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is presented, both to identify the expected standard model process and to search for flavour-

changing neutral current interactions. The data sample corresponds to an integrated lumi-

nosity of 19.7 fb−1 recorded by the CMS experiment at the LHC in proton-proton collisions

at
√
s = 8 TeV. Final states with three leptons (electrons or muons) and at least one jet are

investigated. An events yield compatible with tZq standard model production is observed,

and the corresponding cross section is measured to be σ(pp→ tZq→ `νb`+`−q) = 10+8
−7 fb

with a significance of 2.4 standard deviations. No presence of flavour-changing neutral

current production of tZq is observed. Exclusion limits at 95% confidence level on the

branching fractions of a top quark decaying to a Z boson and an up or a charm quark are

found to be B(t→ Zu) < 0.022% and B(t→ Zc) < 0.049%.
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1 Introduction

The top quark is the most massive particle in the standard model (SM) of particle physics.

Since its discovery in 1995 [1, 2], considerable advances have been made in understanding

its properties. At hadron colliders top quarks arise predominantly from the production

of top quark-antiquark (tt) pairs through the strong interaction. However, top quarks

may also be produced singly from electroweak processes through three different produc-

tion mechanisms. These are categorised by the virtuality of the W boson involved in the

interaction: t-channel, s-channel and associated tW production. At the CERN LHC, the

t- and tW channel production have been observed by the ATLAS and CMS Collaborations

and their cross sections have been measured at both 7 and 8 TeV, respectively [3–8]. The

ATLAS and CMS Collaborations have recently published results of searches for s-channel

single top quark production using 8 TeV data [9, 10]. The high integrated luminosity and

centre-of-mass energy at the LHC motivate the search for rare SM single top quark pro-

duction processes, such as the production of a single top quark in association with a Z

boson, where the top quark is produced via the t channel and the Z boson is either radi-

ated off one of the participating quarks or produced via W boson fusion (figure 1). These

production mechanisms, referred to here as tZq-SM production, lead to a signature with
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a single top quark, a Z boson, and an additional quark. The process is sensitive to the

coupling of the top quark to the Z boson, as illustrated in figure 1(middle-right). It is also

related to WZ boson production, as can be seen in figure 1(bottom-left). Thus, the obser-

vation of tZq production and the subsequent measurement of the production cross section

represent a test of the SM. The predicted tZq-SM production cross section for proton-

proton collisions at a centre-of-mass energy of 8 TeV, at next-to-leading order (NLO), is

σ(pp→ tZq) = 236+11
−4 (scale)± 11 (PDF) fb [11], where t denotes either a top quark or

antiquark. The first uncertainty is associated with the renormalisation and factorisation

scales used, and the second one is associated with the choice of parton distribution func-

tions (PDFs). The CTEQ6M set of PDFs [12] is used to determine the predicted cross

section. The cross section of the three-lepton final state, σ(pp → t`+`−q)B(t → `νb),

where ` denotes a charged lepton (electron, muon, or tau), is calculated to be

σ(pp→ t`+`−q)B(t→ `νb) = 8.2 fb

with a theoretical uncertainty of less than 10%. The calculation is made in the five-flavour

scheme, where b quarks are considered as coming from the interacting protons, with Mad-

Graph5 amc@nlo [13], using the NNPDF (version 2) PDF set [14]. This includes lepton

pairs from off-shell Z bosons with an invariant mass m`+`− > 50 GeV. This cross section is

used as a reference in this paper. The ATLAS and CMS Collaborations have published re-

sults searching for ttZ production, which is also sensitive to the coupling of the top quark to

the Z boson [15–18]. A production cross section of σ(pp→ ttZ) = 200+80
−70 (stat)+40

−30 (syst) fb

was measured by CMS at 8 TeV [16]. Within the SM, any flavour-changing neutral current

(FCNC) involving the top quark and the Z boson, referred to here as tZ-FCNC, is forbidden

at tree level and is suppressed at higher orders because of the GIM mechanism [19]. Some

SM extensions, such as R-parity violating supersymmetric models [20], top-colour assisted

technicolour models [21] and singlet quark models [22], predict enhancements of the FCNC

branching fraction, which could be as large as O(10−4) [23]. The production of a single

top quark in association with a Z boson is sensitive to both tZq and tgq anomalous cou-

plings [23–25] as shown in figures 2 and 3. Searches for FCNC in the top quark sector have

already been performed at the Fermilab Tevatron [26, 27] and at the LHC. The ATLAS Col-

laboration performed searches for anomalous tgq couplings [28] and the CMS Collaboration

performed searches for tγq anomalous couplings [29], while both the ATLAS and CMS Col-

laborations performed searches for tZq anomalous couplings [30, 31]. The most stringent

exclusion limit at 95% confidence level (CL) on the branching fraction B(t→ Zq), set by the

CMS Collaboration, excludes branching fractions greater than 0.05% [31]. In this paper,

two separate searches, using similar event selections and background estimates, are pre-

sented: a search for tZq-SM production and a search for tZ-FCNC production from anoma-

lous couplings. Both searches are performed using a data set of proton-proton collisions at

a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb−1. In

tZq-SM production, because the processes involved are based on t-channel single top quark

production, the signature consists of a single top quark, a Z boson, and an additional

jet preferentially emitted in the forward region of the detector (absolute pseudorapidity

|η| > 2.4). The search for tZ-FCNC is performed by combining the single top quark and tt
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Figure 1. Leading-order tZq production Feynman diagrams (all but bottom-right). The initial-

and final-state quarks denoted q and q′ are predominantly first generation quarks, although there

are smaller additional contributions from strange- and charm-initiated diagrams. The bottom-right

diagram represents the NLO nonresonant contribution to the tZq process.

