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ABSTRACT

The nine-year H.E.S.S. Galactic Plane Survey (HGPS) has yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-
ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae
found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper
limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spin-
down power Ė. This seems to be caused both by an increase of extension with decreasing Ė, and hence with time, compatible with a power law
RPWN(Ė) ∼ Ė−0.65±0.20, and by a mild decrease of TeV gamma-ray luminosity with decreasing Ė, compatible with L1−10 TeV ∼ Ė0.59±0.21. We also
find that the offsets of pulsars with respect to the wind nebula centre with ages around 10 kyr are frequently larger than can be plausibly explained
by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar offset is correlated with a
high apparent TeV efficiency L1−10 TeV/Ė. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar
wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the
present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the
TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.

Key words. gamma rays: general – catalogs – surveys – ISM: supernova remnants – pulsars: general

1. Introduction

Pulsar wind nebulae (PWNe) are clouds of magnetised electron-
positron plasma that can span many parsecs and are observed
via their synchrotron or inverse Compton (IC) radiation (see
? Corresponding authors: H.E.S.S. Collaboration,

e-mail: contact.hess@hess-experiment.eu
† Deceased.

Gaensler & Slane 2006, for a comprehensive review on the
subject). They are created inside supernova remnants (SNRs) by
the energetic outflow (“wind”) of a pulsar, which is a swiftly
rotating neutron star that is the compact leftover of the super-
nova explosion. The pulsar wind runs into the supernova ejecta
and develops a standing shock wave beyond which the PWN
builds up as an expanding bubble of diffuse plasma. Pulsars can
live for up to 105−6 kyr, but their magnetic and particle outflow
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is decreasing steadily. Therefore, most of the observed PWNe
are associated with pulsars that are less than a few 100 kyr old
(Roberts 2004).

It is instructive to consider the energetics of a typical PWN
system. A pulsar releases a total amount of energy of up to 1049–
1050 erg over its lifetime, but only .10 % of this energy is emit-
ted as pulsed electromagnetic radiation (Abdo et al. 2013). Most
of the pulsar outflow consists of high-energy particles and mag-
netic fields that feed into the growing PWN plasma. This plasma
is dynamically inferior to the ∼1051 erg carried away by the su-
pernova blast wave around it. A good portion of the PWN energy
is radiated off, predominantly through synchrotron emission in
the first few thousand years, which can be observed in the X-ray
and radio bands. Besides that, a few percent of the PWN energy
are converted to IC radiation in the TeV regime. In Gould (1965),
but also in later works (De Jager et al. 1995; Du Plessis et al.
1995; Aharonian & Atoyan 1995), it was already suggested that
this could allow for the detection of TeV emission. And even
though the IC photons are an energetically subdominant emis-
sion component, they carry important information that the syn-
chrotron emission, albeit much higher in flux and energy trans-
port, does not give access to; they emerge predominantly from
homogeneous, time-constant CMB and IR photon seed fields,
and therefore trace the electron plasma independent of the time-
and space-varying magnetic fields. In Aharonian et al. (1997), it
was suggested that the TeV nebulae could be much larger neb-
ulae than those observed in the radio or X-ray regimes. So in
general, the IC image gives a more accurate and complete pic-
ture of the electron population than the synchrotron photons.

Indeed, since the TeV detection of the Crab PWN in 1989
with the Whipple telescope (Weekes et al. 1989), tens of Galac-
tic sources have meanwhile been associated with TeV pulsar
wind nebulae. Most of these objects are situated in the in-
ner Galaxy; many were therefore discovered and extensively
investigated from the southern hemisphere using the H.E.S.S.
Imaging Atmospheric Cherenkov Telescope (IACT) array (e.g.
Aharonian et al. 2006d), which can observe the inner Milky
Way at low zenith angles and high sensitivity. The northern
IACT systems MAGIC (e.g. Aleksić et al. 2014) and VERI-
TAS (e.g. Aliu et al. 2013), and arrays of air shower detec-
tors such as MILAGRO (Abdo et al. 2009), have also observed
PWNe and contributed very valuable case studies, mostly of sys-
tems evolving in the less dense outer Milky Way regions. Also
HAWC shows promising potential to contribute new data soon
(Abeysekara et al. 2015) but has not provided a major data re-
lease yet. In the 1–10 TeV regime, IACTs generally have a better
angular resolution and sensitivity than air shower arrays, even
though their fields of view (FOV) are limited to one or few ob-
jects, and their duty cycle is restricted to dark, cloudless nights.

A systematic search with the Fermi Large Area Tele-
scope for GeV pulsar wind nebulae in the vicinity of TeV-
detected sources (Acero et al. 2013) yielded 5 firmly identi-
fied high-energy gamma-ray PWNe and 11 further candidates.
The PWN detections were also often complemented by multi-
wavelength observations in the X-ray or radio bands (see e.g.
Kargaltsev et al. 2013).

In this paper, we proceed along the lines of previous work
that aimed at a uniform analysis of the whole population of TeV
pulsar wind nebulae, such as Carrigan (2007), Carrigan et al.
(2008), Marandon (2010), and Mayer (2010a). To do so, we
take advantage of the newly released TeV source catalogue
(H.E.S.S. Collaboration 2018), which is based on the nine-year
H.E.S.S. Galactic Plane Survey (HGPS). It provides a uniform
analysis of source sizes, positions, and spectra based on data

taken during nearly 3000 h of observations. It covers the Galactic
plane at longitudes ` = 250◦ to 65◦ and latitudes |b| <∼ 3.5◦. We
undertake a census of all the firmly identified PWNe detected
with H.E.S.S. and other IACTs, and for the first time comple-
ment this sample with HGPS flux upper limits for all covered
pulsar locations without a corresponding TeV detection. This al-
lows for a less biased judgement of the whole population. We
compare the common properties and trends of this population to
those found in the numerous efforts to theoretically describe the
nature of pulsar wind nebulae.

2. Observational data

2.1. HGPS and ATNF catalogues as data sources

We use two different sets of astronomical tables: the H.E.S.S.
Galactic Plane Survey1 (HGPS; H.E.S.S. Collaboration 2018)
and the ATNF pulsar catalogue2 (Manchester et al. 2005, ver-
sion 1.54). For most purposes in this paper, the HGPS source
catalogue and the full ATNF listing are used. Only the TeV-
PSR spatial correlation study in Sect. 3.1 makes use of less
biased listings, namely the HGPS components list (HGPSC)
and Parkes Multibeam Pulsar Survey (PMPS; Manchester et al.
2001; Lorimer et al. 2006, and references therein), which is a
subset3 of the ATNF pulsar catalogue. The HGPSC components
list is an unbiased representation of the TeV objects in terms of
Gaussian components, which does not invoke a priori knowledge
of source associations or other prejudiced assumptions.

For the pulsar distances, we choose the distance estimates of
Cordes & Lazio (2002) provided by the ATNF team. Their un-
certainty, however, is not very well defined and can be as large
as a factor of 2. For the few cases in which pulsar distance esti-
mations were added or replaced from references other than the
ATNF pulsar catalogue, these values are listed in Table 2.

2.2. Firmly identified TeV pulsar wind nebulae

To determine which of the known TeV sources should be con-
sidered as firmly identified PWNe, we use the identification cri-
teria discussed in the HGPS paper and take as a starting point
the list of all 12 identified PWNe and the 8 identified compos-
ite SNRs (H.E.S.S. Collaboration 2018, Table 3). Most PWNe
in the HGPS are identified by positional and/or morphologi-
cal coincidence with a PWN identified in other wavelengths,
or by their specific (mostly energy dependent) TeV morphol-
ogy. Our selection for this paper also requires that the cor-
responding pulsar has been detected and timed; if this is not
the case, the properties of the source cannot be put into the
physics context of this study, despite its identified PWN nature.
This excludes the PWNe in SNRs G327.1−1.1 and G15.4+0.1,
and the identified composite SNRs CTB 37A and W41 (see
H.E.S.S. Collaboration 2018, Table 3 and references therein).
In composite SNRs, the PWN component is mostly believed
to outshine the potential contribution from the SNR shell in
TeV gamma-rays, and we assume here that this is the case for
TeV sources identified as composite SNRs with the exception
of HESS J1640−465. For this object, detailed observations with

1 http://www.mpi-hd.mpg.de/HESS/hgps
2 http://www.atnf.csiro.au/research/pulsar/psrcat
3 The difference between the two is that the ATNF pulsar catalogue is a
full listing of different surveys and targeted observations, including, for
instance, Fermi-LAT detected gamma-ray pulsars, whereas the PMPS
is a comparably uniform survey of one particular radio instrument and
hence it is less prone to observational biases.
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Table 1. HGPS sources considered as firmly identified pulsar wind nebulae in this paper.

HGPS name ATNF name Canonical name lg Ė τc d PSR offset Γ RPWN L1−10 TeV
(kyr) (kpc) (pc) (pc) (1033 erg s−1)

J1813−1781 J1813−1749 37.75 5.60 4.70 <2 2.07 ± 0.05 4.0 ± 0.3 19.0 ± 1.5
J1833−105 J1833−1034 G21.5−0.92 37.53 4.85 4.10 <2 2.42 ± 0.19 <4 2.6 ± 0.5
J1514−591 B1509−58 MSH 15−523 37.23 1.56 4.40 <4 2.26 ± 0.03 11.1 ± 2.0 52.1 ± 1.8
J1930+188 J1930+1852 G54.1+0.34 37.08 2.89 7.00 <10 2.6 ± 0.3 <9 5.5 ± 1.8
J1420−607 J1420−6048 Kookaburra (K2)5 37.00 13.0 5.61 5.1 ± 1.2 2.20 ± 0.05 7.9 ± 0.6 44 ± 3
J1849−000 J1849−0001 IGR J18490−00006 36.99 42.9 7.00 <10 1.97 ± 0.09 11.0 ± 1.9 12 ± 2
J1846−029 J1846−0258 Kes 752 36.91 0.728 5.80 <2 2.41 ± 0.09 <3 6.0 ± 0.7
J0835−455 B0833−45 Vela X7 36.84 11.3 0.280 2.37 ± 0.18 1.89 ± 0.03 2.9 ± 0.3 0.83 ± 0.11∗
J1837−0698 J1838−0655 36.74 22.7 6.60 17 ± 3 2.54 ± 0.04 41 ± 4 204 ± 8
J1418−609 J1418−6058 Kookaburra (Rabbit)5 36.69 10.3 5.00 7.3 ± 1.5 2.26 ± 0.05 9.4 ± 0.9 31 ± 3
J1356−6459 J1357−6429 36.49 7.31 2.50 5.5 ± 1.4 2.20 ± 0.08 10.1 ± 0.9 14.7 ± 1.4
J1825−13710 B1823−13 36.45 21.4 3.93 33 ± 6 2.38 ± 0.03 32 ± 2 116 ± 4
J1119−614 J1119−6127 G292.2−0.511 36.36 1.61 8.40 <11 2.64 ± 0.12 14 ± 2 23 ± 4
J1303−63112 J1301−6305 36.23 11.0 6.65 20.5 ± 1.8 2.33 ± 0.02 20.6 ± 1.7 96 ± 5

Notes. The sources are sorted by decreasing Ė. lg Ė stands for log10(Ė/erg s−1), τc is the pulsar characteristic age, d is the pulsar distance, RPWN
is the 1-sigma Gaussian extension and L1−10 TeV is the TeV luminosity. The pulsar distances are printed uniformly here, but their uncertainties
might often be larger or not available; see ATNF Catalogue references (http://www.atnf.csiro.au/people/pulsar/psrcat/) for detailed
information. The limits are 2-sigma limits (see Sect. 2.3). (∗) The luminosity of Vela X is calculated as described in Sect. 2.3.
References. Previous publications on these sources: (1) Funk et al. (2007); (2) Djannati-Ataï et al. (2008); (3) Aharonian et al. (2005b);
(4) Acciari et al. (2010); (5) Aharonian et al. (2006e); (6) Terrier et al. (2008); (7) Aharonian et al. (2006a); (8) Gotthelf & Halpern (2008);
(9) Renaud et al. (2008); (10) Aharonian et al. (2005c); (11) Acero et al. (2013); (12) H.E.S.S. Collaboration (2012a).

Table 2. List of ATNF pulsar distance estimates that were modified.

PSR Distance Method/adjacent object Reference
(kpc)

J0205+6449 (3C 58) 2.0 Hi absorption Kothes (2013)
J1023−5746 (Westerlund 2) 8.0 Westerlund 2 open cluster Rauw et al. (2007)
J1418−6058 (Rabbit) 5.0 Fiducial distance to Rabbit PWN Ng et al. (2005)
J1849−000 7.0 Scutum arm tangent region Gotthelf et al. (2011)

H.E.S.S. suggest that a significant part of the TeV emission may
originate from the SNR shell (Abramowski et al. 2014). There-
fore, we exclude HESS J1640−465 from firm identification and
consider it a PWN candidate. The sample we arrive at is listed in
Table 1.

