
ter focusing on a 30 GeV truth jet, outlined by the ellipse. Asterisks
indicate the positions of tracks extrapolated to the calorimeter, while
blue framed rectangles mark the cells clustered into topo-clusters. The
colour purple (dark) is used to indicate those tracks that are selected
for particle flow jet reconstruction, i.e. those matched to the nominal
hard-scatter primary vertex (see Sect. 8) and clustered into the jet based

on their momenta expressed at the perigee. Other tracks are shown in
orange (light). Red and green boxes indicate reconstructed cell ener-
gies associated with truth particles where tracks have and have not been
reconstructed. Subfigures (a) and (b) show the event without pile-up.
Subfigures (c) and (d) show the same event with pile-up overlaid. Pile-
up energy in the calorimeter is indicated by blue boxes

Because tracks classified as originating from pile-up are
ignored in jet reconstruction (see Sect. 8), the jet energy
after subtraction is mainly contaminated by neutral pile-up
contributions.

8 Jet reconstruction and calibration

Improved jet performance is the primary goal of using
particle flow reconstruction. Particle flow jets are recon-
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structed using the anti-kt algorithm with radius parameter
0.4. The inputs to jet reconstruction are the ensemble of pos-
itive energy topo-clusters surviving the energy subtraction
step and the selected tracks that are matched to the hard-
scatter primary vertex. These tracks are selected by requir-
ing |z0 sin θ | < 2 mm, where z0 is the distance of closest
approach of the track to the hard-scatter primary vertex along
the z-axis. This criterion retains the tracks from the hard scat-
ter, while removing a large fraction of the tracks (and their
associated calorimeter energy) from pile-up interactions [59].
Prior to jet-finding, the topo-cluster η and φ are recomputed
with respect to the hard-scatter primary vertex position, rather
than the detector origin.

Calorimeter jets are similarly reconstructed using the anti-
kt algorithm with radius parameter 0.4, but take as input
topo-clusters calibrated at the LC-scale, uncorrected for the
primary vertex position. For the purposes of jet calibration,
truth jets are formed from stable final-state particles exclud-
ing muons and neutrinos, using the anti-kt algorithm with
radius parameter 0.4.3

8.1 Overview of particle flow jet calibration

Calibration of these jets closely follows the scheme used
for standard calorimeter jets described in Refs. [4–7] and
is carried out over the range 20 < pT < 1500 GeV. The
reconstructed jets are first corrected for pile-up contamina-
tion using the jet ghost-area subtraction method [60,61].
This is described in Sect. 8.2. A numerical inversion [6]
based on Monte Carlo events (see Sect. 8.3) restores the
jet response to match the average response at particle level.
Additional fluctuations in jet response are corrected for
using a global sequential correction process [4], which
is detailed in Sect. 8.4. No in situ correction to data is
applied in the context of these studies; however, the degree
of agreement between data and MC simulation is checked
using the pT balance of jets against a Z boson decaying to
two muons.

The features of particle flow jet calibration that differ from
the calibration of calorimeter jets are discussed below, and
results from the different stages of the jet calibration are
shown.

8.2 Area-based pile-up correction

The calorimeter jet pile-up correction uses a transverse
energy density ρ calculated from topo-clusters using kT

jets [62,63], for a correction of the form of ρ multiplied
by the area of the jet [61]. For particle flow jets, the trans-
verse energy density therefore needs to be computed using

3 ‘Stable particles’ are defined as those with proper lifetimes longer
than 30 ps.
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Fig. 23 The distribution of the median transverse energy density ρ in
dijet MC simulated events with similar pile-up to that measured in the
2012 data for different jet constituents

charged and neutral particle flow objects to correctly account
for the differences in the jet constituents. As discussed above,
the tracks associated to pile-up vertices are omitted, elimi-
nating a large fraction of the energy deposits from charged
particles from pile-up interactions. The jet-area subtraction
therefore corrects for the impact of charged underlying-
event hadrons, charged particles from out-of-time interac-
tions, and more importantly, neutral particles from pile-up
interactions. This correction is evaluated prior to calibra-
tion of the jet energy scale. Figure 23 shows the distri-
bution of the median transverse energy density ρ in dijet
MC events for particle flow objects and for topo-clusters.
The topo-cluster ρ is calculated with the ensemble of clus-
ters, calibrated either at the EM scale or LC scale, and
the particle flow jets use topo-clusters calibrated at the EM
scale.

