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Abstract. The description of nuclei starting from the constituent nucleons and the

realistic interactions among them has been a long-standing goal in nuclear physics. In

addition to the complex nature of the nuclear forces, with two-, three- and possibly

higher many-nucleon components, one faces the quantum-mechanical many-nucleon

problem governed by an interplay between bound and continuum states. In recent

years, significant progress has been made in ab initio nuclear structure and reaction

calculations based on input from QCD-employing Hamiltonians constructed within

chiral effective field theory. After a brief overview of the field, we focus on ab initio

many-body approaches - built upon the No-Core Shell Model - that are capable of

simultaneously describing both bound and scattering nuclear states, and present results

for resonances in light nuclei, reactions important for astrophysics and fusion research.

In particular, we review recent calculations of resonances in the 6He halo nucleus,

of five- and six-nucleon scattering, and an investigation of the role of chiral three-

nucleon interactions in the structure of 9Be. Further, we discuss applications to the
7Be(p, γ)8B radiative capture. Finally, we highlight our efforts to describe transfer

reactions including the 3H(d, n)4He fusion.

1. Introduction

Understanding the structure and the dynamics of nuclei as many-body systems of

protons and neutrons interacting through the strong (as well as electromagnetic and

weak) forces is one of the central goals of nuclear physics. One of the major reasons why

this goal has yet to be accomplished lies in the complex nature of the strong nuclear force,

emerging form the underlying theory of Quantum Chromodynamics (QCD). At the low

energies relevant to the structure and dynamics of nuclei, QCD is non-perturbative and

very difficult to solve. The relevant degrees of freedom for nuclei are nucleons, i.e.,

protons and neutrons, that are not fundamental particles but rather complex objects
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made of quarks, antiquarks and gluons. Consequently, the strong interactions among

nucleons is only an “effective” interaction emerging non-perturbatively from QCD. Our

knowledge of the nucleon-nucleon (NN) interactions is limited at present to models. The

most advanced and most fundamental of these models rely on a low-energy effective field

theory (EFT) of the QCD, chiral EFT [1]. This theory is built on the symmetries of

QCD, most notably the approximate chiral symmetry. However, it is not renormalizable

and has an infinite number of terms. Chiral EFT involves unknown parameters, low-

energy constants (LECs) fitted to experimental data. It predicts higher-body forces,

in particular a three-nucleon (3N) interaction that plays an important role in nuclear

structure and dynamics.

Ab initio calculations in nuclear physics start from the fundamental forces among

nucleons, typically the chiral EFT interactions, and aim at predicting the properties of

nuclei. This is a very challenging task because of the complex nature of nuclear forces and

because of our limited knowledge of these forces. The high-level strategy is to solve the

non-relativistic many-nucleon Schrödinger equation with the inter-nucleon interactions

as the only input. This can be done exactly for the lightest nuclei (A=3, 4) [2–5].

However, using new methods and well-controlled approximations, ab initio calculations

have recently progressed tremendously and become applicable to nuclei as heavy as

nickel and beyond.

This progress has been in particular quite dramatic concerning the description of

bound-state properties of light and medium mass nuclei. For light nuclei, the Green’s

Function Monte Carlo Method (GFMC) [6–12] has been applied up to A ≤ 12. The No-

Core Shell Model (NCSM) [13–16] with its importance-truncated extension [17, 18] up

to oxygen isotopes [19]. Other NCSM extensions, e.g., symmetry-adapted NCSM [20]

and no-core Monte-Carlo shell model [21] under active development. Very recently,

methods such as the Coupled Cluster (CCM) [22–31], the Self-Consistent Green’s

Function (SCGF) [32] and its Gorkov generalization [33], the newly developed In-

Medium Similarity Renormalization Group (IM-SRG) method [19, 34–37] achieved high

accuracy and predictive power for nuclei up to the calcium region with a full capability

to use chiral NN+3N interactions. Further, there has been progress in Monte Carlo

methods such as the Nuclear Lattice EFT [38, 39] as well as the Auxiliary-Field Monte

Carlo (AFDMC) method and the GFMC that are now also able to use chiral EFT

NN+3N interactions [40, 41].