In addition to the firmly identified objects found in the
HGPS, we include five HGPS-external PWNe, among them
G0.9+0.1, which is inside the plane scan, but was not re-
analysed with the HGPS pipeline. These PWNe are displayed us-
ing distinct symbols in the figures throughout this work. This lat-
ter group, listed in Table 3, is based both on dedicated H.E.S.S.
observations outside of the scope of the HGPS and on data from
other IACTs.

We do not include detections that are only reported from
(direct) air shower detectors, such as MILAGRO, HAWC, or
ARGO-YBJ, because their angular and spectral uncertainties are
much higher, making the source resolution and pulsar associa-
tion more difficult and the spectral statements more uncertain.

2.3. Data extracted from the HGPS

The quantities taken from the HGPS catalogue are source posi-
tion, extension, integral flux >1 TeV, and spectral index Γ from
the power-law fit of the differential photon flux φ0 × (E/E0)−Γ.
The extension measure σ is given as the standard deviation of a
circular Gaussian function. Extension upper limits were used as
provided in the catalogue, namely in cases where the extension is

not more than two standard deviations larger than the systematic
minimum extension of 0.03◦.

Offsets between pulsar and PWN centroid position were cal-
culated and, where necessary, converted to 2σ limits following a
similar prescription, namely in the cases where the offset was
less than 3σ above a systematic minimum of 0.0056◦, which
is a typical value for the systematic positional uncertainty of
H.E.S.S.

The integral photon flux I>1 TeV and index Γ is converted to a
luminosity between 1 and 10 TeV using

L1−10 TeV = 1.92 × 1044 I>1 TeV

cm−2 s−1

×
Γ − 1
Γ − 2

(1 − 102−Γ)
(

d
kpc

)2

erg s−1, (1)

where d is the source distance and the integral flux I>1 TeV is
taken from the Flux_Map column of the catalogue, which is rec-
ommended there as the most reliable estimate of the integral flux.
The errors, propagated from the index errors σΓ and integral flux
errors σI , are(

σL

L1−10 TeV

)2

=

[
σI

I>1 TeV

]2

+

[(
1

(Γ − 1)(Γ − 2)
+

ln 10
1 − 10Γ−2

)
σΓ

]2

. (2)
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Table 3. Pulsar wind nebulae outside the HGPS catalogue.

Canonical name ATNF name lg Ė τc d PSR offset Γ RPWN L1−10 TeV
(kyr) (kpc) (pc) (pc) (1033 erg s−1)

N157B1 J0537−6910 38.69 4.93 53.7 <22 2.80 ± 0.10 <94 760 ± 80
Crab Nebula2 B0531+21 38.65 1.26 2.00 <0.8 2.63 ± 0.02 <3 32.1 ± 0.7
G0.9+0.13 J1747−2809 37.63 5.31 13.3 <3 2.40 ± 0.11 <7 46 ± 7
3C 584 J0205+6449 37.43 5.37 2.00 <2 2.4 ± 0.2 <5 0.23 ± 0.06
CTA 15 J0007+7303 35.65 13.9 1.40 <4 2.2 ± 0.2 6.6 ± 0.5 0.71 ± 0.10

Notes. See Table 1 for the explanation of the columns. G0.9+0.1 is listed in the catalogue, but not treated in the HGPS analysis pipeline, so we
treat it as an HGPS-external result. Offset limits were calculated as for the HGPS (see Sect. 2.3). In the case of N157B and 3C 58, 2σPSF was used
as conservative extension limit since no value is given in the respective papers.

References. (1) H.E.S.S. Collaboration (2012c); Abramowski et al. (2015); (2) extension limit: Aharonian et al. (2004), flux: Aharonian et al.
(2006b); (3) Aharonian et al. (2005a); (4) Aleksić et al. (2014); (5) Aliu et al. (2013).

The errors on flux and index are assumed to be independent be-
cause the reference energy of 1 TeV is typically very close to the
mean pivot energy of the fits. The errors on the distance estima-
tion of pulsars are not available consistently and are likely not
Gaussian in most cases, so they are not treated here and remain
a systematic uncertainty. For uniformity, the power-law integra-
tion is also used in the few cases where a high-energy cut-off is
found to be significant, as the cut-off has very little influence on
the integral4.

We also extract flux upper limits from the sky maps of the
HGPS data release. The 95 % confidence level limit I>1 TeV on the
flux is converted as above, assuming a spectral index of Γ = 2.3,
which is the typical TeV index also used in several pipeline
analysis steps of the HGPS analysis (H.E.S.S. Collaboration
2018). The flux limits are available for integration radii of
0.1◦, 0.2◦, and 0.4◦; the latter of which is only available in-
ternally and will not be part of the public HGPS data release.
For pulsars that qualify for an upper limit, we use the baseline
model (Appendix A) to estimate the PWN extension. Assuming
1000 km s−1 for the offset speed (see Sect. 5.2.2), a required flux
limit radius Rlim = RPWN + Roff is derived and a corresponding
angular extent θpred as seen from Earth is calculated. If this exten-
sion is below 0.4◦, the value is rounded up to the next available
correlation radius and a flux limit is looked up in the respective
limit map. In the case of 0.4◦ < θpred < 0.6◦, we assume that
the source could have been detected, and calculate a limit from
the 0.4◦ map, scaling it up by (θpred/0.4◦)2 to account for the un-
contained part of the PWN. If θpred > 0.6◦, no limit is calculated
since one cannot exclude that a potential weak and undetected
PWN emission would have been confused with background in
the background subtraction of the HGPS pipeline.

2.4. Caveats of the HGPS

The HGPS data contain unbiased observations, a priori targeted
observations, and re-observations of hotspots. It is therefore

4 Vela X is the only source where this prescription leads to a significant
deviation from previously published dedicated analyses, both because
of its energy cut-off and its extended emission component up to 1.2◦
away from its centre (Abramowski et al. 2012). Therefore, we convert
its I>1 TeV to an energy flux using its cut-off spectrum (Γ = 1.35 ± 0.08;
λ = 0.0815 ± 0.0115 for a flux function F(E) ∼ E−Γ exp(−λE)), which
leads to a 17% higher energy flux than when only using the power-
law approximation. Furthermore, the extended and faint “ring” emission
component noted in Abramowski et al. (2012) is taken into account by
applying a correction factor of 1.31± 0.16. This emission component is
derived from the ratio of “Inner” and “Total” integral fluxes presented
in Abramowski et al. (2012), Table 3.

impossible to raise truly objective and statistically robust
statements on chance coincidence detections of TeV objects near
energetic pulsars. A way to unbias the data would be to remove
all deep and targeted observations from the catalogue construc-
tion pipeline, which would obviously discard very interesting
parts of the data set and lead to a different catalogue content. We
refrain from this exercise here, trying to make use of the richness
that is present in the full data set and catalogue.

A uniform source analysis, as provided in the HGPS and
exploited here, has many advantages with regard to a popula-
tion study. The fluxes and extensions are determined with one
software version, data quality cut, analysis algorithm, and event
selection cut set, leading to values that are comparable and
consistently defined among all sources. The disadvantage of uni-
formity is that it comes with a lack of adjustment. Customised
data quality cuts can allow for the detection of weaker sources or
for lower systematic uncertainties for very strong sources. This
is deliberately not done here.

Besides this, the energy threshold and sensitivity of
Cherenkov telescopes vary with the zenith angle of observation,
and therefore with the declination of a given sky region. The
IACT data thus are intrinsically not completely uniform across
different sky regions.

3. Correlation of TeV sources and pulsars

The total energy output of a pulsar at a given time is charac-
terised by its spin-down power Ė, which can be observationally
determined from its period P and period derivative Ṗ, assum-
ing a neutron star moment of inertia of I = 1045 g cm2 (see
also Appendix B for the basic formulae of pulsar evolution).
Pulsars deploy most of their spin-down energy within few tens
of kiloyears. The pulsar wind nebulae thereby created are loss-
dominated ever after that period, when the electrons are diffused
and lose their energy through radiative or adiabatic cooling with
cooling times of O(10 kyr) (see Sect. A.3). Therefore, the natural
expectation for a bright PWN is that it has to have an accordingly
young (O(<10 kyr)) and still energetic pulsar nearby.

Observationally, this is supported by the fact that most TeV
pulsar wind nebulae (and sources in general) are found at Galac-
tic latitudes <0.5◦; if pulsars were to grow TeV nebulae in their
late stage of evolution, then TeV sources should also be more nu-
merous at higher latitudes, where many old pulsars drift off to.

3.1. Spatial correlation

A way to find general support for the association of energetic
pulsars and TeV sources was explored by Carrigan et al. (2008),
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Fig. 1. Histograms of spatial separation between PMPS pulsars and TeV source components from the HGPSC list. In the high-Ė pulsar sample
(left), a clear correlation is seen as a peak at small squared angular distances, whereas the low-Ė associations, if present, are not significant beyond
the expected rate of chance coincidences (right). The angular separation cut of θ < 0.5◦ applied in the preselection of PWN candidates (Sect. 3.2)
is indicated by a dashed vertical line in the left panel.

where the whole HGPS sky map of that time was used along
with the PMPS pulsar catalogue to evaluate a detection fraction
Ndetected/Npulsars for pulsars in different bands in Ė/d2.

To investigate whether this spatial correlation is still manifest
in the data, Fig. 1 shows the distribution of angular distances be-
tween all pulsars of a given range in Ė/d2 and all “Gaussian
components” listed in the unbiased HGPSC component list5.
The shaded band shows the expectation derived from simulated
pulsar samples. It is derived for the same band of Ė/d2, calcu-
lating 30 000 randomisations of the PMPS pulsar sample. The
observed Galactic latitude and longitude distributions of the pul-
sars are preserved in the reshuffling. A significant correlation
beyond chance coincidences is found for pulsars with Ė/d2 >
1034 erg s−1 kpc−2 and is absent for less energetic pulsars. An es-
timate for the number of chance coincidences for a cut of 0.5◦
yields a value of 9.7, while 35 HGPSC components are actually
found. Using the full ATNF catalogue instead of PMPS and the
HGPS source catalogue instead of the components list, the study
is more similar to the source selection we do in the following,
but involves statistically less unbiased samples. The estimated
number of chance coincidences derived in this case is 11.5.

3.2. Pulsar wind nebulae preselection candidates and flux
limits

The strategy employed to select and evaluate unconfirmed PWN
candidates in this paper is a two-step procedure: First, a loose
preselection of candidates has been carried out. Secondly, these
candidates are distinctly marked in the various observables cor-
relation plots of Sect. 5, leading to a subsequent judgement on
their physical plausibility to be a PWN in the post-selection of
Sect. 6.

The criteria we impose for the preselection are that a pul-
sar should be more energetic than Ė/d2 = 1034 erg s−1 kpc−2 and
have an angular separation θ from an HGPS source of less than

5 We use Ė/d2 as an estimator for detectability for consistency with
previous works. This is optimal under the assumptions that (a) the TeV
luminosity scales linearly with Ė, and (b) the sources appear small com-
pared to the correlation radius. Both of these assumptions are question-
able, given the large extension of some objects and the weak correlation
between Ė and TeV luminosity. For this reason, we cross-checked the
study with just Ė as the estimator, and we find very similar results. Pre-
sumably, the fact that d only varies by a factor of 10 throughout the
population makes the distance correction a subdominant effect against
intrinsic luminosity variations.

0.5◦. We also require a characteristic age τc < 107 yr to prevent
millisecond pulsars, which are different concerning their nature
and physics of emission, from entering the PWN candidate sam-
ple6. While these criteria are arbitrary to some extent, we note
that, as a preselection, they were chosen to be relatively loose
and amply include all firmly identified PWNe.

Energetic pulsars that do not have an HGPS source nearby or
that coincide with an HGPS source that is already firmly asso-
ciated to another pulsar are selected for the calculation of a flux
upper limit. In the latter case, the flux of the established source
is not subtracted, since one cannot isolate one from the other
and the conservative flux limit is therefore on top of the emis-
sion of the main source. In the limit calculation step, we include
all pulsars with Ė > 1035 erg s−1, independent of their distance.
For very old and extended objects, a large distance can even be
favourable because only then can their full supposed extent be
covered within the H.E.S.S. FOV, leading to a meaningful flux
limit (see also Sect. 2.3).

For the same reason as in the selection of firmly identified
PWNe, we deliberately choose not to treat pulsar systems in
which the pulsar is not clearly identified in terms of period,
derivative (presumably because the pulsar beam does not inter-
sect Earth), and distance. We require a known pulsar distance
so as to be able to quantify TeV properties, such as luminos-
ity and extension, and compare them with the firmly identified
population. But we should note that this implies that we can-
not consider among PWN candidates the TeV sources coincident
with PSR J1459−6053, PSR J1813−1246 and PSR J1826−1256
(see H.E.S.S. Collaboration 2018), which are pulsars that are de-
tected in high-energy gamma-rays but not in the radio domain.

As a caveat of our cut in Ė/d2, we note that potential ancient
nebulae from very old pulsars cannot make it into our selection
and are not be considered in this work (except for being included
in terms of a flux limit). Figure 1 (right) shows that the TeV de-
tection of such ancient nebulae has to be treated as hypothetical,
judging from the global catalogue point of view we adopt in this
paper.