The LC-scale energy density is larger than the EM-scale
energy density due to the application of the cell weights to
calibrate cells to the hadronic scale. Compared to the EM-
and LC-scale energy densities, ρ has a lower per-event value
for particle flow jets in 2012 conditions, due to the reduced
pile-up contribution. The removal of the charged particle flow
objects that are not associated with the hard-scatter primary
vertex more than compensates for the higher energy scale for
charged hadrons from the underlying event.

8.3 Monte Carlo numerical inversion

Figure 24 shows the energy response R = Ereco/Etruth

prior to the MC-based jet energy scale correction. The same
numerical procedure as described in Ref. [6] is applied and
successfully corrects for the hadron response, at a similar
level to that observed in Ref. [6].
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8.4 Global sequential correction

The numerical inversion calibration restores the average
reconstructed jet energy to the mean value of the truth jet
energy, accounting for variations in the jet response due to
the jet energy and pseudorapidity. However, other jet charac-
teristics such as the flavour of the originating parton and the
composition of the hadrons created in jet fragmentation may
cause further differences in the response. A global sequen-
tial correction [4] that makes use of additional observables
adapts the jet energy calibration to account for such varia-
tions, thereby improving the jet resolution without changing
the scale. The variables used for particle flow jets are not
the same as those used for calorimeter jets, as tracks have
already been used in the calculation of the energy of the jet
constituents.

As the name implies, the corrections corresponding to
each variable are applied consecutively. Three variables are
used as inputs to the correction:

1. the fraction of the jet energy measured from constituent
tracks (charged fraction), i.e. those tracks associated to
the jet;

2. the fraction of jet energy measured in the third EM
calorimeter layer;

3. the fraction of jet energy measured in the first Tile
calorimeter layer.

The first of these variables allows the degree of under-
calibrated signal, due to the lower energy deposit of hadrons
in the hadronic calorimeter, to be determined. The calorimeter-
layer energy fractions allow corrections to be made for
the energy lost in dead material between the LAr and Tile
calorimeters.
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8.5 In situ validation of JES

A full in situ calibration and evaluation of the uncertainties
on the JES [64] is not performed for these studies. However,
to confirm that the ATLAS MC simulation describes the par-
ticle flow jet characteristics well enough to reproduce the jet
energy scale in data, similar methods are used to validate the
jet calibration. A sample of Z → μμ events with a jet bal-
ancing the Z boson is used for the validation. A preselection
is made using the criteria described in Sect. 4. The particle
flow algorithm is run on these events and further require-
ments, discussed below, are applied. The jet with the highest
pT (j1) and the reconstructed Z boson are required to be well
separated in azimuthal angle, �φ > π − 0.3. Events with
any additional jet within |η| < 4.5, with p j2

T > 20 GeV or

p j2
T > 0.1p j1

T , are vetoed, where j2 denotes the jet with the
second highest pT. In Fig. 25, the mean value of the ratio of
the transverse momentum of the jet to that of the Z boson
is shown for data and MC simulation for jets with |η| < 1.
The mean value is determined using a Gaussian fit to the
distribution in bins of the Z -boson pT. The double-ratio of
data to MC simulation is also shown. The simulation repro-
duces the data to within 2%, and in general is consistent
with the data points within statistical uncertainties. At high
pT the data/MC ratio is expected to tend towards that of the
calorimeter jets [6,7], as a large fraction of the jet’s energy is
carried by particles above the cut made on the track momen-
tum. For pT > 200 GeV it is observed that the jet energy
scale of calorimeter jets in data is typically 0.5% below that
in simulation.
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Fig. 26 The jet transverse momentum resolution as determined in dijet
MC events for calorimeter jets and particle flow jets. Subfigure (a) shows
the resolution as a function of pT for jets with |η| < 1.0 and (b) shows
the resolution as a function of |η| for jets with 40 < pT < 60 GeV.