As to the inclusion of continuum degrees of freedom, for A=3, 4 systems there are

several successful exact methods, e.g., the Faddeev [42], Faddeev-Yakubovsky [43, 44],

Alt-Grassberger and Sandhas (AGS) [45, 46], and Hyperspherical Harmonics (HH) [47,

48] methods. For A > 4 nuclei, concerning calculations of nuclear resonance properties,

scattering and reactions, there has been less activity and the No-Core Shell Model with

Resonating-Group Method (NCSM/RGM) [49, 50] and in particular the No-Core Shell

Model with Continuum (NCSMC) method [51, 52] highlighted in this paper are cutting

edge approaches. Still the field is rapidly evolving also in this area. The GFMC was

applied to calculate n−4He scattering [41, 53], the Nuclear Lattice EFT calculations
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were applied to the 4He-4He scattering [54], and the p−40Ca scattering was calculated

within the CCM with the Gamow basis [55]. The CCM with the Gamow basis was

also used to investigate resonances in 17F [23] and in oxygen isotopes [56]. Further, the

ab initio Gamow NCSM with a capability to calculate resonance properties is under

development [57, 58].

Let us stress that a predictive ab initio theory of nuclear structure and nuclear

reactions is needed for many reasons:

(i) Nuclear structure plays an important role in many precision experiments testing

fundamental symmetries and physics beyond the Standard Model. Examples include the

determination of the Vud matrix element of the Cabbibo-Kobayashi-Maskawa matrix and

its unitarity tests, the conserved vector current hypothesis tests, neutrino oscillations

experiments, neutrino-less double beta decay experiments, searches for right-handed,

scalar and other currents not present in the Standard Model. Realistic nuclear structure

is of great importance here and ab initio nuclear theory of light and medium mass nuclei

can provide a significant help.

(ii) A predictive nuclear theory would greatly help our understanding of nuclear

reactions important for astrophysics. Typically, capture, transfer or other reactions

take place in the Cosmos at energies much lower than those accessible by experiments.

A well-known example is provided by the triple-alpha and 12C(α, γ)16O radiative capture

reactions. The ratio of the thermonuclear reaction yields for these two processes

determines the carbon-to-oxygen ratio at the end of helium burning with important

consequences for the production of all species made in subsequent burning stages in

the stars. At stellar energies (≈ 300 keV) radiative capture rates are too small to be

measured in the laboratory. Thus, measurements are performed at higher energies (see,

e.g., the recent experiment of Ref. [59]) and extrapolations to the low energy of interest

using theory are unavoidable. Theoretical extrapolation are, however, challenging due

to the influence of several resonances. A fundamental theory would be of great use here.

(iii) Ab initio theory of medium mass nuclei helps to shed light on the shell evolution

of the neutron rich nuclei that impact our understanding of the r-process and the

equation of state [60, 61].

(iv) Low-energy fusion reactions represent the primary energy-generation

mechanism in stars, and could potentially be used for future energy generation on

Earth. Examples of these latter reactions include the 3H(d, n)4He fusion used at the

international project ITER in France and at the National Ignition Facility in the USA.

Even though there have been many experimental investigations of the cross section

of this reaction, there are still open issues. A first-principles theory will provide

the predictive power to reduce the uncertainty, e.g., in the reaction rate at very low

temperatures; in the dependence on the polarization induced by the strong magnetic

fields.

(v) Nuclear reactions are one of the best tools for studying exotic nuclei, which have

become the focus of the new generation experiments with rare-isotope beams. These are

nuclei for which most low-lying states are unbound, so that a rigorous analysis requires
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scattering boundary conditions. In addition, much of the information we have on the

structure of these short-lived systems is inferred from reactions with other nuclei. A

predictive ab initio theory will help to interpret and motivate experiments with exotic

nuclei.