The result of the preselection is that besides the 14 firmly
identified PWNe we consider here, 18 additional PWN candi-
dates pass the criteria; two of these additional candidates have
two pulsars they could be associated with and four pulsars

6 There is only one case of such a coincidence, PSR J1832−0836,
which correlates with HESS J1832−085 along with the much more
likely ordinary PSR B1830−08.
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Fig. 2. Left: spin-down power Ė and characteristic age τc of pulsars with a firmly identified PWN, candidate PWN, and without TeV counterpart
(grey dots). The black line and shaded band show the injection evolution of the modelling used in this paper. The dashed lines indicate lines of
constant total remaining energy Ėτ; see Appendix B. Hence a model curve that starts at Ė0τ0 = 1049 erg represents a pulsar with total initial
rotational energy of 1049 erg. Since both Ė and τc depend on P and Ṗ, the axes in this plot do not represent independent quantities. Right: same
data, shown in the commonly used view, using the independently measured P and Ṗ.

have two possible TeV counterparts. The 5 HGPS-external
PWNe also match the criteria. We exclude the γ-ray binary
PSR B1259−63 here. While the TeV source is believed to con-
tain the wind nebula of its pulsar, the TeV emission is clearly
impacted by the binary nature of the object and therefore out of
the scope of this paper. Also, the obvious TeV shells that were
omitted from the standard HGPS pipeline are excluded here, al-
though coincident pulsars are allowed to be included in the limits
listing if they qualify.

Among the pulsars without a matching detected TeV source,
65 with Ė > 1035 erg s−1 are selected for the limit calcula-
tion; however the assumed PWN extension and offset are small
enough to calculate a flux limit with the HGPS maps for only
22 of those. Of these limits, 3 appear to be on top of signifi-
cant emission for various reasons: PSR J1837−0604 coincides
with the PWN HESS J1837−069. The limit of PSR J1815−1738
is integrated over 0.4◦ and therefore contains parts of the emis-
sion of HESS J1813−178. PSR J1841−0524 is situated within
the very large HESS J1841−055, possibly consisting of multiple
sources; the Ė/d2 of this object is too low for it to qualify as a
candidate.

The pulsars selected as firm PWNe from the HGPS cata-
logue, as external PWNe, candidate PWNe, and for flux limits
are listed in Tables 1, 3–5, respectively. They are shown in the Ė–
τc and Ṗ–P planes in Fig. 2. The plots also show ATNF pulsars
without detected TeV wind nebula for comparison and highlight
some prominent or special objects with labels. These are labeled
throughout the paper for orientation.

As expected, the preselection candidates are young, but on
average somewhat older than the already established PWNe.
This is likely because only young wind nebulae have a detectable
extended X-ray counterpart, which allows for a firm identifica-
tion. Most of the candidates have previously been hypothesised
to be a PWN or to have a PWN component. The only substan-
tially older pulsar is PSR B1742−30, which is selected thanks to
its very low distance despite its low Ė. We cannot display this

pulsar in all plots of this paper, but we discuss it as a special case
in Sect. 6.

3.3. Location in the Galaxy

In order to assess the reach of the population study presented
in this work it is instructive to display the positions of Galactic
PWNe together with the sensitivity (or depth) of the H.E.S.S.
Galactic Plane Survey. The map in Fig. 3 visualises the 2D
projection of the Galactic distribution of very energetic pulsars
(Ė > 1035 erg s−1). The symbols distinguish between pulsars
with firmly identified wind nebulae, candidate PWNe, and pul-
sars at >1035 erg s−1 for which no TeV wind nebula has been
detected so far. For reference, the map comprises a schematic
representation of the spiral arms of the Milky Way accord-
ing to the parametrisation of Vallée (2008). The overlaid blue
and yellow curves define the accessible range of the HGPS for
point-like sources at an integrated luminosity (1–10 TeV) of 1%
and 10% of the Crab luminosity, respectively (for details see
H.E.S.S. Collaboration 2018).

For sources of 10% Crab luminosity, the HGPS covers ap-
proximately one quarter of our Galaxy, and generally does not
reach much farther from Earth than the distance to the Galactic
centre. For extended objects, the horizon can be expected to be
closer, and for close-by extended sources, the H.E.S.S. FOV can
limit the capability of isolating them from the background.

Most of the detected PWNe are located close to one of the
nearby dense spiral arm structures, where pulsars are expected
to be born. In particular, the Crux Scutum arm hosts half of all
HGPS pulsar wind nebulae. Several high-Ė pulsars are on closer
spiral arms but are not detected.

A way to look at the sensitivity to extended PWNe is shown
in the upper part of Fig. 4, where the extension is plotted against
distance from Earth. To guide the eye, two lines indicate the
range of detected extensions between the systematic minimum
of about 0.03◦ and the maximum extension in HGPS of ∼0.6◦
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Table 4. Candidate pulsar wind nebulae from the pre-selection.

HGPS name ATNF name lg Ė τc d PSR offset Γ RPWN L1−10 TeV Rating
(kyr) (kpc) (pc) (pc) (1033 erg s−1) 1 2 3 4

J1616−508 (1) J1617−5055 37.20 8.13 6.82 <26 2.34 ± 0.06 28 ± 4 162 ± 9 H H H H
J1023−575 J1023−5746 37.04 4.60 8.00 <9 2.36 ± 0.05 23.2 ± 1.2 67 ± 5 H H H H
J1809−193 (1) J1811−1925 36.81 23.3 5.00 29 ± 7 2.38 ± 0.07 35 ± 4 53 ± 3 H H H  
J1857+026 J1856+0245 36.66 20.6 9.01 21 ± 6 2.57 ± 0.06 41 ± 9 118 ± 13 H H H H
J1640−465 J1640−4631 (1) 36.64 3.35 12.8 <20 2.55 ± 0.04 25 ± 8 210 ± 12 H H H H
J1641−462 J1640−4631 (2) 36.64 3.35 12.8 50 ± 5 2.50 ± 0.11 <14 17 ± 4  ? H?
J1708−443 B1706−44 36.53 17.5 2.60 17 ± 3 2.17 ± 0.08 12.7 ± 1.4 6.6 ± 0.9 H H H H
J1908+063 J1907+0602 36.45 19.5 3.21 21 ± 3 2.26 ± 0.06 27.2 ± 1.5 28 ± 2 H H H H
J1018−589A J1016−5857 (1) 36.41 21.0 8.00 47.5 ± 1.6 2.24 ± 0.13 <4 8.1 ± 1.4  ? H?
J1018−589B J1016−5857 (2) 36.41 21.0 8.00 25 ± 7 2.20 ± 0.09 21 ± 4 23 ± 5 H H H H
J1804−216 B1800−21 36.34 15.8 4.40 18 ± 5 2.69 ± 0.04 19 ± 3 42.5 ± 2.0 H H H H
J1809−193 (2) J1809−1917 36.26 51.3 3.55 <17 2.38 ± 0.07 25 ± 3 26.9 ± 1.5 H H H H
J1616−508 (2) B1610−50 36.20 7.42 7.94 60 ± 7 2.34 ± 0.06 32 ± 5 220 ± 12  H H H
J1718−385 J1718−3825 36.11 89.5 3.60 5.4 ± 1.6 1.77 ± 0.06 7.2 ± 0.9 4.6 ± 0.8 H H H H
J1026−582 J1028−5819 35.92 90.0 2.33 9 ± 2 1.81 ± 0.10 5.3 ± 1.6 1.7 ± 0.5  H H H
J1832−085 B1830−08 (1) 35.76 147 4.50 23.3 ± 1.5 2.38 ± 0.14 <4 1.7 ± 0.4   H?
J1834−087 B1830−08 (2) 35.76 147 4.50 32.3 ± 1.9 2.61 ± 0.07 17 ± 3 25.8 ± 2.0  H H  
J1858+020 J1857+0143 35.65 71.0 5.75 38 ± 3 2.39 ± 0.12 7.9 ± 1.6 7.1 ± 1.5  H H  
J1745−303 B1742−30 (1) 33.93 546 0.200 1.42 ± 0.15 2.57 ± 0.06 0.62 ± 0.07 0.014 ± 0.003   H  
J1746−308 B1742−30 (2) 33.93 546 0.200 <1.1 3.3 ± 0.2 0.56 ± 0.12 0.009 ± 0.003 ?  H  

Notes. See Table 1 for the explanation of the columns. In the rating columns (1: PSR containment, 2: extension, 3: luminosity, 4: surface brightness,
see Sect. 6), a big star H denotes a quantity that fulfills its requirement, a small star ? denotes a compatible limit, a lightning symbol  denotes a
limit or measurement in conflict with the requirement (see Sect. 6). Numbers in brackets indicate double associations.

(Vela X, see Sect. 5.2.1). As can be seen in the lower panel
of Fig. 4, most PWNe are detected around 5.1 kpc, which is
the average distance of PWNe in Table 1. This allows for the
determination of radii between 3 and at least 60 pc.

We conclude that both the H.E.S.S. FOV (5◦) and angular
resolution (0.03◦) are adequate to study the wind nebulae of most
of the high-Ė pulsars known today.

4. Theoretical notion of pulsar wind nebulae

Before discussing the properties of the PWNe and PWN candi-
dates we found, this section recapitulates some concepts of the
theoretical understanding of pulsar wind nebulae.

A PWN is usually considered to be a calorimetrical, dy-
namical object around a pulsar. It stores and displays the radia-
tive output of the pulsar during tens of kiloyears while at the
same time undergoing a substantial dynamical evolution inside
the host SNR. Expressed in terms of a diffusion equation, this
means that it is energised by the magnetic and particle flux from
the pulsar, and cooled by radiative (synchrotron emission and
IC scattering), adiabatic, and escape losses (e.g. Martín et al.
2012; Zhang et al. 2008, and references therein). In the con-
text of this work, acceleration and injection mechanisms are not
considered in detail. Pulsars are regarded as particle-dominated,
diffuse injectors of electrons. Here and in the following, the
term “electrons” always refers to the full electron and positron
outflow.

4.1. Injection evolution

The energy outflow of the pulsar Ė determines the energy in-
jection history of a PWN. It is decaying continually at a rate
determined by the so-called spin-down timescale τ, following

an evolution similar to that expected from a dipole (see also
Appendix B)

Ė(t) = Ė0

(
1 +

t
τ0

)− n+1
n−1

, (3)

where τ0 is the initial spin-down timescale, Ė0 is the initial
spin-down luminosity, n is the so-called “braking index” (e.g.
Pacini & Salvati 1973), and t is the time since the birth of the
pulsar. Values typically considered are τ0 ∼ 102.5−3.5 yr, Ė0 ∼

1037.5−40 erg s−1, and n ∼ 3 (Martín et al. 2012; Zhang et al.
2008; Vorster et al. 2013; Gelfand et al. 2009). This indicates
that most of the pulsar rotational energy budget (Erot = Ė0τ0(n−
1)/2 = I Ω2

0/2, typically .1050 erg; see Appendix B) is spent in
the first few thousand years.

The present spin-down luminosity can be calculated from
the period P and its time derivative Ṗ (Gaensler & Slane 2006,
Eq. (1)). Another parameter that can be derived from the pulsar
ephemeris is the so-called characteristic age, which is defined as

τc ≡
P

2Ṗ
= (τ0 + t)

n − 1
2
· (4)

If t � τ0 and n = 3, then τc is an estimator for the true age t of
a pulsar. Independent of this condition, though, Eqs. (3) and (4)
imply a straight power-law correlation between Ė and τc , i.e.

Ė = Ė0

[
2

n − 1
·
τc

τ0

]− n+1
n−1

, (5)

or, equivalently, between Ṗ and P (see Eq. (B.12) in
Appendix B), i.e.

Ṗ(P) =
P0

τ0

1
n − 1

(
P
P0

)2−n

· (6)
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Table 5. Flux and luminosity upper limits (95% CL) for regions around pulsars without detected PWN.