production modes. The single top quark production leads to a signature containing a top

quark and a Z boson (single-top-quark-FCNC) with no extra jets from the matrix-element

calculation. For the tt production mode (tt-FCNC), the FCNC vertex appears in the decay

of the top quark, and leads to the same signature as for tZq-SM, but with the jet not asso-

ciated with the b quark being produced in the central region of the detector. Both searches

are performed in the trilepton final state, where both the W boson from the top quark and

the Z boson decay into either electrons or muons, resulting in four possible leptonic com-

binations in the final state: eee, µµµ, µµe, and eeµ. As they are not specifically excluded,

there is also a contribution from leptonic τ decays. The main sources of background to these

searches are tt production, single top quark production, diboson production, ttV (V = W or

Z) and Drell-Yan (DY) production. The tZq-SM production is a key irreducible background

to the FCNC search. The discrimination between signal and background is achieved using a
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Figure 2. Feynman diagrams for the production of tZ in tZ-FCNC channels.
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Figure 3. Feynman diagram for the production of tZq in the tt-FCNC channel.

boosted decision tree (BDT) and the nonprompt backgrounds are estimated from the data,

whereas other backgrounds are estimated from simulation using constraints from data.

2 Theoretical framework

The generation of the tZq-SM events is performed at NLO using the Mad-

Graph5 amc@nlo v5.1.3.30 generator [13]. For the tZ-FCNC production, the description

and generation of signal events follow the strategy detailed in ref. [25]. The generation is

achieved by describing the relevant interactions in terms of a set of effective operators that

are independent of the underlying theory. The searches are thus performed in a model-

independent way. The signature corresponding to the tZ-FCNC processes can be produced

both via strong tgq and weak tZq couplings, as illustrated in figure 2. The tt-FCNC pro-
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duction, where the anomalous coupling appears in the top quark decay, is presented in

figure 3. Both of these production modes can be incorporated into the SM Lagrangian L
using effective operators of dimensions 4 and 5 [25]:

L =
∑
q=u,c

[√
2gs

κtgq
Λ

t̄σµνTa(f
L
q PL + fRq PR)qGa

µν

+
g√
2cW

κtZq
Λ

t̄σµν(f̂Lq PL + f̂Rq PR)qZµν

+
g

4cW
ζtZqt̄γµ(f̄Lq PL + f̄Rq PR)qZµ

]
+ h.c.

(2.1)

The effects of new physics contributions are quantified through the dimensionless param-

eters κtgq, κtZq, and ζtZq together with the complex chiral parameters f L,R
q , f̂ L,R

q , and

f̄ L,R
q , which can be constrained as |fLq |2 + |fRq |2 = |f̂Lq |2 + |f̂Rq |2 = |f̄Lq |2 + |f̄Rq |2 = 1. The

energy scale at which these effects are assumed to be relevant is parametrised by Λ. The

two couplings to the gluon, κtgu/Λ and κtgc/Λ, relate to the diagrams shown at the top

of figure 2, while the four couplings to the Z boson, κtZu/Λ, ζtZu, κtZc/Λ, and ζtZc relate

to the diagrams shown at the bottom of figure 2. The anomalous couplings related to

the weak and strong sectors are assumed to be independent of each other, although inter-

ference is expected to occur between the κtZq/Λ and ζtZq contributions. The sensitivity

to the κtgq/Λ coupling is poor in comparison to other channels [28], while ζtZq couplings

lead to very small cross sections [25]. For these reasons we consider here only cases where

κtZq/Λ 6= 0, while setting ζtZq = 0 and κtgq/Λ = 0. Furthermore, the interference between

single top quark and tt-FCNC processes is neglected and the 4 fermion interactions are not

included in this analysis [32].

3 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon

pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL),

and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and

two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided

by the barrel and endcap detectors. Muons are measured in gas-ionisation detectors

embedded in the steel flux-return yoke outside the solenoid. The ECAL provides coverage

in pseudorapidity |η| < 1.48 in the barrel region and 1.48 < |η| < 3.0 in two endcap regions

(EE). A preshower detector consisting of two planes of silicon sensors interleaved with a

total of 3X0 of lead is located in front of the EE. The electron momenta are estimated

by combining energy measurements in the ECAL with momentum measurements in the

tracker [33]. The relative transverse momentum resolution for electrons with pT≈45 GeV

from Z → ee decays ranges from 1.7% in the barrel region to 4.5% in the endcaps [33].

The dielectron mass resolution for Z → ee decays when both electrons are in the ECAL

barrel is 1.9%, and is 2.9% when both electrons are in the endcaps. Muons are measured

in the range |η| < 2.4. Matching muons to tracks measured in the silicon tracker results
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in a relative pT resolution for muons with 20 < pT < 100 GeV of 1.3–2.0% in the barrel

and better than 6% in the endcaps. The pT resolution in the barrel is better than 10% for

muons with pT up to 1 TeV [34, 35]. Events of interest are selected using a two-tiered trig-

ger system [36]. The first level, composed of custom hardware processors, uses information

from the calorimeters and muon detectors to select events at a rate of around 100 kHz

within a time interval of less than 4 µs. The second level, known as the high-level trigger,

consists of a farm of processors running a version of the full event reconstruction software

optimised for fast processing, and reduces the event rate to less than 1 kHz before data

storage. A more detailed description of the CMS detector, together with a definition of

the coordinate system used and the relevant kinematic variables, can be found in ref. [37].