Simulated pile-up conditions are similar to the data-taking in 2012. To
quantify the difference in resolution between particle flow and calorime-
ter jets, the lower figure shows the square root of the difference of the
squares of the resolution for the two classes of jets

9 Resolution of jets in Monte Carlo simulation

The largest expected benefit from using the particle flow
reconstruction as input to jet-finding is an improvement of
the jet energy and angular resolution for low-pT jets. In this
section, the jet resolution achieved with particle flow meth-
ods is compared with that attained using standard calorimeter
jet reconstruction.

9.1 Transverse momentum resolution

In Fig. 26, the relative jet transverse momentum resolution
for particle flow and calorimeter jets is shown as a func-
tion of jet transverse momentum for jets in the pseudora-
pidity range |η| < 1.0, and as a function of |η| for jets with
40 < pT < 60 GeV. Particle flow jets are calibrated using the
procedures described in Sect. 8, while calorimeter jets use the
more detailed procedure described in Refs. [4–7]. The parti-
cle flow jets perform better than calorimeter jets at transverse
momenta of up to 90 GeV in the central region, benefiting
from the improved scale for low-pT hadrons and intrinsic
pile-up suppression (elaborated on in Sect. 10). However, at
high transverse momenta, the particle flow reconstruction
performs slightly worse than the standard reconstruction.
This is due to two effects. The dense core of a jet poses a
challenge to tracking algorithms, causing the tracking effi-
ciency and accuracy to degrade in high-pT jets. Furthermore,

the close proximity of the showers within the jet increases
the degree of confusion during the cell subtraction stage. To
counteract this, the track pT used for particle flow reconstruc-
tion is required to be < 40 GeV for the 2012 data. Alterna-
tive solutions, such as smoothly disabling the algorithm for
individual tracks as the particle environment becomes more
dense, are expected to restore the particle flow jet perfor-
mance to match that of the calorimeter jets at high energies.
The benefits of particle flow also diminish toward the more
forward regions as the cell granularity decreases, as shown
in Fig. 26b.

In Fig. 27, the underlying distributions of the ratio of
reconstructed to true pT are shown for two different jet pT

bins. This demonstrates that the particle flow algorithm does
not introduce significant tails in the response at either low or
high pT. The low-side tail visible in Fig. 27b is present in
both calorimeter and particle flow jets and is caused by dead
material and inactive detector regions.

9.2 Angular resolution of jets

Besides improving the pT resolution of jets, the particle flow
algorithm is expected to improve the angular (η, φ) resolution
of jets. This is due to three different effects. Firstly, usage of
tracks to measure charged particles results in a much better
angular resolution for individual particles than that obtained
using topo-clusters, because the tracker’s angular resolution
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Fig. 27 The jet transverse momentum response distribution as determined in dijet MC events for calorimeter jets and particle flow jets. Two
different pT bins are shown; a 40 < pT < 50 GeV and b 120 < pT < 130 GeV. Simulated pile-up conditions are similar to the data-taking in
2012
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Fig. 28 The angular resolution, a in η and b in φ, as a function of the jet pT, determined in dijet MC simulation by fitting Gaussian functions to
the difference between the reconstructed and truth quantities. Conditions are similar to the data-taking in 2012

is far superior to that of the calorimeter. Secondly, the track
four-momentum can be determined at the perigee, before the
charged particles have been spread out by the magnetic field,
thereby improving the φ resolution for the jet. Thirdly, the
suppression of charged pile-up particles should also reduce
mismeasurements of the jet direction.

Figure 28 shows the angular resolution in η and φ as a
function of the reconstructed jet transverse momentum for
particle flow and calorimeter jets. It is determined from the
standard deviation of a Gaussian fit over ±1.5σ to the differ-
ence between the η and φ values for the reconstructed and
matched truth (�R < 0.3) jets in the central region. At low
pT, where the three effects described above are expected to
be more important, significant improvements are seen in both
the η and φ resolutions. It is interesting to note that for par-

ticle flow jets the η and φ resolutions are similar, while for
calorimeter jets the φ resolution is worse due to the afore-
mentioned effect of the magnetic field on charged particles.