ATNF name lg Ė τc d θpred θint Significance F>1 TeV L1−10 TeV
(kyr) (kpc) (deg) (deg) (σ) (10−12 cm−2 s−1) (1033 erg s−1)

J1400−6325 37.71 12.7 7.00 0.150 0.2 1.4 <0.41 <8.3
J1124−5916 37.08 2.85 5.00 0.137 0.2 1.0 <0.27 <2.8
J1410−6132 37.00 24.8 15.6 0.127 0.2 2.8 <0.53 <54
J1935+2025 36.67 20.9 6.21 0.29 0.4 1.9 <0.88 <14
J1112−6103 36.65 32.7 12.2 0.21 0.4 3.7 <1.0 <62
J1801−2451 36.41 15.5 5.22 0.30 0.4 1.1 <0.56 <6.3
J1837−0604 36.30 33.8 6.41 0.42 0.4 9.5 <2.1 <36
J1341−6220 36.15 12.1 11.1 0.129 0.2 2.6 <0.46 <24
J1055−6028 36.08 53.5 15.5 0.25 0.4 1.1 <0.70 <70
J1934+2352 35.96 21.6 11.6 0.175 0.2 1.6 <1.1 <64
J1932+2220 35.88 39.8 10.9 0.29 0.4 –0.9 <0.55 <27
J1702−4310 35.80 17.0 5.14 0.35 0.4 0.9 <0.59 <6.5
J1413−6141 35.75 13.6 10.1 0.161 0.2 2.8 <0.54 <23
J1909+0749 35.65 24.7 9.48 0.24 0.4 0.9 <0.41 <15
J1815−1738 35.59 40.4 8.78 0.37 0.4 8.9 <2.1 <68
J1646−4346 35.56 32.5 5.79 0.48 0.4 –2.0 <0.27 <3.8
J1850−0026 35.52 67.5 11.1 0.44 0.4 3.7 <0.91 <46
J1907+0918 35.51 38.0 7.79 0.40 0.4 2.7 <0.61 <15
J1406−6121 35.34 61.7 8.15 0.56 0.4 4.4 <3.3 <91
J1412−6145 35.08 50.6 7.82 0.51 0.4 5.0 <3.0 <75
J1550−5418 35.00 1.41 4.00 0.29 0.4 1.0 <0.47 <3.1
J1841−0524 35.00 30.2 5.34 0.53 0.4 20.9 <7.3 <86

Notes. In addition to the table variables explained in Table 1, θpred is the predicted PWN extension (including offset), θint is the correlation radius
of the map where the limit is taken from, and F>1 TeV is the actual flux limit (see Sect. 2.3 for details). In the cases of high significance, the pulsar
coincides with a TeV source that is not considered the PWN.

Consequently, the power indices of the above relations are only
determined by the braking index n. Figures 2 show how real
pulsars populate these diagrams. They are born on the upper left
of the plots and move towards the lower right as their spin-down
decays. Pulsar population synthesis studies have shown that
this distribution can be reproduced assuming magnetic dipole
spindown (n = 3; e.g. Faucher-Giguère & Kaspi 2006, and
references therein). Some such studies found evidence for pulsar
magnetic field decay, but on timescales of several Myr (e.g.
Gonthier et al. 2004). As this is much longer than the PWN
evolution timescales we consider, in the baseline model of this
paper we assume that the injection evolution is dictated by an
average braking index n = 3, which is a compromise between
theoretical expectation, observed pulsar Ė and τc, and the
measured braking indices (see Appendix A for more details).

4.2. Dynamical evolution

The dynamical evolution of PWNe can generally be divided
into three distinct stages (Gaensler & Slane 2006; Gelfand et al.
2009; van der Swaluw et al. 2001, 2004, and others): the free ex-
pansion (<2–6 kyr), reverse shock interaction (until some tens of
kyr), and relic stage. In the free expansion phase, the plasma
bubble grows inside the unshocked ejecta of the SNR, whose
forward and reverse shocks do not interact with the PWN. This
phase is comparably well understood because of numerous an-
alytical (Rees & Gunn 1974; Kennel & Coroniti 1984a,b) and
numerical (Martín et al. 2012; Bucciantini 2011, and references
therein) works on the subject mostly focussed on the Crab nebula
case, but applicable to other young PWNe. The PWN is grow-
ing fast (Chevalier 1977, R ∼ t1.2), attenuating the magnetic field
strength and synchrotron radiation, while IC emission from the
accumulating electrons quickly increases in the beginning and

then decreases very slowly (Torres et al. 2014). This early stage
is the only phase where the IC scattering on synchrotron photons
(synchrotron self-Compton emission) can also play a dominant
role.

The second phase begins after a few thousand years, when
the PWN has grown to a size of the order of ∼10 pc and en-
counters the reverse shock of the SNR, which may be moving
spatially inwards (Blondin et al. 2001). Since the total dynamic
energy in the SNR exceeds that of the PWN by one or two or-
ders of magnitude, the PWN may be compressed again by up
to a factor of 10 (Gelfand et al. 2009) and experiences a series
of contractions and expansions until a steady balance is reached.
After that, the wind nebula continues to grow at a much slower
pace, like R ∼ t0.73 for t < τ0 in van der Swaluw et al. (2001) and
R ∼ t0.3 for t > τ0 in Reynolds & Chevalier (1984). In the work
of Gelfand et al. (2009), where a spherically symmetric case
was simulated, the oscillations were found to lead to dramatic
changes in the synchrotron and IC luminosities, making the TeV
emission disappear completely for several thousand years. In re-
ality, where the SNR develops asymmetrically and the pulsar has
a proper motion, these drastic changes are presumably washed
out to some degree, leading to a more continuous behaviour.
Still, the collision of PWN bubble and reverse shock heavily de-
pends on the evolution of the whole system and its interaction
with the surroundings, making such evolved PWNe very diverse,
non-uniform objects (see also de Jager & Djannati-Ataï 2009).

This non-uniformity becomes even more pronounced if the
pulsar, owing to its proper motion or a tilted crushing of the neb-
ula, spatially leaves the main PWN bubble or even the SNR. In
that case, which is called the relic stage, the pulsar can form a
local plasma bubble while the old nebula from its younger period
still remains, typically as an IC-dominated PWN due to its much
lower magnetisation.
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Fig. 3. Schematic of the Milky Way and its spiral arms, along with firmly identified PWNe, candidates, and energetic pulsars (Ė > 1035 erg s−1)
without detected TeV wind nebula. The yellow and blue curves outline the sensitivity horizon of the HGPS for point-like sources with an integrated
gamma-ray luminosity (1–10 TeV) of 1% and 10% of the Crab luminosity, respectively (see H.E.S.S. Collaboration 2018, for details).

4.3. Modelling

The interpretation of the data we present and of the log-linear
trends we fit to the evolution plots require a comparison to what
can be expected in theory with the basic concepts outlined above.
To do so, we built a simpified, time-dependent model for the
evolution of the VHE electron population and TeV emission of
PWNe. We deliberately opted for a simple model because we do
not need it to contain detailed parameters that our TeV data does
not allow us to investigate.

The model we describe in Appendix A assumes a time-
dependent injection of electrons with a fixed power-law spec-
trum7, but decreasing total power according to Eq. (3). Fol-
lowing analytical formulae for the expansion, the cooling from
synchrotron, adiabatic, inverse Compton, and escape losses is
applied to the electron population as a function of time. The re-
spective characteristic age τc is always tracked as well to com-
pare the model correctly to data. The photon emission is calcu-
lated for each time step from the electron population, including
the full Klein-Nishina formula.

The strategy for the comparison of PWN data and theory is
to define the parameters of the model such that it reflects both
the average trend of PWN evolution (baseline model) and the
scatter of individual wind nebulae around that average expecta-

7 A spectral break at lower injection energies is generally necessary to
model low-energy data, but since this does not impact the TeV regime,
and we therefore cannot constrain it with the data presented in this pa-
per, we focus on the VHE part with a single power law.

tion (varied model). This means that, unlike other works, we do
not model individual objects in their particular multi-wavelength
context. Instead, we try to find out what the typical evolution is
and what the typical variations need to be in order to produce
the picture we obtain for the whole population. The band of the
varied model can therefore be interpreted as the area where a
synthesised population would be found (in the absence of detec-
tion selection effects).

As it turns out in the following, we succeeded in finding such
a model describing the evolution that a typical PWN in a typical,
dense spiral-arm surrounding undergoes. Since this one model
implies an evolution curve for every observable we consider,
both along τc and Ė0, a good leverage on its absolute parame-
ters is given. Starting from the baseline model, the parameters
are varied with the aim to realistically reproduce the scatter of
measured PWN observables. This way, the scatter of observables
itself is exploited as another observable, with the large number
of curves leading again to a good handle on the scatter.

It should be noted though that intrinsic (physical) and ana-
lytical (mathematical) correlations between parameters are ne-
glected in the varied model. For instance, the scatter ranges of
Ė0 and τ0, strongly restricted by Fig. 2 (left), may be larger if
the two quantities were anti-correlated such that high-Ė0 pulsars
always tend to have a lower τ0; this is physically plausible be-
cause the two quantities are related through the pulsar birth pe-
riod and magnetic field. On the mathematical side, Ė0, η, the
energy injection range and the background photon density are
all parameters with which the TeV luminosity scales in an almost
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Fig. 4. Top: PWN extension occurrences over distance from Earth, in
comparison to the band of extensions that can be expected to be iden-
tified in the HGPS analysis chain. Bottom: distribution of known dis-
tances of energetic pulsars (Ė > 1035 erg s−1).

linear way. In our varied model, we deal with this redundancy by
only varying Ė0, but similar results can be achieved if one of the
other factors is varied instead. See also Appendix A.7 for this
and other caveats of the model.

5. Properties of TeV pulsar wind nebulae

In this section we present and discuss the distributions and cor-
relations of TeV wind nebulae and their respective pulsars. For
each topic we describe what we present, discuss potential biases,
and then interpret what we find, using the modelling described in
Appendix A where needed and appropriate. The presented plots
serve to evaluate the plausibility of our current candidate sam-
ple (Sect. 6) and may prove useful in investigating future PWN
candidates.

5.1. Fitting and statistical treatment of uncertainties

The properties of PWN are intrinsically scattered (see Sect. 4.2)
and all observables are calculated using a distance estimation
based on the dispersion measure of the pulsar and a model of the

Galactic free electron distribution, whose uncertainty is not sta-
tistically well described. Consequently, the probability density
functions (p.d.f.) of our observables (size, luminosity, and off-
set) for a given τc or Ė are dominated by the scatter of intrinsic
properties and errors in the distance estimation and not by our
statistical uncertainty.

As a consequence, in the cases where we pursue a fit of ob-
servables with the aim of testing the significance of a correlation
or extracting an estimator function, we follow the approach put
forward by Vink et al. (2011) and Possenti et al. (2002). They
performed a least-squares fit of the respective observable with
residuals calculated in common logarithmic space. The fit func-
tion is a (log-)linear function, expressed generally as

lg Yest = p0 + p1 lg X. (7)

In order not to be restricted to detected objects but also to in-
clude the valuable limits from pulsars without VHE emission,
we use the asurv code (Lavalley et al. 1992) for the minimi-
sation. It allows us to apply statistical methods to test for the
existence of a correlation, such as the Cox proportional hazards
model, or to perform a multivariate regression including limits
(see Isobe et al. 1986, for an overview on the statistics inside
asurv). Besides the parameters pi of our function, asurv also
determines the variation σlg Y that the data are scattered with.

Owing to the existing selection biases and the uncertain p.d.f.
shapes involved, the derived estimator function might not always
approximate a virtual true evolution function, but rather evalu-
ate the unweighted average trend of the examined data points.
Table 6 summarises the fit results that are referred to in the fol-
lowing paragraphs. The p-values are taken from the Cox propor-
tional hazards model, which is a regression method for data with
upper limits. This model was originally developed for biostatis-
tical applications, where it is extensively used. As described in
Isobe et al. (1986), Section III, the model provides an equivalent
χ2 for the null hypothesis (no correlation), which can be trans-
formed to a p-value. For the linear regressions and parameter
determinations, the expectation maximisation (EM) algorithm is
used, which is an iterative least-squares method that allows for
the inclusion of limits (Isobe et al. 1986, Sect. IV).

5.2. Morphological properties

The morphological parameters provided by the HGPS catalogue
are source position and extension. As a pulsar and its PWN
evolve, the PWN is thought to become increasingly extended
and offset from the pulsar position (see Sect. 4). This basic evo-
lutionary behaviour can be found unmistakably in Figs. 5 and 6
(left).

5.2.1. Extension

Figure 5 (left) shows the evolution of PWN extension as a
function of characteristic age τc. We can determine extensions
beyond a systematic minimum of around 0.03◦ and at least up to
the observed extension of Vela X, at around 0.6◦ (see Sect. 3.3).
As shown in Fig. 4, most known pulsars lie at distances that
therefore allow for the measurement of PWN extensions be-
tween 3 to 60 pc. In Fig. 5 (right), where the extensions are
plotted against pulsar spin-down, far and close-by systems are
distinguished. This elucidates our ability to resolve far and near
systems and shows the plain correlation of size with Ė.

A caveat is that there is a selection bias from the fact that ex-
tension estimates or limits are only available for sources that are
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Fig. 5. Left: PWN extension evolution with time, in comparison to the modelling considered in this work. Right: PWN extension evolution with
Ė, as fitted in the RPWN(Ė) column of Table 6 for pulsar wind nebulae with Ė > 1036 erg s−1 (see Sect. 5.2.1). The shaded range shows the fit range
and standard deviation σlg R. 1 dex refers to an order of magnitude and is the unit of the logspace defined σlg Y . For clarity, this plot excludes PWN
candidates and divides the sample into nearby and far pulsar wind nebulae to illustrate the potential selection or reconstruction bias (see text). The
dot-dashed and dotted lines indicate the systematic minimum of 0.03◦ and the maximum measured extension in the HGPS of 0.6◦, respectively,
which are both projected to the average PWN distance of 5.1 kpc.

Table 6. asurv fit results.