4 Monte Carlo simulation

Simulated tZq-SM and ttZ events are produced, at NLO, with the MadGraph5 amc@nlo

v5.1.3.30 generator [13], interfaced with pythia version 8.212 [38] for parton showering and

hadronisation. Several of the background processes considered in this analysis (tt and ttW

production, diboson production and Z boson production in association with multiple jets)

are produced at leading order (LO) using the MadGraph5 amc@nlo Monte Carlo (MC)

generator interfaced with pythia version 6.426 [39]. Single top quark background processes

(tW and t̄W) are simulated using the powheg v.1.0 r1380 generator [40–43], which is in-

terfaced to pythia version 8.212 for parton showering and hadronisation. The tZ-FCNC

events are generated at LO using the MadGraph5 amc@nlo generator interfaced with

pythia version 6.426. The κ Lagrangian terms presented in eq. (2.1) are implemented as

a new model in MadGraph5 amc@nlo by means of the FeynRules package [44] and of

the universal FeynRules output format [45]. The complex chiral parameters are fixed to

the following values: f̂Rq = 0 and f̂Lq = 1. All samples generated with powheg and Mad-

Graph5 amc@nlo use the CT10 [46] PDF set. The value of the top quark mass used in all

the simulated samples is mt = 172.5 GeV. All samples include W boson decays to τ leptons,

as well as to electrons and/or muons. The characterisation of the underlying event uses the

pythia Z2* tune [47, 48] for the MadGraph5 amc@nlo and powheg samples, and the

CUETP8M1 tune [48] for the tZq-SM sample. Additional samples of tZq-SM, tZ-FCNC,

ttV, and WZ are generated, varying the renormalisation and factorisation scales, for stud-

ies of systematic effects. For the ttV and WZ backgrounds, further samples are generated

varying the merging threshold in MadGraph5 amc@nlo. The expected cross sections are

obtained from next-to-next-to-leading-order calculations for tt̄ [49] and Z/γ∗ processes [50],

NLO plus next-to-next-to-leading-logarithmic calculations for single top quark production

in the tW or ttW channels [51], and NLO calculations for VV [52] and ttV [53, 54] processes.

For all samples of simulated events, multiple minimum-bias events generated with pythia

are added to simulate the presence of additional proton-proton interactions (pileup) from

the same bunch crossing or in neighbouring proton bunches. To refine the simulation, the

events are weighted to reproduce the distribution in the number of pileup vertices inferred

from data. Most generated samples contain full simulation of detector effects, using the
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Geant4 package [55], including simulation of the machine running conditions, while the

FCNC samples are processed using a fast simulation of the detector [56].

5 Event reconstruction and data selection

In the searches presented in this paper, the signal signature contains a Z boson and a top

quark, which both decay leptonically to either electrons or muons. Thus the final state for

both searches consists of three leptons (electrons and/or muons, including those coming

from tau decays), plus an escaping undetected neutrino that is inferred from an imbal-

ance in the transverse momentum. The signature also includes a bottom quark jet (b jet)

that arises from the hadronisation of the b quark produced in the top quark decay. In

the final state for tZq-SM production, or for tt-FCNC, there is an additional jet arising

from the hadronisation of a light or a charm quark. The data used in this analysis were

collected with the CMS detector during the 2012 proton-proton data taking period at a

centre-of-mass energy of 8 TeV. The data are selected online using triggers that rely on the

presence of two high-pT leptons, ee, eµ, or µµ. The highest-pT lepton is required to satisfy

pT > 17 GeV, while the second-highest-pT lepton must satisfy pT > 8 GeV. In addition, the

trigger selection requires loose lepton identification for both lepton flavours; electrons are

additionally required to pass online isolation requirements. The resulting trigger efficien-

cies are 99% for eee and eeµ, 98% for µµµ and 89% for µµe. For tZ-FCNC production, the

trigger acceptance is enhanced by using single-lepton and trilepton triggers with various pT
thresholds, resulting in a trigger efficiency close to 100%, after all selection cuts. The trig-

ger efficiency is obtained from data collected with an independent trigger selection based on

missing transverse momentum. The missing transverse momentum vector ~pmiss
T is defined

as the projection on the plane perpendicular to the beams of the negative vector sum of the

momenta of all reconstructed particles in an event. Its magnitude is referred to as miss-

ing transverse momentum, pmiss
T . A particle-flow event reconstruction algorithm [57, 58]

identifies each individual particle with an optimised combination of information from the

various elements of the CMS detector. The energy of the photons is directly obtained from

the ECAL measurement. The energy of the electrons is determined from a combination

of the electron momentum at the primary interaction vertex as determined by the tracker,

the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung

photons spatially compatible with originating from the electron track. The momentum of

the muons is obtained from the curvature of the corresponding track. The energy of the

charged hadrons is determined from a combination of their momentum measured in the

tracker and the matching ECAL and HCAL energy deposits. Finally, the energy of the neu-

tral hadrons is obtained from the corresponding corrected ECAL and HCAL deposits. The

tracks reconstructed in the silicon tracker are used to identify and construct a series of inter-

action vertices, which correspond to the pileup. For each vertex, the sum of the transverse