10 Effect of pile-up on the jet resolution and rejection of
pile-up jets

At the design luminosity of the LHC, and even in 2012
data-taking conditions, in- and out-of-time pile-up contribute
significantly to the signals measured in the ATLAS detec-
tor, increasing the fluctuations in jet energy measurements.
The pile-up suppression inherent in the particle flow recon-
struction and the calibration of charged particles through
the use of tracks significantly mitigates the degradation
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Fig. 29 In the presence of pile-up, ‘fake jets’ can arise from particles
not produced in the hard-scatter interaction. Subfigure a shows the num-
ber of fake jets (jets not matched to truth jets with pT > 4 GeV within
�R < 0.4) and b the efficiency of reconstructing a hard-scatter jet

(reconstructed jet found within �R < 0.4 with pT > 15 GeV) in dijet
MC events. Simulated pile-up conditions are similar to the data-taking
in 2012

of jet resolution from pile-up and eliminates jets recon-
structed from pile-up deposits, making the particle flow
method a powerful tool, especially as the LHC luminosity
increases.

10.1 Pile-up jet rate

In the presence of pile-up, jets can arise from particles not
produced in the hard-scatter interaction. These jets are here
referred to as ‘fake jets’. Figure 29a shows the fake-jet
rate as a function of the jet η for particle flow jets com-
pared to calorimeter jets with and without track-based pile-
up suppression [65]. These rates are evaluated using a dijet
MC sample overlaid with simulated minimum-bias events
approximating the data-taking conditions in 2012. The jet
vertex fraction (JVF) is defined as the ratio of two scalar
sums of track momenta: the numerator is the scalar sum of
the pT of tracks that originate from the hard-scatter primary
vertex and are associated with the jet; the denominator is the
scalar sum of the transverse momenta of all tracks associated
with that jet.4 Within the tracker coverage of |η| < 2.5, the
fake rate for particle flow jets drops by an order of magnitude
compared to the standard calorimeter jets. The small increase
in the rate of particle flow fake jets around 1.0 < |η| < 1.2
is related to the worse performance of the particle flow algo-
rithm in the transition region between the barrel and extended
barrel of the Tile calorimeter, which is significantly affected
by pile-up contributions [3].

4 Jets with no tracks associated with them are assigned JVF = −1.

For |η| > 2.5, the jets are virtually identical, and hence
the fake rate shows no differences. This rejection rate is com-
parable to that achieved using the JVF discriminant, which
can likewise only be applied within the tracker coverage.
Here, the comparison is made to a |JVF| threshold of 0.25 for
calorimeter jets, which is not as powerful as the particle flow
fake-jet rate reduction. The inefficiency of the particle flow
jet-finding is negligible, as can be seen from Fig. 29b. In con-
trast, the inefficiency generated by requiring |JVF| > 0.25
is clearly visible (it should be noted that in 2012 JVF cuts
were only applied to calorimeter jets up to a pT of 50 GeV).
Below 30 GeV, the jet resolution causes some reconstructed
jets to fall below the jet reconstruction energy threshold so
these values are not shown.

A more detailed study of the pile-up jet rates is carried
out in a Z → μμ sample, both in data and MC simulation,
by isolating several phase-space regions that are enriched in
hard-scatter or pile-up jets. A preselection is made using the
criteria described in Sect. 4. The particle flow algorithm is
run on these events and further requirements are applied:
events are selected with two isolated muons, each with
pT > 25 GeV, with invariant mass 80 < mμμ < 100 GeV

and pμμ
T > 32 GeV, ensuring that the boson recoils against

hadronic activity. Figure 30 displays two regions of phase
space: one opposite the recoiling boson, where large amounts
of hard-scatter jet activity are expected, and one off-axis,
which is more sensitive to pile-up jet activity.