RPWN(Ė) RPWN(τc) L1−10 TeV(Ė) L1−10 TeV(τc) S (Ė) dP−P(εTeV) dP−P(Ė), dP−P(τc)
p-value 0.012 0.047 0.010 0.13 0.0013 0.0004 0.035 0.0086
σlg Y 0.32 0.39 0.83 0.91 0.28 0.18 0.49 0.42
p0 1.48 ± 0.20 0.38 ± 0.22 33.22 ± 0.27 34.1 ± 0.4 30.62 ± 0.13 1.97 ± 0.16 1.07 ± 0.25 −0.9 ± 0.5
p1 −0.65 ± 0.20 0.55 ± 0.23 0.59 ± 0.21 −0.46 ± 0.36 0.81 ± 0.14 0.52 ± 0.07 −0.75 ± 0.29 1.4 ± 0.5

Notes. p0 and p1 relate to Eq. (7). The p-value is calculated after the Cox proportional hazards model. The fit used (within asurv) is the “EM
algorithm”. P is given in 0.1 s, Ṗ in 10−13 s s−1, Ė in 1036 erg s−1, and τc in kyr. RPWN is given in pc, L1−10 TeV in erg s−1, S in erg s−1 pc−2. The 2D
pulsar-PWN offset dP−P is given in parsecs, and εTeV = L1−10 TeV/Ė is the apparent TeV efficiency.

detected. Systems that are too faint or too large to be detected
with our sensitivity and FOV are missing in the PWN sample.
Since we cover a wide range of different distances, sources that
are large and bright, or faint and small, can still be represented
to some level in the sample. However, if there is a state in which
PWNe are faint and large at the same time, it might be that
they cannot be detected at any distance. From the current un-
derstanding of PWN theory, this can be the case for PWNe of
ages beyond few tens or hundreds of kiloyears, so the study pre-
sented here has to be taken with some caution in that regime.
To unbias the sample in the fitting procedure below, we apply a
cut of Ė > 1036 erg s−1, beyond which the likeliness of detection
is reasonably high and the detected objects can be considered
representative for their stage of evolution.

A measurement bias we may have is that the limited FOV
might truncate the tails of the source for very extended sources.
This effect was suggested by Vernetto et al. (2013) as an expla-
nation for the differences between some IACT spectra and the re-
sults of the air shower detector ARGO. We cannot entirely verify
or falsify this claim here, but since only few sources approach the
critical regime beyond 1◦, it is presumably a minor effect in this
study.

A possible physics bias that might enhance the effect seen
in Fig. 5 (right) is that close-by objects are on average located

farther away from the Galactic centre and therefore in less dense
surroundings than far objects. This might influence the average
dynamical evolution they experience.

Fitting the data to check for correlations with τc or Ė yields
the results shown in Table 6. The low p-values and non-zero
p1,2 confirm, on 2–3 standard deviation confidence levels, that
the extension increases along the evolution of a PWN, i.e. with
falling Ė and increasing τc. A more general 2D fit of RPWN(P, Ṗ)
does not lead to a significant improvement of the fit, nor a lower
p-value. The parametrisation of RPWN(Ė) is shown in in Fig. 5
(right) to show that it is indeed suitable for predicting the exten-
sions of the detected young PWNe (Ė > 1036 erg s−1) reasonably
well. The only PWN below 1036 erg s−1, CTA 1, does not follow
the extrapolation of that trend and appears to be dynamically dif-
ferent from the rest of the population.

The relation R ∼ τ0.55±0.23
c can be compared to the baseline

model in Fig. 5 (left), which assumes the canonical R ∼ t1.2 and
t0.3, at early and late times, respectively, and thus encloses the
measured value well. The conversion between true age and τc
according to Eq. (4) is taken into account in the displayed model
curves.

Comparing the data with the model, the initial and fast free
expansion can accommodate the non-detections of extensions
of very young pulsar wind nebulae, while the slope of t0.3 for
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evolved PWNe (Reynolds & Chevalier 1984) is roughly con-
sistent with the comparably small extensions of the few older
PWNe in the sample. One has to keep in mind that the curve
at high ages is more an upper limit than a prediction because
a potential crushing (as a sudden decrease in size after the free
expansion) is not included in the model. The absolute scale of
the curves is a free parameter of the model, but later turns out
to be constrained by the surface brightness values we measure
(Sect. 5.3.3).

In conclusion, the fact that TeV pulsar wind nebulae gener-
ally grow with time until an age of few tens of kiloyears is clear
and supported by the asurv fits. There are, however, few pul-
sar systems older than that to place stringent constraints on the
model at later evolution stages.

5.2.2. PSR-TeV offset

An offset between a pulsar and its TeV wind nebula can be
caused by a combination of pulsar proper motion, asymmet-
ric crushing of the PWN by the surrounding SNR and, possi-
bly, by asymmetric pulsar outflow. Hobbs et al. (2005) deter-
mined the mean 2D speed for non-millisecond pulsars to be
307 ± 47 km s−1, and the velocity distributions were found to be
compatible with a Maxwellian distribution. Other works, such
as Arzoumanian et al. (2002), suggest a more complex distribu-
tion and high-velocity outliers, but it is clear that the bulk of
the pulsars have 2D velocities of less than 500 km s−1. In Fig. 6
(left), the offset against characteristic age is compared to a 2D
velocity of 500 km s−1. The true age of young pulsars can be less
than τc, in which case those points, shown in true age, may even
move to the left, and thus enlarge the distance to the 500 km s−1

line. To give an idea of which offsets can be detected, lines for
the maximum offset implied by our angular selection criterion
and systematic minimum resolution are also shown for the mean
PWN distance of 5.1 kpc.

The asurv fits (Table 6) suggest that the trend of increas-
ing offset with rising τc and falling Ė is statistically manifest in
the data. What is interesting beyond this general increase is that
5 of 9 pulsars with ages beyond 7 kyr in Fig. 6 (left) are more
offset from their PWN than expected from mere pulsar motion.
At these ages, PWNe presumably are beyond their free expan-
sion phase and have started interaction with the SNR reverse
shock or surrounding medium. While the velocity distribution
of pulsars can have outliers that are significantly faster than av-
erage, it is unlikely that such a high fraction of the high-Ė pul-
sars with TeV-detected nebulae are so fast (1000 km s−1 or more
would be required). This suggests that the asymmetric evolution
of the PWN, caused by interaction with the reverse shock and/or
asymmetric surrounding medium (Blondin et al. 2001), is in fact
the dominant offset mechanism for middle-aged wind nebulae.
Further support for this conclusion comes from the very few
measured pulsar transverse velocity vectors that are currently
available in the ATNF catalogue for our PWN sample (e.g. for
Vela X and HESS J1825−137). These vectors do not consistently
point away from the PWN, as one would expect from a pulsar
motion dominated offset.

5.2.3. Containment

Containment of a pulsar in its TeV wind nebula, although not
strictly binding in the relic stage, is often taken as an argument
to claim the PWN nature of an object. We define the contain-
ment ratio as the PWN offset divided by the PWN extension ra-

dius. Given the offset and extension evolution discussed above,
a pulsar is not expected to leave its (then relic) wind nebula be-
fore some tens of kiloyears; yet the ratio should increase and
approach unity at some point, unless the relative movement is
in the direction of the line of sight. Figure 6 (right) shows the
evolution of the containment ratio with characteristic age.

An additional caveat to mention for this quantity is that no
upper or lower limit can be calculated if both offset and exten-
sion are already limits, which is the case for 7 of the 19 firmly
identified objects in our sample. Another selection bias concerns
the identification itself. Good reasons, such as observations at
other wavelengths, are required to argue for a non-contained as-
sociation of a pulsar with a TeV object; for old systems, how-
ever, these MWL data are very difficult to acquire since the syn-
chrotron component has become very faint. This bias can be
regarded as intrinsic to the decomposition of old, “dissolving”
PWNe, whose remains become inevitably difficult to associate
with the pulsar as time passes.

In Figure 6 (right), most young pulsars are well contained in
their nebulae, but there are a few older pulsar wind nebulae that
were firmly associated to a pulsar close to or slightly beyond
their (1σ Gaussian) extension radius.

5.3. Luminosity, limits, and derived parameters

5.3.1. Luminosity

From Sect. 4 and in our model, the TeV luminosity of pulsar
wind nebulae is expected to rise quickly within the first few
hundred years and decay slowly over many thousands of years.
Figure 7 (left) shows the evolution of luminosity with pulsar
spin-down power and Fig. 8 (left) the evolution with character-
istic age.

Figure 8 (right) indicates the distribution of luminosities. The
average detection threshold of energy flux between 1 and 10 TeV
is at around 10−12 erg s−1 cm−2 (H.E.S.S. Collaboration 2018),
which is equivalent to a luminosity threshold of 3 × 1033 erg s−1

at the mean PWN distance of 5.1 kpc. In this work, we reduce
the selection bias present in previous studies by involving flux
upper limits for all eligible pulsars with Ė > 1035 erg s−1. As ex-
plained in Sects. 2.3 and 3.2, about one-third of these high-Ė pul-
sars in the ATNF catalogue can be expected to have an extension
small enough from which it is possible to extract a meaningful
limit. So again, PWNe that are very large, presumably with ages
beyond a few tens of kiloyears (below ∼1036 erg s−1), might be
truncated from our data set. Figure 7 (right) is the equivalent of
Fig. 5 (right), showing the luminosities and limits in two bands
of distance. The expected extensions and derived limits are listed
in Table 5. In the fit below we add further flux limits calculated
for the pulsars associated with the candidate PWNe, applying the
same calculation method as for the limits in Table 5. This adds
11 further valid limits, which are also included in Fig. 7 (right).
This flux limit can actually be below the flux of the candidate,
for instance if the candidate is more extended than predicted by
the model (e.g. in the case of HESS J1023−575).

The primary feature of the data is a mild but stable cor-
relation of luminosity with pulsar spin-down8. The asurv fit
suggests a relation of L1−10 TeV ∼ Ė0.59±0.21 (see Table 6).
The model supports this, indicating a power index of around
0.5. The slow but steady decay, combined with the growing
extension, is what hampers a TeV detection once the pulsar

8 The p-value without N157B is still 0.06, so the correlation does not
only depend on this one source.
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spin-down power falls below ∼1036 erg s−1. This decay could
not be observed in other works before (e.g. Mattana et al. 2009;
Kargaltsev & Pavlov 2010) owing to the missing upper limits9.
Figure 7 (right) shows the result of the fitted parametrisation
L1−10 TeV(Ė) derived from our data.

In contrast, the L1−10 TeV over τc (Fig. 8, left) is scattered
widely and a correlation is statistically not clear (see Table 6).
This, however, matches the broad scatter suggested by the
varied model (shaded area). Apparently, Ė is the better variable
to characterise the evolutionary state of the PWN luminosity.

9 The p-value for the fit of L1−10 TeV(Ė) without the limits is 0.31.

5.3.2. Apparent TeV efficiency

The TeV efficiency, conventionally defined as εTeV =
L1−10 TeV/Ė, is not the real present efficiency of a PWN because
L1−10 TeV is a result of the whole injection history, whereas Ė
characterises the present outflow of the pulsar. Therefore, TeV
pulsar wind nebulae can in principle have TeV efficiencies ex-
ceeding unity.

Figure 9 (left) shows the evolution of the efficiency with
the pulsar characteristic age. Interestingly, the efficiency seems
to be scattered more than suggested by the varied model, un-
like in Fig. 8 (left). To shed light on the cause of this it is
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treated in this work.

illustrative to plot TeV efficiency versus the PSR-PWN offset
for different groups of characteristic age (Fig. 9, right). With the
sample of detected PWNe, a relatively clear correlation can be
confirmed also in the asurv fit (Table 6). Apparently, all low-
efficiency PWNe are found at low offsets from their pulsar and
all high-efficiency wind nebulae have larger offsets. To some
level, this correlation is trivial because both efficiency and off-
set increase with time. After subdividing the sample into dif-
ferent age groups, however, it becomes clear that the plot does
not only sort by age; instead, even for PWNe with similar ages,
efficiency and offset are correlated and the age groups overlap
each other. In the plot, a bias might occur because low-efficiency,
high-offset systems may be difficult to identify, but the absence
of high-efficiency, low-offset systems must be genuine. A second
systematic effect may be that both efficiency and offset depend
on the PSR distance estimation d (or its square), so if there were
a strong bias in d, it would also appear as a trend in the plot
(though hardly at scales of more than a factor of 10).

This is a mild indication that a pronounced offset, as may
be induced by SNR reverse shock crushing, comes with a high
TeV efficiency, while systems that interact less with their sur-
roundings remain fainter overall. One cannot disentangle at this
point whether the crushing itself heats up the plasma bubble or
whether the correlation is indirect because denser environments
might provide both crushing material and a higher IC target pho-
ton density. More case studies in the future might clarify the sit-
uation here.