momenta squared of the associated tracks is calculated. The vertex whose sum is largest is

taken to be the event primary vertex, provided that it is reconstructed using four or more

tracks and that it lies within 24 cm of the nominal interaction point in the z direction and

within 2 cm in the transverse plane. Each event must contain exactly three electrons and/or
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muons, reconstructed by the particle-flow algorithm. Each lepton must have pT > 20 GeV

and |η| < 2.5 (electron) or |η| < 2.4 (muon) and must be isolated. Isolation is determined

by calculating the sum of pT of all the other reconstructed particles that lie within a cone of

fixed radius ∆R =
√

(∆η)2 + (∆φ)2 around the lepton, correcting for the expected contri-

bution from pileup [59] and dividing the corrected sum by the pT of the lepton. The result-

ing quantity is denoted Irel. For electrons, the cone size is set to ∆R = 0.3 and Irel must be

less than 0.15. For muons, the cone size is set to ∆R = 0.4 and Irel must be less than 0.12.

Events that contain additional leptons, satisfying the same kinematic selection but with re-

laxed lepton identification criteria, are rejected. Lepton isolation and identification efficien-

cies in simulation are corrected to match the ones measured in data using a tag-and-probe

method [60]. Two of the same-flavour leptons in each event are required to have opposite

electric charge, and have an invariant mass, m``, compatible with the Z boson mass, i.e.

76 < m`` < 106 GeV. In the eee and µµµ channels, the pair of oppositely charged leptons

having an invariant mass closest to the Z boson mass is used to form the Z boson candidate.

In the eeµ and µµe channels, the same-flavour leptons are used to form the Z boson candi-

date. For all channels, the third lepton is assumed to come from the decay of the W boson.

Jets are clustered from the particles reconstructed using the particle-flow algorithm with the

infrared and collinear safe anti-kT algorithm [61, 62], operated with a distance parameter R

= 0.5. Jet momentum is determined as the vectorial sum of all particle momenta in the jet,

and is found from simulation to be within 5 to 10% of the true particle-level jet momentum

over the whole pT spectrum and detector acceptance. An offset correction is applied to jet

energies to take into account the contribution from pileup interactions. Corrections for the

jet energy are derived from simulation, and are corrected with in situ measurements of the

energy balance in dijet and photon+jet events [63]. For the tZ-FCNC analysis, only jets

that satisfy pT > 30 GeV and |η| < 2.4 are used in the results presented here, while for the

tZq-SM analysis, the maximum allowed value of |η| is relaxed to 4.5 to improve the signal

acceptance, as for single top quark t-channel processes the extra light jet is mostly produced

in the forward region. Jets that are reconstructed close to a selected lepton (∆R < 0.5) are

removed. Jets that originate from the hadronisation of a b quark are identified (tagged)

using the combined secondary vertex algorithm [64]. This algorithm combines various

track-based variables with vertex-based variables to construct a discriminating observable

in the region |η| < 2.4. The discriminant is used to distinguish between b jets and non-b

jets. For the results presented here, the so-called loose operating point is used. This corre-

sponds to a b tagging efficiency of about 85% and a misidentification probability of 10% for

light-flavour or gluon jets, as estimated from QCD multijet simulations. The value of the

b tagging discriminant is also used in the multivariate discriminator. Corrections to the b

tagging discriminant shape have been determined using tt and multijet control samples, and

are then applied to the signal and background data sets [64]. In the search for tZq-SM pro-

duction, two or more selected jets are required, one or more of which must also satisfy the b

tagging requirements. In the search for tZ-FCNC production, two different signal selections

are considered. In a first selection, denoted as single-top-quark-FCNC selection, exactly

one selected jet is required, which has to pass the b tagging requirement. A second selection

(tt-FCNC selection) asks for at least two selected jets with at least one passing the b tag-

– 8 –
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SM signal SM control FCNC signal FCNC signal FCNC control

tZq WZ single-top-quark tt WZ

>2 jets, |η|<4.5 1 or 2 jets, |η|<4.5 1 jet, |η|<2.4 > 2 jets, |η|<2.4 1 or 2 jets, |η|<2.4

> 1 b tag 0 b tag 1 b tag > 1 b tag 0 b tag

mW
T > 10 GeV mW

T > 10 GeV mW
T > 10 GeV

pmiss
T > 40 GeV pmiss

T > 40 GeV

Table 1. The event selections for the signal and control regions for the SM and FCNC analyses.

Process Control Region Signal Region

ttZ 1.76±0.18 10.91±0.44

ZZ 10.64±0.03 1.58±0.01

WZ+h.f. 104.73±1.32 34.34±0.76

WZ 426.92±2.67 58.00±0.98

DY 192.95±13.89 49.24±7.02

tZq 5.89±0.03 16.05±0.04

Total prediction 743 ±18 170 ±9

Data 763 154

Table 2. The number of events remaining for each process, after all selections have been applied, in

the control and signal regions for the tZq-SM shape analysis. WZ+h.f. denotes WZ + heavy flavour.

ging requirement. The selections result in a signal-enriched sample, with either single-top-

quark-FCNC or tt-FCNC events. To further reject backgrounds, two additional selections

are made on the missing transverse momentum and the transverse mass of the W boson,

mW
T . These selections are applied to the signal regions only and are optimised to maximise

the expected significance. The optimisation is made for the tZq-SM and tZ-FCNC signals

separately. For the tZq-SM analysis, mW
T > 10 GeV is required while for the tZ-FCNC anal-

ysis we require pmiss
T > 40 GeV and mW

T > 10 GeV. These selections define the signal regions

for the analyses. In addition to the signal region, a background-enriched control region is

defined by requiring one or two selected jets, but vetoing events containing a b-tagged jet,

in order to increase the DY and WZ content. The event selections for the control and signal

regions are presented in table 1, while the number of events remaining for each process,

after all selections have been applied is shown in table 2 for the tZq-SM shape analysis.