Figure 31 shows the average number of jets with pT >

20 GeV in the hard-scatter-enriched region for different |η|
ranges as a function of the number of primary vertices. The
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distributions are stable for particle flow jets and for calorime-
ter jets with |JVF| > 0.25 as a function the number of pri-
mary vertices in all |η| regions. The only exception is in the

Fig. 30 A diagram displaying the regions of r–φ phase space which
are expected to be dominated by hard-scatter jets (opposite in the r–φ

plane to the Z → μμ decay) and where there is greater sensitivity to
pile-up jet activity (perpendicular to the Z → μμ decay)

2.0 < |η| < 2.5 region, where in Fig. 29 a slight increase in
the jet fake rate is visible for jet pseudorapidities very close
to the tracker boundary. This is due to the jet area collecting
charged-particle pile-up contributions that are outside the ID
acceptance. If the JVF cut is not applied to the calorimeter
jets, the jet multiplicity grows with increasing pile-up. Fig-
ure 32 shows that in the pile-up-enriched selection, the parti-
cle flow and calorimeter jets with a JVF selection still show
no dependence on the number of reconstructed vertices in all
|η| regions. The observed difference between data and MC
simulation for both jet collections is due to a poor modelling
of this region of phase space. These distributions establish
the high stability of particle flow jets in varying pile-up con-
ditions.

10.2 Pile-up effects on jet energy resolution

In addition to simply suppressing jets from pile-up, the par-
ticle flow procedure reduces the fluctuations in the jet energy
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Fig. 31 The average number of jets per event, for jets with pT >

20 GeV, as a function of the number of primary vertices in the Z → μμ

samples. The distributions are shown in three different |η| regions for
particle flow jets, calorimeter jets and calorimeter jets with an additional

cut on JVF. The jets are selected in a region of φ opposite the Z boson’s
direction, �φ(Z , jet) > 3π/4, which is enriched in hard-scatter jets.
The statistical uncertainties in the number of events are shown as a
hatched band
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Fig. 32 The average number of jets per event, for jets with pT >

20 GeV, as a function of the number of primary vertices in the Z → μμ

samples. The distributions are shown in three different |η| regions for
particle flow jets, calorimeter jets and calorimeter jets with an additional

cut on JVF. The jets are selected in a region of φ perpendicular to the
Z boson’s direction, π/4 < �φ(Z , jet) < 3π/4, which is enriched
in pile-up jets. The statistical uncertainties in the number of events are
shown as a hatched band
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Fig. 33 The resolutions of calorimeter and particle flow jets deter-
mined as a function of pT in MC dijet simulation, compared with no
pile-up and conditions similar to those in the 2012 data. The quadratic
difference in the resolution with and without pile-up is shown in
the lower panel for LC + JES (blue) and particle flow (black) jets.
The data are taken from dijet samples, with and without pileup, with
20 < plead

T < 500 GeV and the statistical uncertainties on the number
of MC simulated events are shown

measurements due to pile-up contributions. This is demon-
strated by Fig. 33, which compares the jet energy resolution
for particle flow and calorimeter jets with and without pile-
up. Even in the absence of pile-up, the particle flow jets have
a better resolution at pT values below 50 GeV. With pile-up
conditions similar to those in the 2012 data, the cross-over
point is at pT = 90 GeV, indicating that particle flow recon-
struction alleviates a significant contribution from pile-up
even for fairly energetic jets. The direct effect of pile-up can
be seen in the lower panel, where the difference in quadrature
between the resolutions with and without pile-up is shown.
The origin of the increase in the resolution with pile-up is
discussed in detail in Ref. [6]. It is shown that additional
energy deposits are the primary cause of the degradation
of the calorimeter jet resolution. This effect is mitigated by
the particle flow algorithm in two ways. Firstly, the subtrac-
tion of topo-clusters formed by charged particles from pile-
up vertices prior to jet-finding eliminates a major source of
fluctuations. Secondly, the increase in the constituent scale
of hard-scatter jets from the use of calibrated tracks, rather
than energy clusters in the calorimeter, amplifies the sig-
nal, effectively suppressing the contribution from pile-up.
This second mechanism is found to be the main contributing
factor.