In addition to all of the above, an accurate many-body theory for light and medium

mass nuclei provides a feedback about the quality of the inter-nucleon interactions, e.g.,

those derived from the QCD-based chiral EFT, used in the calculations and ultimately

helps to improve our knowledge of the NN interactions, and in particular of the still-

not-completely-understood 3N interactions.

In this paper, we focus on an ab initio description of both bound and unbound

nuclear states in a unified framework. In particular, we discuss in detail the

NCSM/RGM [49, 50] and the very recent NCSMC [51, 52].

Our approach to the description of light nuclei is based on combining the ab initio

NCSM [15, 16] and the Resonating-Group Method (RGM) [62–66] into new many-body

approaches (the first version called ab initio NCSM/RGM) [49, 50] capable of treating

bound and scattering states in a unified formalism, starting from fundamental inter-

nucleon interactions. The NCSM is an ab initio approach to the microscopic calculation

of ground and low-lying excited states of light nuclei. The RGM is a microscopic cluster

technique based on the use of A-nucleon Hamiltonians, with fully anti-symmetric many-

body wave functions using the assumption that the nucleons are grouped into clusters.

Although most of its applications are based on the use of binary-cluster wave functions,

the RGM can be formulated for three (and, in principle, even more) clusters in relative

motion [63]. The use of the harmonic oscillator (HO) basis in the NCSM results in an

incorrect description of the wave function asymptotics (for bound states due to technical

limitations on the size of the HO expansion) and a lack of coupling to the continuum.

By combining the NCSM with the RGM, we complement the ability of the RGM to deal

with scattering and reactions with the use of realistic interactions, and a consistent ab

initio description of nucleon clusters, achieved via the NCSM.

The state-of-the-art version of this approach is the NCSMC [51, 52]. It is based on

an expansion of the A-nucleon wave function consisting of a square-integrable NCSM

part and an NCSM/RGM cluster part with the proper asymptotic behaviour. In this

way, the NCSM description of short- and medium-range many-nucleon correlations is

combined with the NCSM/RGM description of clustering and long-range correlations.

This approach treats bound and unbound states on the same footing and provides

a superior convergence compared to both the NCSM and the NCSM/RGM. Using

the NCSMC method we can predict not only the bound ground- and excited-state

observables of light nuclei, but also resonances and cross sections of nuclear reactions

as well as electromagnetic and weak transitions among bound and unbound states.

In Sec. 2, we present the formalism of the binary-cluster as well as the three-body

cluster NCSM/RGM, of the binary-cluster NCSMC, and introduce the formalism for the

calculation of electric dipole transitions in the NCSMC. In Sec. 3, we discuss NCSMC

results for A=5, 6 nuclei and for 9Be with the chiral EFT NN+3N interactions. In
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Sec. 4, we show the application of the three-body cluster NCSM/RGM to the description

of the Borromean halo nucleus 6He. In Sec. 5, we review our first application of

the NCSM/RGM formalism to a reaction important for astrophysics, the 7Be(p, γ)8B

radiative capture. In Sec. 6, we discuss our past as well as new results for the 3H(d, n)4He

fusion. Finally, we give conclusions and an outlook in Sec. 7.

2. Unified ab initio description of bound and scattering states

As mentioned in the Introduction, ab initio many-body approaches making use of

expansions on square-integrable basis functions have been quite successful in explaining

the properties of many well-bound systems. At the same time, microscopic cluster

approaches, in which the wave function is represented by the continuous motion of

two or more clusters, are naturally adapted to the description of clustering, scattering

and reaction observables. In general, both approaches, taken separately, tend to have

significant limitations owing to the fact that in most practical calculations one must

severely restrict the number of basis states in the trial function. In this section, we

discuss how these seemingly very different views can be combined into a unified approach

to structure and reactions, particularly in the context of ab initio calculations. To build

such a unified theory we start from an accurate microscopic Hamiltonian, described in

Sec. 2.1. We then make use of the similarity renormalization group (SRG) approach [67–

69] to soften this Hamiltonian, as described in Sec. 2.2. The NCSM approach we use

to obtain the square-integrable eigenstates is briefly outlined in Sec. 2.3. A unified

description of structure and dynamics can be achieved by means of the RGM, discussed

in Secs. 2.4 and 2.5, but is more efficiently obtained working within the NCSMC,

presented in 2.6.