6 Analysis method

In order to enhance the separation between signal and background processes, a multivariate

discriminator is used in both the tZq-SM and FCNC searches. The discriminator is based

on the BDT algorithm [65] implemented in the standard toolkit for multivariate analysis

TMVA [66]. A range of different quantities are used as input variables for the BDTs. They

are selected based on their discriminating power and include kinematic variables related

to the top quark and the Z boson, such as pT, pseudorapidity, and charge asymmetry

q` |η|, where q and η are the charge and η of the lepton from the W decay, as well as jet
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Figure 4. Data-to-prediction comparisons after performing the fit for mW
T distribution in the control

region (left) and for the BDTtZq-SM responses in the signal region (right). The four lepton channels

are combined. The lower panels show the ratio between observed and predicted yields, including

the total uncertainty on the prediction.

properties, particularly those related to b tagging or the pseudorapidity of the recoiling

jet. The BDTs are trained using half of the simulated samples for these processes and

they are trained separately for each channel. The output discriminant distribution is then

fitted, in the signal region, for each channel, to determine whether there are any signal

events present in the data. The second half of the simulated samples are used to test that

overtraining did not occur. For the SM search, the BDTtZq-SM is used to discriminate

between the tZq-SM signal and the dominating ttZ and WZ background processes.

The BDTtZq-SM distribution is fitted, together with the mW
T distribution in the control

region. The results of the fits are presented in figure 4 for the four channels combined.

For the FCNC searches, the BDTtZ-FCNC and BDTtt-FCNC are used to discriminate

FCNC processes from the SM background processes. The BDTtZ-FCNC, and BDTtt-FCNC,

distributions are fitted, together with the mW
T distribution in the control region. The

results of the fits are presented in figure 5 for the four channels combined. A number

of different background processes are considered. These include tt, single top quark,

diboson, ttV, and DY production. The contamination from W+jets events involves two

nonprompt leptons and is found to be negligible. Diboson production is dominated by the

WZ sample, which is split into two parts: the production of WZ events in association with

light jets, or in association with heavy-flavour jets. The ZZ production contributes with a

small number of background events. While the cross section of WW production is slightly

higher than ZZ production, a nonprompt lepton would have to be selected to replicate

the signal, making its contribution to the background negligible. The tt SM and the DY

backgrounds populate the signal region if they contain a reconstructed nonprompt lepton

that passes the lepton identification and isolation selections; as the nonprompt lepton rates

are not well modelled by the simulation, these backgrounds are estimated from data. The

mW
T distribution is used as a discriminator in the background-enriched region to estimate

the backgrounds related to nonprompt leptons, as well as the dominant WZ background.

Both the shape and normalisation of the other backgrounds are estimated from simulation.
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Figure 5. Data-to-prediction comparisons for the tZ-FCNC search after performing the fit for

mW
T distribution in the control region (top-left), and for the BDT responses in the single top quark

(BDTtZ-FCNC) (top-right), and tt (BDTtt-FCNC) (bottom), signal regions. An example of the pre-

dicted signal contribution for a value B(t→ Zu) = 0.1% (FCNC) is shown for illustration. The four

channels are combined. The lower panels show the ratio between observed and predicted yields,

including the total uncertainty on the prediction.

The normalisation of the nonprompt lepton and WZ background is estimated by fitting

the mW
T distribution. The mW

T distribution peaks around the W mass for a lepton and pmiss
T

from a W boson decay, while for nonprompt lepton backgrounds it peaks close to zero and

falls rapidly. This difference in shape allows a simultaneous estimation of the nonprompt

lepton and the WZ backgrounds to be made. In the eeµ and µµe final states, the same-

flavour opposite-sign leptons are assumed to come from the Z boson, hence the remaining

lepton (third lepton) is assumed to come from the W boson and is used to compute the

transverse mass. For the eee and µµµ final states, both opposite sign combinations are

considered. The normalised mW
T distributions (templates) for events containing a non-

prompt lepton are obtained by inverting the isolation criteria on the third lepton. The

resulting event sample is expected to be dominated by DY events, although a small num-

ber of tt events are expected. The signal is extracted by performing a simultaneous binned

maximum-likelihood fit to the distributions of the signal samples and the background-

enriched control region, using the two different discriminators. The background-enriched

control region helps to constrain the backgrounds in the signal sample by means of nui-
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Figure 6. Data-to-prediction comparisons in the background-enriched samples, after applying

background normalisation scaling factors as described in the text, of the pT of the lepton from the

W boson (top-left), pmiss
T (top-right), and m`` (bottom). The four channels are combined. The

lower panels show the ratio between observed and predicted yields, including the total uncertainty

on the prediction. The distributions shown here are for the tZ-FCNC search, where WZ + h.f.

denotes WZ + heavy flavour.

sance parameters. A common fit is performed simultaneously for the four different final

states (eee, eeµ, µµe, and µµµ). In order to validate the fit procedure, an additional fit

is performed in the background-enriched region only and the background normalisations

are extracted from this fit. These normalisations are used to compare the data to the pre-

dictions as shown in figure 6. Reasonable agreement in normalisation and shape between

data and predictions is found, validating the background model.