For 40 GeV jets, the total jet resolution without pile-up
is 10%. Referring back to Fig. 20c, confusion contributes

∼ 8% to the jet resolution in the absence of pile-up. Since
the terms are combined in quadrature, confusion contributes
significantly to the overall jet resolution, although it does not
totally dominate. While additional confusion can be caused
by the presence of pile-up particles, the net effect is that pile-
up affects the resolution of particle flow jets less than that of
calorimeter jets.

11 Comparison of data and Monte Carlo simulation

It is crucial that the quantities used by the particle flow recon-
struction are accurately described by the ATLAS detector
simulation. In this section, particle flow jet properties are
compared for Z → μμ and t t̄ events in data and MC sim-
ulation. Various observables are validated, from low-level
jet characteristics to derived observables relevant to physics
analyses.

11.1 Individual jet properties

A sample of jets is selected in Z → μμ events, as in Sect. 8,
and used for a comparison between data and MC simulation.
As the subtraction takes place at the cell level, the energy
subtracted from each layer of the calorimeter demonstrates
how well the subtraction procedure is modelled. To deter-
mine the energy before subtraction the particle flow jets are
matched to jets formed solely from topo-clusters at the elec-
tromagnetic scale. A similar selection to that used to evaluate
the jet energy scale is used. The leading jet is required to be
opposite a reconstructed Z boson decaying to two muons
with �φ > π − 0.4. The pT of the reconstructed boson is
required to be above 32 GeV and the reconstructed jets must
have 40 < pT < 60 GeV. Figures 34 and 35 show the prop-
erties of central jets. The MC simulation describes the data
reasonably well for the jet track multiplicity, fraction of the
jet pT carried by tracks as well as the amount of subtracted or
surviving energy in each layer of the EM barrel. Similar lev-
els of agreement are observed for jets in the endcap regions
of the detector.

11.2 Event-level observables

Finally, the particle flow performance is examined in a sam-
ple of selected t t̄ events; a sample triggered by a single-muon
trigger with a single offline reconstructed muon is used. At
least four jets with pT > 25 GeV and |η| < 2.0 are required
and two of these are required to have been b-tagged using the
MV1 algorithm and have pT > 35 and 30 GeV.5 This selects

5 As the b-tagging algorithm has only been calibrated for calorimeter
jets, the particle flow jets use the calorimeter jet information from the
closest jet in �R in order to decide if the jet is b-tagged.
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(a) (b)

(c) (d)

Fig. 34 Comparison of jet track properties, for a selection of jets with
40 < pT < 60 GeV and |η| < 0.6, selected in Z → μμ events
from collision data and MC simulation. The simulated samples are nor-
malised to the number of events in data. The following distributions are
shown: a the charged fraction, i.e. the fractional jet pT carried by recon-
structed tracks; b the number of tracks in the jet that originate from the
nominal hard-scatter primary vertex; c the transverse momentum of the
leading track in the jet; d the transverse momenta of all tracks in the jet

weighted by the track pT and normalised to the number of jets, illustrat-
ing the transverse momentum flow from particles of different pT. The
distribution is shown both for tracks satisfying the hard-scatter primary
vertex association criteria and forming the jet as well as the additional
tracks within �R = 0.4 of the jet failing to satisfy the hard-scatter
primary vertex association criteria. The darker shaded bands represent
the statistical uncertainties

a 95% pure sample of t t̄ events. The event Emiss
T is recon-

structed from the vector sum of the calibrated jets with pT >

20 GeV, the muon and all remaining tracks associated with
the hard-scatter primary vertex but not associated with these
objects. This is then used to form the transverse mass vari-

able defined bymT =
√

2pμ
T E

miss
T (1 − cos(�φ(μ, Emiss

T ))).
The invariant mass of the two leading non-b-tagged jets, mjj,
forms a hadronic W candidate, while the invariant masses of

each of the two b-tagged jets and these two non-b-tagged jets
form two hadronic top quark candidates, mjjb.