5.3.3. Surface brightness

All of the TeV quantities discussed so far rely on the knowledge
of the distance to a given pulsar system, which in many cases,
however, is not very well constrained observationally. A quantity
that is independent of the distance is the TeV surface brightness,
defined as

S =
L1−10 TeV

4πR2
PWN

≈
F1−10 TeV

σ2 , (8)

where RPWN is the physical PWN radius (in pc), σ is its angular
extent as seen from Earth, and F1−10TeV is the integral energy
flux between 1 TeV and 10 TeV measured at Earth.

Figure 10 (left) shows the dependence of surface brightness
on the pulsar’s Ė. Like the extension, S can only be calculated
for detected systems and therefore suffers a selection bias ex-
pected to become more important with decreasing Ė. Below a
spin-down power of 1036 erg s−1, the data sample is truncated at
low surface brightness values.

As seen in the asurv fit values in Table 6, a compara-
bly strong correlation is found, confirming the above findings
of a decreasing luminosity and increasing extension of age-
ing pulsar wind nebulae. The measured power-law relation of
S ∼ Ė0.81±0.14 matches what the model suggests (∼0.9 for the
part where Ė < 2× 1037 erg s−1). We find that the surface bright-
ness gives a strong handle on the self-consistency of the model
because it links the dynamical evolution (i.e. the extension) to
the spectral evolution (i.e. the flux). That is, the scales of the ex-
tension and luminosity evolutions cannot be adjusted indepen-
dently; they must lead to a consistent surface brightness scale.

An interesting feature to note is that the scatter suggested
by the varied model seems to be much larger than what is
found in the data (σlg S ∼ 0.3). This might indicate that flux and
extension are not as independent as implied by a free variation
of the respective model parameters. Another effect might be the
missing systematic scatter of S from the distance measurements.
If the scatter of luminosity and extension measurements were
dominated by the errors on the distance, the varied model
shown here would implicitly include that scatter, and therefore
overestimate the actual source-intrinsic scatter. This in turn
would lead to a spread of the predicted surface brightness
evolution that is too large.

5.3.4. Photon index

The average photon index in our sample (firm identifications) is
∼2.3, and about half of the PWN indices deviate significantly
from that. Figure 10 (right) shows the relation of photon index
and pulsar Ė.
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A selection bias can be expected because non-detections do
not appear in the plot and very soft spectrum sources are more
difficult to detect than hard spectrum sources.

The general range of measured indices (1.9 . . . 2.8) is in ac-
cordance with the model; most of the firm identifications lie in
the predicted range of the varied model or have error bars that
are compatible with this model. The precise index is a product
of the lepton spectral energy distribution, in particular of elderly
cooled electrons (see Fig. A.1, right) and the IC target photon
fields, the combination of which on average seems to be appro-
priate in our model. The two exceptions are the Crab nebula and
N157B, for which TeV emission is likely dominated either by IC
scattering off their own synchrotron radiation (SSC, for Crab),

or dominated by a very high surrounding photon field (N157B).
These special features are not incorporated in our generic
model.

The peak of the IC emission does not have a clear tendency
in our model, although a mild trend for an increasing peak posi-
tion seems to be manifest in Fig. A.1 (left) beyond ages of few
kiloyears. Also, such a trend is not generally agreed on between
different modelling codes. The MILAGRO and HAWC observa-
tions of the ancient Geminga PWN indicate a multi-TeV nebula
(Abdo et al. 2009; Baughman et al. 2015), presumably with a
high-peaking spectrum, despite its age of ∼300 kyr. The data dis-
cussed in this paper do not allow for a clear statement here, but
show that the trend, if present, is weak.
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Fig. 11. Common logarithmic residuals of rating criteria 2–4, using the standard deviations σlg Y explained in Sect. 6. Left: extension with respect
to the model shown in Fig. 5 (left). Middle: same for luminosity (Fig. 7, left). Right: same for surface brightness (Fig. 10, left). In all cases, limits
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6. Review of pulsar wind nebula candidates

In the previous section, the preselection candidate PWNe de-
fined in Sect. 3.2 were shown along with the firmly associated
PWNe and with average model expectations. Some of the candi-
dates very consistently lie among other PWNe and close to the
model prediction, while others do not. In order to compare the
candidates among each other, in this section we apply uniform
post-selection (“rating”) criteria to all of them.

It is important to note that such a rating only evaluates the
plausibility of a given candidate in the context of firmly identi-
fied PWNe or of our model (which is adjusted to the PWNe).
Therefore, a badly rated candidate may either be an atypical
PWN, or an object that contains a PWN alongside a second
source (such as a stellar cluster or SNR), or no PWN at all. Ar-
guments from observations at other wavelengths are ignored in
this uniform approach here since they are not available for all
candidates. Consequently, our rating evaluates the plausibility of
a PWN candidate by how normal the TeV properties of the PWN
candidates are.

We evaluate four criteria: three are comparisons to the model
evolution and one concerns the containment of the pulsar inside
the PWN. Specifically, we apply the following criteria:

1. Containment ratio (Fig. 6, right): the pulsar offset should be
<1.5 extension radii.

2. TeV extension versus age (Fig. 11, left): Log-residual from
model (Fig. 5, left) should be within 2 standard deviations,
using the measured σlg R = 0.39 (Table 6).

3. TeV luminosity versus pulsar spin-down (Fig. 11, middle):
Log-residual from model (Fig. 7, left) should be within
2 standard deviations, using the measured σlg L = 0.83
(Table 6).

4. Surface brightness versus pulsar spin-down (Fig. 11, right):
Log-residual from model (Fig. 10, left) should be within
2 standard deviations, using the measured σlg S = 0.30
(Table 6).

Table 4 shows the ratings of the considered candidates. There
are 20 PSR-TeV pairs, in which there are two TeV double
associations (one HGPS source qualifying for two pulsars) and
four PSR double associations (one PSR qualifying for two HGPS
sources).

Ten of the candidate PSR-TeV pairs fulfill all criteria and
seem to be plausible TeV pulsar wind nebula associations. All
of these candidate pairs have already been discussed as possible
TeV PWNe, namely HESS J1616−508 and HESS J1804−216
(both in Aharonian et al. 2006c), HESS J1809−193
and HESS J1718−385 (both in Aharonian et al. 2007),
HESS J1857+026 (Hessels et al. 2008), HESS J1908+063 (aka
MGRO J1908+06; e.g. Aharonian et al. 2009; Aliu et al. 2014),
HESS J1640−465 (Abramowski et al. 2014, PWN hypothesis
disfavoured, though), HESS J1708−443 (H.E.S.S. Collaboration
2011a), HESS J1023−575 (coinciding with massive
stellar cluster Westerlund 2, H.E.S.S. Collaboration
2011b), and HESS J1018−589B (the extended addi-
tional component close to the binary HESS J1018−589A,
H.E.S.S. Collaboration 2012b).

Of the ten disfavoured candidates, one is an alternative asso-
ciation for the above strong candidate HESS J1616−508, dis-
favoured due to its offset. Similarly, PSR J1811−1925 is a
second pulsar in the area of HESS J1809−193, already argued
in Aharonian et al. (2007) to be the less likely counterpart of the
two pulsars that can be considered. HESS J1026−582 was pre-
viously hypothesised to be a PWN, but receives an unfavourable
rating due to its pulsar offset, although the HGPS analysis may
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not be optimal to reveal the morphology of this hard-spectrum
source (H.E.S.S. Collaboration 2011b).

The two sources HESS J1745−303 and J1746−308, both as-
sociated with the very nearby old PSR B1742−30, are a spe-
cial case. The pulsar is a factor of 10–100 older than most other
PWNe discussed here, so the extrapolation performed for the rat-
ing cannot be considered to be very robust. In fact, these two
objects could not be represented in most of the figures because
they are too far off the axis ranges. They obtain a bad rating
mostly because they are both too underluminous and too small
for their age. It could well be, though, that HESS J1746−308 is
a late-phase PWN, created locally near the pulsar after the main
relic PWN bubble has become very faint and/or has dissolved.
The predicted size of the PWN according to our model would be
32 pc or 9◦ in the sky, which is impossible to detect with state-
of-the-art IACT analysis methods.

In conclusion, about half of the PWN candidates evaluated
in this work are viable PWNe, judging by their TeV and pulsar
properties in relation to the population as such. The number of
disfavoured candidates (10) matches well with the expectation of
∼10 chance coincidences evaluated in Sect. 3.1. Hence, it seems
plausible that most of the ten high-rated candidates are indeed
genuine pulsar wind nebulae. If this were the case, a total of 25
in 78 HGPS sources would be pulsar wind nebulae (including
G0.9+0.1 here).

7. Conclusions

In this work we subsume and examine the population of TeV
pulsar wind nebulae found to date. The census presents 14 ob-
jects reanalysed in the HGPS catalogue pipeline, which we con-
sider to be firmly identified PWNe, and five more objects found
outside that catalogue range or pipeline. In addition to those, we
conclude that there are ten strong further candidates in the HGPS
data. Most of the PWNe are located in the bright and dense Crux
Scutum arm of the inner Milky Way. A spatial correlation study
confirmed the picture drawn in earlier studies, namely that only
young, energetic pulsars grow TeV pulsar wind nebulae that are
bright enough for detection with presently available Cherenkov
telescopes. For the first time, flux upper limits for undetected
PWNe were given around 22 pulsars with a spin-down power
beyond 1035 erg s−1 and with expected apparent extensions (plus
offsets) below 0.6◦ in the sky.

Of the 17 most energetic ATNF pulsars, with a spin-down
power Ė ≥ 1037 erg s−1, 11 have either an identified TeV wind
nebula (9) or candidate (2) featured in the present study. Of the
remaining 6,

– 3 are included in the flux upper limits in Table 5;
– 3 are out of the range of the HGPS:

– PSR J2022+3842: SNR G076.9+01.0, contains an X-ray
PWN; not reported in TeV.

– PSR J2229+6114: boomerang, contains an X-ray PWN;
detected by MILAGRO and VERITAS, but of unclear na-
ture in TeV.

– J0540−6919: in the Large Magellanic Cloud; a limit is
given in Abramowski et al. (2015). Converting the limit
to luminosity yields L1−10 TeV < 5.7 × 1034 erg s−1, which
is compatible with the predicted 3.3 × 1034 erg s−1 that
can be taken from L1−10 TeV(Ė) in Table 6.

In summary, only 5 of the 17 highest-Ė pulsars remain without
a detected potential counterpart in the TeV band.

Figures 5 to 10 showed a variety of trends between pulsar
and TeV wind nebula parameters, and consistently compared

them to a simple one-zone time-dependent emission model of
the TeV emission with a varied range of model input parame-
ters. The main conclusion of this work is that for several observ-
ables, a trend was found in the data and the trends suggested
by our model are consistent with these findings. With only a
moderate variation of the model input parameters, we can mimic
the spreads of the observables, although the precise value of the
parameter ranges is subject to the model caveats discussed in
Sect. 4.3. Our first-order understanding of the evolution of TeV
pulsar wind nebulae with ages up to several tens of kiloyears
therefore seems to be compatible with what the whole popula-
tion of detected and undetected PWNe suggests.

Using the flux limits for undetected PWNe, we find evi-
dence that the TeV luminosity of PWNe decays with time while
they expand in (angular) size, preventing the detection of those
whose pulsar has dropped below ∼1036 erg s−1 (roughly corre-
sponding to several tens of kiloyears). This was implicitly known
before from the mere non-detection of old pulsar wind nebulae,
but for the first time could be put into a quantitative perspec-
tive here, both by fitting data and limits, and by comparing the
data to model predictions. The power-law relation between TeV
luminosity and pulsar spin-down power could be estimated as
L1−10 TeV ∼ Ė0.58±0.21, in consistency with the model that sug-
gests a power index of around 0.5.

Another feature that was discussed on some individual ob-
jects before (e.g. Aharonian et al. 2005c; Temim et al. 2015) is
the “crushing” of PWNe, which can be exerted by the inward-
bound reverse front of the supernova shock wave. For SNRs de-
veloping asymmetrically, for instance due to an inhomogeneous
surrounding medium (ISM), this crushing may result in consid-
erable distortion and displacement of the wind nebula. Put to a
population-scoped graph (Fig. 6, left), it becomes clear that pul-
sar proper motions are insufficient to explain the large offsets
observed, which may instead be due to reverse shock interac-
tion being a dominant and frequent cause of pulsar-PWN off-
set in middle-aged systems (see also de Jager & Djannati-Ataï
2009). Furthermore, the offset appears to relate to high efficiency
(Fig. 9, right), suggesting that the PWN either gains energy and
brightness through the process that causes the offset or that dense
surroundings amplify both the IC luminosity and the offset be-
tween pulsar and wind nebula. While the evidence for this at
present is not very strong, following up with expanded future
studies is certainly worthwhile.