7 Systematic uncertainties

Different sources of systematic uncertainty are considered. They can affect the number of

events passing the selection, the shape of the BDT response, or both.

• Luminosity measurement: the integrated luminosity measurement is extracted

using the pixel cluster counting method [67], with the corresponding uncertainty

being ±2.6%.
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• Pileup estimation: the uncertainty in the average expected number of additional

interactions per bunch crossing is ±5%.

• Lepton trigger, reconstruction, and identification efficiency: to ensure that

the efficiency of the dilepton triggers observed in data is properly reproduced, a set

of data-to-simulation corrections is applied to all simulated events; likewise, an addi-

tional set of corrections (pT- and η- dependent) is used to ensure that the efficiency for

reconstructing and identifying leptons observed in the data is correctly reproduced in

the simulation. The corrections are varied by their corresponding uncertainties, which

amounts to about 4% per event for the trigger selection and 2% per event for the lep-

ton selection. For the tZ-FCNC production the trigger selection is extended, which

increases the acceptance and in turn leads to a reduction in the trigger uncertainty.

• Jet energy scale (JES), jet energy resolution (JER), and missing trans-

verse momentum: in all simulated events, all the reconstructed jet four-momenta

are simultaneously varied by the uncertainties associated with the jet energy scale

and resolution. Changing the jet momenta in this fashion causes a corresponding

change in the total momentum in the transverse plane, thus affecting pmiss
T as well.

The contribution to pmiss
T that is not from particles identified as leptons or photons,

or that are not clustered into jets is varied by ±10% [68].

• b tagging: the b tagging and misidentification efficiencies are estimated using

control samples [69]. The resulting corrections are applied to all simulated samples

to ensure that they reproduce the efficiencies in data. The corrections are varied by

±1 standard deviation (σ).

• Background normalisation: the normalisation of the nonprompt lepton and WZ

background processes are estimated from data while performing the final fit. The

normalisation uncertainties in the backgrounds estimated from simulation are taken

as 30%. The WZ + jets sample is split into two parts: WZ + light-flavour jets and

WZ + heavy-flavour (b and c) jets. The normalisations of these two backgrounds,

which are treated separately, are left free in the fit.

• Z boson pT: uncertainty coming from the Z boson pT reweighting is accounted for

by not applying, or applying twice, the reweighting.

• Physics process modelling: the renormalisation and factorisation scales used in

the WZ, tZq-SM and tZ-FCNC signal simulation, as well as for the ttZ simulated

samples, are multiplied or divided by a factor of two, and the corresponding variations

are considered as shape systematic uncertainties. The procedure used in pythia to

match the partons in the matrix-element calculation with those in the parton show-

ering includes a number of scale thresholds. These are varied in the simulated WZ

sample and the resulting variation is taken as the associated systematic uncertainty.

• PDFs: the nominal PDF sets used for the analyses described in this paper are

quoted in section 4. In order to compute the corresponding uncertainty, simulated
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events are reweighted by using the eigenvalues associated to each PDF set. The

corresponding variations are summed in quadrature and the results are compared

with the nominal prediction. Uncertainties estimated from different PDF sets are

also compared and the largest uncertainty is taken.

• Simulated sample size: the statistical uncertainty arising from the limited size

of the simulated samples is taken as a source of systematic uncertainty using the

“Barlow-Beeston light” method [70].

The systematic sources, variation and type (shape/normalisation) are summarised in ta-

ble 3. For a given source of systematic uncertainty there is 100% correlation between the 4

channels, except for the lepton misidentification where the µµµ and eeµ channels are 100%

correlated and the µµe and eee channels are 100% correlated, due to the isolation inversion

of the lepton candidate from the W decay.

8 Results

The fit is performed on the BDT discriminant distributions in the signal samples, and on

the mW
T distributions in the background-enriched sample, for each of the four final states

(eee, eeµ, µµe, and µµµ). This is implemented using the Theta program [71], with most of

the systematic uncertainties treated as nuisance parameters. Prior to fitting, the templates

for each background process are scaled to correspond to the predicted SM cross section,

including all relevant corrections, and the integrated luminosity of the data sample used

for the analysis. The systematic uncertainties discussed in section 7 are included in the

fit. For each source of systematic uncertainty, u, a nuisance parameter, θu, is introduced.

Systematic uncertainties can affect the rate of events and/or the shape of the template

distribution. The data are used to constrain the nuisance parameters for all systematic

uncertainties except for those related to the physics process modelling and PDF parameters.

The significance is calculated using a Bayesian technique.

8.1 Search for tZq-SM production

By performing a simultaneous fit on the mW
T distribution in the background-enriched sam-

ple and on the BDT outputs in the signal region, the number of events in excess of the

background-only hypothesis is determined. This excess can then be compared to the SM

expectation for tZq production in order to measure the cross section. The efficiency times

acceptance for the BDT-based analysis is 0.10 for the inclusive cross section. The mea-

sured cross sections for the individual channels and the channels combined are shown in

table 4. The combined measured signal tZq cross section is found to be 10+8
−7 fb and is

consistent with the SM prediction of 8.2 fb with a theoretical uncertainty of less than 10%.