Figure 36 compares the data with MC simulation for
these three variables; mT,mjj and mjjb. The MC simu-
lation describes the data very well in all three distribu-
tions. Figure 37 shows the mjj distribution for particle
flow jets compared to the distribution obtained from the
same selection applied to calorimeter jets (with |JVF| >
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(a) (b)

(c) (d)

(e) (f)

Fig. 35 Comparison of the fractions of jet energy removed from a sin-
gle layer of the electromagnetic calorimeter relative to the total energy
of the constituents of the matched calorimeter jet Econstit.

Calo (left) and
retained relative to the total energy of the constituents of the particle
flow jet Econstit.

Pflow (right) by the cell subtraction algorithm in different lay-

ers of the EM barrel, for a selection of jets with 40 < pT < 60 GeV and
|η| < 0.6, selected in Z → μμ events from collision data and MC sim-
ulation. The simulated samples are normalised to the number of events
in data. The darker shaded bands represent the statistical uncertainties
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Fig. 36 Comparison of the distributions of mass variables computed with particle flow jets between collision data and the MC simulation for a t t̄
event selection. The darker shaded bands and the errors on the collision data show the statistical uncertainties

0.25). For the calorimeter jet selection, the Emiss
T is recon-

structed from the muon, jets, photons and remaining unas-
sociated clusters [53]. The two selections are applied sepa-
rately; hence the exact numbers of events in the plots dif-
fer. The particle flow reconstruction provides a good mea-
sure and narrower width of the peak for both low and
high pjj

T. Gaussian fits to the data in the range 65 <

mjj < 95 GeV give widths of (13.8 ± 0.4) GeV and
(16.2 ± 0.6) GeV for particle flow reconstruction and
that based on calorimeter jets, respectively, for pjj

T <

80 GeV. For pjj
T > 80 GeV, the widths were found to be

(11.2 ± 0.2) GeV and (11.9 ± 0.3) GeV, respectively. At
very high values of pWT , the gains would further diminish
(see Fig. 26).

12 Conclusions

The particle flow algorithm used by the ATLAS Collabora-
tion for 20.2 fb−1 of pp collisions at 8 TeV at the LHC is
presented. This algorithm aims to accurately subtract energy
deposited by tracks in the calorimeter, exploiting the good
calorimeter granularity and longitudinal segmentation. Use
of particle flow leads to improved energy and angular resolu-
tion of jets compared to techniques that only use the calorime-
ter in the central region of the detector.

In 2012 data-taking conditions, the transverse momen-
tum resolution of particle flow jets calibrated with a global
sequential correction is superior up to pT ∼ 90 GeV for
|η| < 1.0. For a representative jet ptrue

T of 30 GeV, the reso-
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Fig. 37 Comparison between the mjj distributions measured using particle flow jets and calorimeter jets with a JVF selection in data. The sample

is split into those events where the reconstructed W candidate has pjj
T < 80 GeV and pjj

T > 80 GeV. The errors shown are purely statistical

lution is improved from the 17.5% resolution of calorimeter
jets with local cluster weighting calibration to 14%. Jet angu-
lar resolutions are improved across the entire pT spectrum,
with σ(η) and σ(φ) decreasing from 0.03 to 0.02 and 0.05
to 0.02, respectively, for a jet pT of 30 GeV.

Rejection of charged particles from pile-up interactions in
jet reconstruction leads to substantially better jet resolution
and to the suppression of jets due to pile-up interactions by
an order of magnitude within the tracker acceptance, with
negligible inefficiency for jets from the hard-scatter interac-
tion. This outperforms a purely track-based jet pile-up dis-
criminant typically used in ATLAS analyses, which achieves
similar pile-up suppression at the cost of about one percent
in hard-scatter jet efficiency.

The algorithm therefore achieves a better performance for
hadronic observables such as reconstructed resonant particle
masses.

Studies which compare data with MC simulation demon-
strate that jet properties used for energy measurement and
calibration are modelled well by the ATLAS simulation, both
before and after application of the particle flow algorithm.
This translates to good agreement between data and simula-
tion for derived physics observables, such as invariant masses
of combinations of jets.

The algorithm has been integrated into the ATLAS soft-
ware framework for Run 2 of the LHC. As demonstrated, it
is robust against pile-up and should therefore perform well
under the conditions encountered in Run 2.
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