The expansion of PWNe with time (i.e. rising characteris-
tic age and falling pulsar spin-down) could also be shown to
be evident in the data. The fitted relation R ∼ τ0.55±0.23

c sug-
gests an average expansion coefficient in between those expected
theoretically (1.2 and 0.3). The data set is not comprehensive
enough to do a fit with two power laws, but appears to be con-
sistent with the model. Notably, and in coherence with what was
discussed already in Aharonian et al. (1997), this expansion is
not so clear in X-rays, where the synchrotron emission always
remains very local because it only traces the young particles in
areas of high magnetic field relatively close to the pulsar. Most of
the old objects (>30 kyr) in Kargaltsev et al. (2013) are therefore
smaller than 1 pc in their bright core emission. On the other hand,
in a limited sample of eight PWNe, Bamba et al. (2010) have re-
ported the existence of an additional extended and expanding
X-ray emission component, which might be the emission from
the particles we see in TeV.

An interesting relation was found between the PWN sur-
face brightness and pulsar Ė (Fig. 10, left). What stands out is
not only the correlation itself, but also its relatively low scat-
ter. This might either suggest that luminosity and extension are
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more correlated than reproduced in our model (such that a high-
luminosity outlier is always balanced by an accordingly large
extension), or it is an indication that the large scatter in all the
other plots is dominated by the distance uncertainty, which is
cancelled out in the surface brightness parameter. If this latter
were true, it would mean that PWNe in fact evolve even more
uniformly than suggested by our varied model.

The evolution trend of the photon index remains an open
issue in this study. Neither the data nor the model are particu-
larly clear about it for the young to middle-aged PWNe we in-
vestigated. A more sensitive data set – as expected from CTA
(Acharya et al. 2013) – will reduce the uncertainties on spec-
tral indices and reduce the selection bias by detecting more soft-
spectrum PWNe.

Since both the H.E.S.S. Galactic Plane Survey and the ATNF
pulsar database only cover a fraction of the Milky Way, de-
pending on TeV and pulsar brightnesses, this study suffers from
several selection biases discussed throughout the text. For TeV-
bright, high-Ė, young pulsar systems (>1036 erg s−1) we achieve
a relatively good coverage, whereas for systems beyond some
tens of kiloyears of age we likely miss many sources. In the plots
discussing flux-related quantities, this is partly compensated by
the inclusion of flux limits, allowing for statements that consider
non-detections. For extension- and position-related quantities,
however, we can only rely on the detected cases. It requires a full
population synthesis study to judge whether some of the correla-
tions are genuine or include side effects of other correlations or
selection biases. Our plots and fits are meant to draw attention to
where correlations may lurk and we encourage further work on
this matter beyond the scope of this paper.

One presumably very influential parameter ignored in this
study is the density of matter and background light at the posi-
tion of each pulsar. It is likely due to such circumstances that
Vela X, 3C 58, and CTA 1 are so faint, and N 157B (in the Large
Magellanic Cloud) is so bright. In the scope of a population syn-
thesis study, one could use a specific Milky Way model to “cali-
brate” the calorimetric objects that TeV pulsar wind nebulae are
assumed to be.

On the modelling side, we are able to describe the trends
and scatter of the TeV properties of the present PWN popula-
tion with a relatively simple time-dependent modelling. Its 12
free parameters (7 of which were varied for the varied model)
were well below the 4 × 19 observed parameters that the firmly
identified PWNe provided10. It is remarkable that the adaptive
parameters need to be varied in a fairly small range, compared to
what one may fathom from the modelling literature11, while still
producing sufficient scatter in the predicted observables (even
excluding distance uncertainties and target photon densities as
additional factors). Whether this indicates that the underlying
variations of the individual PWN parameters are indeed small,
or whether this is because the parameters are (anti-)correlated
(see Sect. 4.3), cannot be clarified in this work. This requires
a deeper physical model of the pulsars and possibly a multidi-
mensional likelihood fit to correctly quantify all correlations and
identify the true distributions of its parameters.

In the CTA era, most of the PWNe that will be detected in
addition to the now assessed population will be middle-aged and

10 All plotted parameters were derived from the four parameters P, Ṗ,
L1−10 TeV, and the PWN extension; the TeV offset was not dealt with in
the modelling.
11 Even considering only the four papers mentioned in Sect. 4.1, Ė0 and
τ0 vary there by factors of 250 and 6, respectively, compared to 10 and
1.4 in our work (see Table A.1).

old systems that are too faint or too extended to be detected with
current instruments. Also, SKA (Taylor 2012) will enlarge the
sample of pulsars detected in our Galaxy. To gain new insights
from studying these systems, a solid and publicly available mod-
elling code is needed that includes the difficult reverse shock in-
teraction phase of a PWN in a reproducible way. This may help
to understand the effect and influence of the amount of crushing
and pulsar offset of the PWN, which is likely an influential factor
of later PWN evolution.

On the analysis side, it would be beneficial to (i) improve
the angular resolution and get to smaller scales of extension,
(ii) find ways to reliably disentangle overlapping sources and
their spectra, and (iii) aim for detecting objects larger than the
IACT camera FOV. The latter is also of interest because pulsar
systems in our Galactic neighbourhood, at few hundred parsecs
from Earth, are considered plausible candidates to strongly con-
tribute to the cosmic-ray electron and positron fluxes at Earth
(e.g. Yin et al. 2013). The CTA cameras will provide us with
a larger FOV (Acharya et al. 2013), which improves the capa-
bility of mapping out close-by PWNe. Detecting TeV objects
even larger than that FOV will require better modelling and/or
treatment of the cosmic-ray background event distribution and
its systematics (e.g. Spengler 2015; Klepser 2012). In parallel,
more generalised analysis packages with wholistic likelihood
approaches (Knödlseder et al. 2013) might help us to unriddle
sources that occult each other in the densely populated arms of
the Galaxy.
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Appendix A: Basic modelling of TeV pulsar wind
nebulae

In the interpretation of the TeV characteristics of the PWN pop-
ulation described in this paper we have made use of a time-
dependent one-zone model. It allows us to trace the evolution
of the VHE lepton population, and hence the radiative output
of a PWN, based on a few general assumptions. The specific
model we adopt here was introduced by Mayer et al. (2012), but
extended and improved for this work. Its essential traits are out-
lined in the following.

A.1. Spin-down evolution and energy conversion into
energetic leptons

The model allows us to calculate the evolution of the non-
thermal emission of a PWN in discrete time steps with an adap-
tive step size δt. In each step, the amount of spin-down energy
converted into relativistic electrons and positrons is given as

∆Ep(t) = η

∫ t+δt

t
Ė(t′)dt′, (A.1)

where the spin-down evolution Ė(t) of the pulsar (Eq. (3), p. 7)
is characterised by the braking index n, the initial spin-down
timescale τ0, and the initial spin-down Ė0. The lepton conversion
efficiency η can be adjusted to account for additional cooling ef-
fects, but in this work is set to 1. This neglects the sub-percent
fraction of magnetic energy release that should technically be
missing in the particle outflow, but is negligible here.

While it is possible to transfer the dependency on τ0 to one
on P0 using

τ0 =
2τc

n − 1

(P0

P

)n−1

, (A.2)

in this work we take τ0 as the free parameter.

A.2. Lepton injection spectrum

For the energy spectrum of leptons freshly injected into the neb-
ula we assume the following power-law shape:

dNinj

dE
(E, t) = Φ0(t)

( E
1 TeV

)−β
(A.3)

with a power-law index β. Φ0(t) can be calculated imposing

∆Ep(t) !
=

∫ Emax

Emin

dNinj

dE
(E, t) dE . (A.4)

The lepton energies needed to deliver the relevant X-ray and
gamma-ray energies cover a range of Emin to Emax. Varying the
boundary energies essentially changes the number of particles
contained in the IC-relevant energy range, and thus the effi-
ciency, but does not fundamentally change the relative evolution
of observables. A low-energy break in the injection spectrum is
often applied in literature (e.g. Torres et al. 2014), but only im-
pacts the lower ends of the emission spectra. We omit it here
because it neither influences, nor is constrained by our data.

A.3. Cooling mechanisms

Cooling is approximated as

dNcooled

dE
(E, t) =

dN
dE

(E, t − δt) exp
(
−

δt
τeff(E, t)

)
, (A.5)

with an effective cooling timescale

τ−1
eff = τ−1

syn + τ−1
esc + τ−1

ad , (A.6)

which comprises synchrotron, escape, and adiabatic losses. This
strategy, as well as the expressions for the first two terms, are
adopted from Zhang et al. (2008)

τsyn(E, t) = 12.5
[

B(t)
10 µG

]−2 [ E
10 TeV

]−1

kyr (A.7)

τesc(E, t) = 34
[

B(t)
10 µG

] [ E
10 TeV

]−1

×

[
R(t)
1 pc

]2

kyr. (A.8)

Here, R(t) and B(t) describe the time evolution of the PWN
radius and the magnetic field strength inside the PWN (cf.
Sect. A.4 below). The timescale for adiabatic losses, τad = − E

Ėp
,

is governed by the expansion of the nebula and can be calculated
(following de Jager & Harding 1992) from

dEad

dt
= −

E
3
∇u⊥(R) = Ėp, (A.9)

with u⊥(R) being the radial component of the particle velocity.
In general, its divergence can be calculated to

∇u⊥(R) =
1

R2

∂(R2u⊥)
∂R

(A.10)

=
1

R(t)2

∂(R(t)2u⊥(t))
∂t

∂t
∂R

(A.11)

making use of the radial evolution function R(t) given in the next
section. In addition to the above formulation we take into ac-
count losses originating from inverse Compton (IC) emission.
This is achieved by subtracting the IC emissivity in each time
step dependent on the electron energy (see Appendix A.5 for
further details on the IC emissivity).

A.4. Dynamical evolution

In order to take into account that the growth rate of a PWN
strongly depends on its evolutionary state, the model builds on
analytical studies of the development of PWNe inside their SNR
environment (e.g. Chevalier 1977; Reynolds & Chevalier 1984).
The time evolution implemented in the model comprises three12

distinct phases, which define the expansion behaviour of the
PWN according to the age of the system in terms of the spin-
down timescale τ0 and the reverse-shock interaction time trs.
Usually, the reverse-shock passage and the subsequent reverber-
ations are expected to occur at a time trs > τ0. For this case,
the following relations have been derived in the aforementioned
works:

R(t) ∝


t6/5 for t 6 τ0

t for τ0 < t 6 trs
t3/10 for t > trs.

(A.12)

12 The original version of the model presented in Mayer et al. (2012)
does not incorporate a free expansion phase and uses only two evolu-
tionary stages.
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Table A.1. Overview of parameters used for the modelling and the calculation of varied model ranges.

Parameter description Parameter values
baseline model varied model

Braking index n 3.0 2.5 . . . 3.5
Initial spin-down power Ė0 (1039 erg s−1) 2.0 1.0 . . . 4.0
Initial spin-down timescale τ0 (kyr) 0.5 0.32 . . . 0.77
Initial magn. field strength B0 (µG) 200 110 . . . 270
Reverse shock interaction timescale trs (kyr) 4.0 4.0 . . . 8.0
PWN radius at t = 3 kyr R3 (pc) 6.0 3.0 . . . 12.0
Adopted const. ISM magn. field strength BISM (µG) 3.0 3.0
Lepton conversion efficiency η 1.0 1.0
Index of magn. field evolution α 0.6 0.6
Index of lepton injection spectrum β 2.0 1.75 . . . 2.25
Lower bound of lepton energy distribution Emin (TeV) 0.03 0.03
Upper bound of lepton energy distribution Emax (TeV) 300 300

In the (supposably much less common) opposite case, trs < τ0,
the time evolution of RPWN is modified to

R(t) ∝


t6/5 for t 6 trs
t11/15 for trs < t 6 τ0

t3/10 for t > τ0.

(A.13)

As a simplification, the crushing of the PWN by the SNR reverse
shock is not modelled here. Such crushing presumably reduces
the radius between free expansion and reverse shock interaction
phase.

The magnetic field evolution is adapted from Zhang et al.
(2008) as

B(t) =
B0

1 +
(

t
τ0

)α + BISM, (A.14)

assuming a constant and homogeneous ISM contribution of
3 µG, and adopting an index of α = 0.6 in order to satisfy the
conservation of magnetic flux.

A.5. Time-dependent lepton energy distribution and radiative
processes

The framework laid out in the previous sections allows us to
calculate the energy distribution of the leptons contained in the
PWN at any given time. More specifically, the number of leptons
with energy E residing in the nebula at a time t+δt is determined
by the balance of freshly injected leptons and those cooled out
of the respective energy interval,

dN
dE

(E, t + δt) =
dNcooled

dE
(E, t) +

dNinj

dE
(E, t + δt). (A.15)

The iterative evaluation of Eq. (A.15) then yields the lepton en-
ergy distribution as a function of time. The time binning is ad-
justed adaptively to guarantee high precision at a still reasonable
computation cost (see Mayer 2010b, Sect. 5.2.2. and Fig. 5.8 for
details on this).