For illustration, the data-to-prediction comparisons, including the post-fit uncertainties,

are presented in figure 7 for the |η| distribution of the leading jet not originating from the

top quark decay (ηJ′) in the control region and in the signal region. The corresponding

observed and expected significances are 2.4 and 1.8 standard deviations, respectively, with

the expected significance having a one standard deviation range of [0.4–2.7] at 68% CL. The
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Systematic source Variation Type

Z+jets, tt ±30% norm.

Muon misidentification floating in the fit norm.

Electron misidentification floating in the fit norm.

Z pT ±1σ shape

WZ+l jets norm. floating in the fit norm.

WZ+l jets matching ±1σ shape

WZ+l jets scale Q2×4, Q2/4 shape

WZ+hf jets norm. floating in the fit norm.

WZ+hf jets matching ±1σ shape

WZ+hf jets scale Q2×4, Q2/4 shape

tZq ±30% norm.

tZq scale Q2×4, Q2/4 norm.+shape

ZZ ±30% norm.

Single top ±30% norm.

ttV ±30% norm.

Trigger ±1σ norm.

Lepton selection ±1% norm.+shape

JES ±1σ(pT, η) norm.+shape

JER ±1σ(pT, η) norm.+shape

Uncertainty pmiss
T ±10% norm.+shape

b tagging ±1σ(pT, η) norm.+shape

Pileup ±1σ norm.+shape

PDF ±1σ norm.+shape

tZ-FCNC scale Q2×4, Q2/4 norm.+shape

Luminosity ±2.6% norm.

Table 3. The systematic sources, variation and type, which represent how the uncertainty is treated

in the likelihood fit.

Channel Cross section (fb)

eee 0+9

eeµ 11+13
−10

µµe 24+19
−16

µµµ 5+9
−5

Combined fit 10+8
−7

Table 4. The measured cross sections, together with their total uncertainties, for the individual

channels and the channels combined for the BDT-based analysis.

observed signal exclusion limit on the tZq cross section is 21 fb at 95% CL. As a cross-check,

the search for tZq-SM is also performed using a counting experiment. The main differences
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Figure 7. Data-to-prediction comparisons after performing the fit for the |η| distribution of the

recoiling jet in the control region (left), and the signal region (right). The four lepton channels are

combined. The lower panels show the ratio between observed and predicted yields, including the

total uncertainty on the prediction.

Channel Cross section (fb)

eee 29+32
−24(stat)+8

−7 (syst)

eeµ 6+23
−6 (stat)+4

−3 (syst)

µµe 19+24
−18(stat)±5(syst)

µµµ 20+19
−15(stat)+4

−3 (syst)

Combined fit 18+11
−9 (stat)±4(syst)

Table 5. The measured cross sections for the individual channels and the channels combined for

the counting analysis.

in the event selection compared to the BDT-based analysis are a tighter electron isolation

requirement, Irel < 0.1, and a tighter m`` selection 78 < m`` < 102 GeV. For this analysis,

the WZ background is estimated by counting the number of events in a region enriched in

WZ events, defined by inverting the b tagging requirements. Contamination of other sub-

dominant processes is subtracted using the prediction of the simulation and a systematic

uncertainty is estimated by varying their yields according to their respective uncertainties.

Additional systematic uncertainties due to the WZ modelling are accounted for by con-

sidering renormalisation and factorisation scale variations as well as matching threshold

variations. For the cross-check analysis the total expected number of events is 15.4± 0.5,

dominated by ttZ events (5.2± 0.3) and WZ events (3.6± 0.2). The contribution from ZZ,

tt, and DY events is 2.7± 0.3, and the contribution from ttW events is 0.5± 0.02. The ex-

pected number of signal events is 3.4±0.1. A total of 20 events passing all signal selections

are observed in the data. The efficiency times acceptance for the counting experiment is

0.021 for the inclusive cross section. The measured cross sections for each channel, and

the combination of channels, is calculated using the RooStats package [72]. The results

obtained are shown in table 5. The cross section is measured to be 18+11
−9 (stat)±4(syst) fb,

in agreement with the SM prediction and with the BDT-based result. The corresponding
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Figure 8. The expected and observed exclusion limits at 95% CL on B(t → Zc) as a function of

the limits on B(t→ Zu). The expected 68% CL is also shown.

Branching fraction Expected 68% CL range 95% CL range Observed

B(t→ Zu) (%) 0.027 0.018–0.042 0.014–0.065 0.022

B(t→ Zc) (%) 0.118 0.071–0.222 0.049–0.484 0.049

Table 6. Expected and observed 95% exclusion limits on the branching fraction of the tZ-FCNC

couplings.

signal significance is observed to be 1.8 standard deviations, while the expected significance

is 0.8 standard deviations, with a 68% CL range of [0 –1.59].

8.2 Search for tZ-FCNC production

To search for tZ-FCNC interactions, the single-top-quark-FCNC, tt-FCNC and

background-enriched samples are combined in a single fit. The result of the fit is con-

sistent with the SM-only hypothesis. Exclusion limits at 95% CL for tZ-FCNC are calcu-

lated by performing simultaneously the fit in the single-top-quark-FCNC-, tt-FCNC-, and

WZ-enriched regions. The limits are calculated for different combinations of tZu and tZc

anomalous couplings, as shown in figure 8. The independent exclusion limits are sum-

marised in table 6 where the branching fraction of the coupling not under consideration is

assumed to be zero. A more stringent limit is observed on the tZu couplings compared to

the tZc couplings as a result of the larger cross section for tZ-FCNC in the tZu channel.

The limits are B(t→ Zu) < 0.022% and B(t→ Zc) < 0.049%, which improve the previous

limits set by the CMS Collaboration [31] by about a factor of two.

9 Summary

A search for the associated production of a top quark and a Z boson, as predicted

by the standard model was performed with the full CMS data set collected at 8 TeV,

corresponding to an integrated luminosity of 19.7 fb−1. An events yield compatible
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with tZq standard model production is observed, and the corresponding cross section

is measured to be 10+8
−7 fb. The corresponding observed and expected significances are

2.4 and 1.8 standard deviations, respectively. A search for tZ production produced via

flavour-changing neutral current interactions, either in single-top-quark or tt production

modes, was also performed. For this search the standard model tZq process was considered

as a background. No evidence for tZ-FCNC interactions is found, and limits at 95%

confidence level are set on the branching fraction for the decay of a top quark into a Z

boson and a quark. The limits are B(t → Zu) < 0.022% and B(t → Zc) < 0.049%, which

improve the previous limits set by the CMS Collaboration by about a factor of two.
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Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium für Bildung

und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher

Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece;

the National Scientific Research Foundation, and National Innovation Office, Hungary; the

Department of Atomic Energy and the Department of Science and Technology, India; the

Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Founda-

tion, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT

and Future Planning, and National Research Foundation (NRF), Republic of Korea; the

Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya

(Malaysia); the Mexican Funding Agencies (BUAP, CINVESTAV, CONACYT, LNS, SEP,

and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand;

the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education

– 18 –



J
H
E
P
0
7
(
2
0
1
7
)
0
0
3

and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia,

Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federa-

tion, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy

of Sciences, the Russian Foundation for Basic Research and the Russian Competitiveness

Program of NRNU ?MEPhI?; the Ministry of Education, Science and Technological De-
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[39] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].

[40] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG

method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].

[41] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO

calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043

[arXiv:1002.2581] [INSPIRE].

[42] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in

POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010)

011] [arXiv:0907.4076] [INSPIRE].

[43] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower

simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

[44] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a

complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250

[arXiv:1310.1921] [INSPIRE].

[45] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the

Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040]

[INSPIRE].

[46] M. Guzzi, P. Nadolsky, E. Berger, H.-L. Lai, F. Olness and C.P. Yuan, CT10 parton

distributions and other developments in the global QCD analysis, arXiv:1101.0561

[INSPIRE].

[47] CMS collaboration, Study of the underlying event at forward rapidity in pp collisions at√
s = 0.9, 2.76 and 7 TeV, JHEP 04 (2013) 072 [arXiv:1302.2394] [INSPIRE].

[48] CMS collaboration, Event generator tunes obtained from underlying event and multiparton

scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE].

[49] M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section

at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].

[50] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through

O(α2
s), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].

[51] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production

with a W− or H−, Phys. Rev. D 82 (2010) 054018 [arXiv:1005.4451] [INSPIRE].

[52] J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP

07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

– 22 –

https://doi.org/10.1088/1748-0221/8/11/P11002
https://arxiv.org/abs/1306.6905
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6905
https://doi.org/10.1088/1748-0221/12/01/P01020
https://arxiv.org/abs/1609.02366
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.02366
https://doi.org/10.1088/1748-0221/3/08/S08004
https://inspirehep.net/search?p=find+J+%22JINST,3,S08004%22
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3012
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175
https://doi.org/10.1140/epjc/s10052-011-1547-z
https://arxiv.org/abs/1009.2450
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2450
https://doi.org/10.1007/JHEP06(2010)043
https://arxiv.org/abs/1002.2581
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2581
https://doi.org/10.1088/1126-6708/2009/09/111
https://arxiv.org/abs/0907.4076
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4076
https://doi.org/10.1088/1126-6708/2007/11/070
https://arxiv.org/abs/0709.2092
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2092
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1921
https://doi.org/10.1016/j.cpc.2012.01.022
https://arxiv.org/abs/1108.2040
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2040
https://arxiv.org/abs/1101.0561
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0561
https://doi.org/10.1007/JHEP04(2013)072
https://arxiv.org/abs/1302.2394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.2394
https://doi.org/10.1140/epjc/s10052-016-3988-x
https://arxiv.org/abs/1512.00815
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00815
https://doi.org/10.1016/j.cpc.2014.06.021
https://arxiv.org/abs/1112.5675
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5675
https://doi.org/10.1103/PhysRevD.74.114017
https://arxiv.org/abs/hep-ph/0609070
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0609070
https://doi.org/10.1103/PhysRevD.82.054018
https://arxiv.org/abs/1005.4451
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4451
https://doi.org/10.1007/JHEP07(2011)018
https://doi.org/10.1007/JHEP07(2011)018
https://arxiv.org/abs/1105.0020
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0020


J
H
E
P
0
7
(
2
0
1
7
)
0
0
3

[53] J.M. Campbell and R.K. Ellis, tt̄W± production and decay at NLO, JHEP 07 (2012) 052

[arXiv:1204.5678] [INSPIRE].

[54] M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, tt̄W± and tt̄Z
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CNRS-IN2P3

J.-L. Agram13, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert,

N. Chanon, C. Collard, E. Conte13, X. Coubez, J.-C. Fontaine13, D. Gelé, U. Goerlach,
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CNRS/IN2P3, Strasbourg, France

4: Also at Universidade Estadual de Campinas, Campinas, Brazil

5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
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