From the lepton distribution, the photon population arising
from synchrotron emission and inverse Compton scattering as
the most important processes can be obtained. The physics of
these processes is described in the comprehensive review article
by Blumenthal & Gould (1970), which we follow in the imple-
mentation of the radiation mechanisms within our model. The

target photon fields required as an input for IC scattering are
CMB, starlight, and infrared photons. While the uniform CMB
component is modelled as a black-body spectrum with an energy
density of 0.26 eV cm−3 and temperature of 2.7 K, the starlight
and infrared components can be adopted from the Galprop code
(Porter & Strong 2005). In order to derive a representative radia-
tion field composition for the baseline model, the Galprop fields
at the positions of all firmly identified PWNe were averaged, us-
ing the mean temperature and energy densities as input for the
respective black-body spectra. Following this set-up, the energy
densities of the starlight and infrared fields are 1.92 eV cm−3

and 1.19 eV cm−3, respectively. The temperatures at the spectral
peaks are 107 K for the infrared and 7906 K for the starlight field
component.

A.6. Results of the time-dependent modelling

In summary, the model takes the parameters listed in Table A.1.
The table contains two compilations of parameters: the first one
states the values used for the baseline model, which is depicted
as a black line throughout the population plots in this paper; the
second one gives the ranges of parameters we used to mimic
the intrinsic spread of the PWN properties. The PWN evolution
implied by our baseline model is listed in Table A.2.

The considerations that went into the choice of the model
parameters and ranges are the following:

– We want to mimic a typical PWN in a typical (dense spiral
arm) surrounding. For this reason, we do not give objects
like Vela X, 3C 58, or CTA 1 too much consideration in the
adjustment of the parameters. This can make the model differ
from the fit results, which take all objects into account.

– n: the braking index defines the slope of the pulsar trajectory
in Fig. 2, which has to be ∼3–4 to match the measured pul-
sar population. The theoretical expectation is that n = 3 if
the energy loss is dominated by magnetic dipole radiation,
whereas a spin-down dominated by gravitational radiation
leads to a longer energy release through n = 5 (e.g. Yue et al.
2007). By contrast, the few direct measurements of braking
indices presently available lie in the range of 0.9–2.8 (for a
compilation see Magalhaes et al. 2012), indicating a much
faster spin-down decay. In this study, we set it to the canoni-
cal n = 3.

– τ0, Ė0: these parameters define the starting point of the pulsar
trajectory on Fig. 2 and the total energy budget of the pulsar
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Table A.2. Evolution of a PWN in our baseline model.

Pulsar PWN
t τc Ė BPWN RPWN L1−10 TeV Γ

(kyr) (kyr) (1038 erg s−1) (µG) (pc) (1033 erg s−1)

0.10 0.60 1.39 × 1039 148 0.142 1.27 × 1035 2.08
0.14 0.63 1.23 × 1039 140 0.207 1.36 × 1035 2.11
0.19 0.69 1.05 × 1039 131 0.316 1.41 × 1035 2.14
0.26 0.76 8.63 × 1038 122 0.458 1.42 × 1035 2.17
0.36 0.85 6.78 × 1038 113 0.665 1.37 × 1035 2.19
0.49 0.99 5.07 × 1038 103 0.971 1.28 × 1035 2.22
0.67 1.17 3.61 × 1038 94.0 1.34 1.16 × 1035 2.25
0.92 1.42 2.44 × 1038 84.6 1.84 1.01 × 1035 2.28
1.27 1.77 1.58 × 1038 75.6 2.54 8.36 × 1034 2.30
1.74 2.24 9.82 × 1037 67.0 3.49 6.72 × 1034 2.31
2.40 2.89 5.89 × 1037 59.0 4.79 5.27 × 1034 2.32
3.29 3.79 3.44 × 1037 51.7 6.58 4.04 × 1034 2.33
4.52 5.02 1.96 × 1037 45.0 8.30 3.19 × 1034 2.35
6.21 6.71 1.10 × 1037 39.0 9.13 2.46 × 1034 2.38
8.53 9.03 6.05 × 1036 33.7 10.0 1.84 × 1034 2.39
11.7 12.2 3.30 × 1036 29.1 11.0 1.35 × 1034 2.39
16.1 16.6 1.79 × 1036 25.1 12.2 9.71 × 1033 2.38
22.1 22.6 9.63 × 1035 21.6 13.4 6.92 × 1033 2.35
30.4 30.9 5.16 × 1035 18.6 14.7 4.87 × 1033 2.32
41.8 42.2 2.76 × 1035 16.1 16.2 3.39 × 1033 2.29
57.4 57.9 1.47 × 1035 13.9 17.8 2.32 × 1033 2.25
78.8 79.3 7.84 × 1034 12.1 19.6 1.58 × 1033 2.21
108 109 4.17 × 1034 10.6 21.5 1.06 × 1033 2.17
149 149 2.21 × 1034 9.33 23.7 6.96 × 1032 2.14
204 205 1.17 × 1034 8.26 26.0 4.53 × 1032 2.11
281 281 6.23 × 1033 7.37 28.6 2.91 × 1032 2.08
386 386 3.30 × 1033 6.62 31.5 1.83 × 1032 2.05
530 530 1.75 × 1033 6.00 34.6 1.14 × 1032 2.03
728 728 9.29 × 1032 5.49 38.1 7.03 × 1031 2.00
1000 1000 4.92 × 1032 5.06 41.9 4.26 × 1031 1.98

Notes. t is the true age of the pulsar, τc its characteristic age, Ė its spin-down luminosity. BPWN is the magnetic field in the PWN, RPWN the PWN
radius, L1−10 TeV the TeV luminosity, and Γ the gamma-ray index between 1 and 10 TeV.

(see Appendix B and Fig. 2). With the chosen combination
and the canonical n = 3, the pulsar energy outflow evolves
along the path where ATNF pulsars are actually found and
starts with a total energy of Ė0τ0 = 3.1 × 1049 erg.

– B0: the initial B-field is chosen such that, using Eq. (A.14)
for its decay, Crab-like young PWNe have (present) fields
BPWN ∼ 100 µG, while older objects at some point arrive
at few tens of µG or less. This is consistent with the ranges
found in other modelling works, such as Torres et al. (2014)
and Zhang et al. (2008), in which this scale is set with the
goal of producing realistic X-ray luminosities.

– trs, R5: these parameters determine the dynamical evolution
and are set such that the PWN extension trajectory evolves
roughly through the middle of the firmly identified PWNe.
They also have strong influence on the surface brightness
plot Fig. 10 (left), which interlinks them with the luminos-
ity related parameters.

– BISM: set to the canonical 3 µG.
– η: the lepton efficiency can account for a substantial fraction

of energy going into magnetic fields or hadron acceleration,
neither of which we assume to be large. Hence, we set η = 1.

– α: set to 0.6 in order to satisfy the conservation of magnetic
flux.

– β: an injection index of 2 is a typical value found to lead
to good agreement with observed spectral indices here and
in other works. The variation we induce produces a realistic
variation of gamma-ray photon indices.

– Emin, Emax: these energy bounds mainly determine the ranges
of the synchrotron and IC photon spectra, and therefore also
the amount of photons produced specifically in the 1–10 TeV
band considered here. They are not constrained by our plots
beyond this efficiency variation they can provoke.

The parameter set of the baseline model was also used to con-
struct the spectral energy distributions (SEDs) shown in Fig. A.1.
These sample SEDs illustrate the time evolution of the radiative
output of a generic PWN according to the presented model.

The set of model curves in Fig. A.1 (left) traces the vari-
ous evolutionary stages of the energy flux at PWN ages rang-
ing between 0.5 kyr and 150 kyr, calculated in equidistant steps
on a logarithmic timescale. Even though both the synchrotron
and IC contributions obviously undergo significant development
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Fig. A.1. Modelled spectral energy distribution (SED) of a generic PWN with parameters according to baseline model given in Table A.1. See
Appendix A.7 for caveats of the SEDs. Left: time evolution of the SED, ranging from 1 kyr to 200 kyr. Right: decomposition of the SED of a
middle-aged PWN (10 kyr; black dashed curve) into contributions by leptons from various injection epochs (coloured lines). The grey-shaded
bands indicate the energy range of 1–10 TeV explored in this paper.

with increasing age of the system, the decline of the synchrotron
energy flux (due to its strong dependence on the decaying mag-
netic field strength) is more pronounced than that of the IC com-
ponent.

Figure A.1 (right) depicts the SED of a generic middle-aged
PWN decomposed into numerous contributions from individual
epochs. The dominance of the very youngest leptons in produc-
ing the synchrotron component (most notably the X-ray part) is
manifest in this plot. By contrast, accumulated leptons from var-
ious ages contribute to the IC radiation, in particular in the TeV
energy band.

A.7. Caveats

As already emphasised in Sect. 4.3 and Appendix A.2, the aim
of this model is to serve for the interpretation of the TeV data
we have. Spectral breaks, potential reverberation compressions,
and other aspects that cannot be judged with the present data
are therefore omitted on purpose. The multi-wavelength spectra
it predicts, though found in the right order of magnitude, may
therefore not be very accurate at energies other than the TeV
regime.

Another caveat to note is the correlation of parameters. We
vary only 7 of the 12 parameters (the target photon field could
additionally be regarded as a 13th parameter), but the variations
in the model can of course also be achieved by varying more
of the parameters by a smaller magnitude. A variation of Ė is
for instance indistinguishable, from the point of view of the TeV
properties, from a variation of lepton efficiency. So the variation
solution we found leads to a sensible range in predicted observ-
able ranges, but is not unique. Similarly, a correlation of two
parameters can mean that larger variations are possible, such as
in the example described in Sect. 4.3.

Appendix B: Derivation of basic formulae around
the relation of Ė and τc

Since the following relations are relatively fundamental to the
energy input evolution of PWNe, but still rather hard to find in
recent literature, we briefly want to wrap up what Eqs. (3)–(5)
and (A.2) are derived from.

As pointed out by Gunn & Ostriker (1969), the energy loss
rate of a rotating magnetic dipole depends on the angular veloc-
ity Ω as

Ė = −k′Ω4. (B.1)

Since the angular momentum loss rate is

J̇ =
Ė
Ω

= k′Ω3 (B.2)

it follows that the velocity loss rate is

Ω̇ =
J̇
I

= −k Ω3, (B.3)

where I is the neutron star moment of inertia. To generalise this
relation for the non-dipole case, the index 3 is replaced by the
braking index n,

Ω̇ =
J̇
I

= −kΩn, (B.4)

which turns Eq. (B.1) into

Ė = −k′Ωn+1. (B.5)

The general solution of the differential equation (Eq. (B.4)) can
be written as

Ω(t) = Ω0

(
1 +

t
τ0

)− 1
n−1

. (B.6)

Using Eq. (B.5), and P = 2π/Ω, and differentiating P one obtains

Ė(t) = Ė0

(
1 + t

τ0

)− n+1
n−1 (B.7)

P(t) = P0

(
1 + t

τ0

) 1
n−1 (B.8)

Ṗ(t) =
P0

τ0(n−1)

(
1 + t

τ0

)− n−2
n−1 . (B.9)

The canonical formulae to calculate Ė and τc from P and Ṗ then
yield

Ė(t) = 4π2I Ṗ(t)
P(t)3 =

4π2I
τ0 P2

0 (n − 1)

(
1 +

t
τ0

)− n+1
n−1

(B.10)

τc(t) ≡ P(t)
2Ṗ(t) =

n − 1
2

(t + τ0) (B.11)
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(cf. the notation in Gaensler & Slane 2006, Eqs. (5) and (6)).
Note that neither of these expressions relies on the dipole hy-
pothesis of n = 3. At the birth of the pulsar, t = 0, τc is
τ0 (n − 1)/2 and increases steadily.

For the relation of Ṗ and P, Eqs. (B.8) and (B.9) furthermore
imply

Ṗ(P) =
P0

τ0

1
n − 1

(
P
P0

)2−n

, (B.12)

which can be taken to discuss plausible braking indices directly
from Fig. 2 (right).

In order to see what happens if Ė is plotted against τc, one
has to resolve the dependency on t to arrive at

Ė(τc) = Ė0

(
2

n − 1
τc

τ0

)− n+1
n−1

. (B.13)

Clearly, the evolution curve of a pulsar on the Ė-τc diagram starts
at a point [τ0 (n − 1)/2, Ė0], which depends on τ0, n, and Ė0,
but the slope of the power law is only dictated by the braking
index n. This index is not predetermined to be 3 by the way τc is
constructed.

Assuming that Eq. (B.7) describes the energy outflow of the
pulsar throughout its lifetime, one can calculate the energy de-
posited up to a certain time as follows:

Edep(t) =

∫ t

0
Ė(t′)dt′ (B.14)

=
n − 1

2
Ė0 τ0 − Ė(t) τc(t). (B.15)

For t → ∞, Ė(t) τc(t) vanishes, so the first term represents the
total energy budget that is emitted and, using Eq. (B.7), can be
made equivalent to I Ω2

0/2, the total rotational energy of the pul-
sar. Unfortunately, n, Ė0, and τ0 are three unknown initial prop-
erties of the pulsar, so it cannot be measured. Unlike that, the
second term Ė τc, which represents the present budget of rota-
tional energy, can be calculated from the measured P and Ṗ. The
ordinary (low-aged) pulsar with the maximum present budget of
energy is PSR J0537−6910 in N 157B, with 7.6×1049 erg, which
is a lower limit to the maximal initial rotational energies that can
be reached.
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