2.1. Hamiltonian

Ab initio approaches start from the microscopic Hamiltonian for the A-nucleon system

Ĥ = T̂int + V̂ (1)

composed of the intrinsic kinetic energy operator T̂int and the nuclear interaction V̂ =

V̂ NN + V̂ 3N + . . . , which describes the strong and electro-magnetic interaction among

nucleons. The interaction V̂ generally consist of realistic NN and 3N contributions that

accurately reproduce few-nucleon properties, but in principle can also contain higher

many-nucleon contributions. More specifically, the Hamiltonian can be written as

Ĥ =
1

A

A∑
i<j=1

(~̂pi − ~̂pj)2

2m
+

A∑
i<j=1

V̂ NN
ij +

A∑
i<j<k=1

V̂ 3N
ijk + . . . , (2)

where m is the nucleon mass and ~pi the momentum of the ith nucleon. The

electro-magnetic interaction is typically described by the Coulomb force, while the

determination of the strong interaction poses a tremendous challenge.
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Figure 1. Hierarchy of nuclear forces in chiral EFT [77]: The interaction diagrams
up to N3LO arranged by the particle rank of the interaction. Dashed lines
represent pions and the solid lines nucleons. Small dots, large solid dots, solid
squares and open squares denote vertices at increasing expansion orders. Figure
from Ref. [77].

According to the Standard Model, the strong interaction between nucleons is

described by QCD with quarks and gluons as fundamental degrees of freedom. However,

the nuclear structure phenomena we are focusing on are dominated by low energies

and QCD becomes non-perturbative in this regime, which so far impedes a direct

derivation of the nuclear interaction from the underlying theory. Inspired by basic

symmetries of the Hamiltonian and the meson-exchange theory proposed by Yukawa [70],

phenomenological high-precision NN interactions, such as the Argonne V18 [71] and

CD-Bonn [72] potentials, have been developed. These interactions provide an accurate

description of NN systems, but sizeable discrepancies are observed in nuclear structure

applications to heavier nuclei [11, 73, 74]. This indicates the importance of many-

nucleon interactions beyond the two-body level and reveal the necessity for a consistent

scheme to construct the nuclear interactions. Thus, Weinberg formulated an effective

theory for the low-energy regime using nucleons and pions as explicit degrees of

freedom [75]. The chiral EFT [1, 76] uses a low-energy expansion illustrated in Fig. 1

in terms of (Q/Λχ)ν that allows for a systematic improvement of the potential by an

increase of the chiral order ν. Here Q relates to the nucleon momentum/pion mass and

Λχ corresponds to the break down scale of the chiral expansion that is typically on the

order of 1 GeV. Moreover, the chiral expansion provides a hierarchy of NN, 3N, and

many-nucleon interactions in a consistent scheme [78–81]. Since the chiral expansion
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is only valid at low energies it is necessary to suppress high-momentum contributions

beyond a certain cutoff Λcut by introducing a regularization. There are different possible

choices for the regulator function and the cutoff, which determine the regularization

scheme. The commonly used chiral NN interaction in nuclear structure and reaction

physics is constructed by Entem and Machleidt at next-to-next-to-next-to leading order

(N3LO) using a cutoff Λcut = 500 MeV [82]. The low-energy constants (LECs) of this

potential are fitted to the πN scattering as well as neutron-proton (np) and proton-

proton (pp) data below 290 MeV. The accuracy of the description of NN systems is

comparable to the mentioned phenomenological high-precision interactions [82]. This

NN potential is generally supplemented by local 3N contributions at next-to next-to

leading order (N2LO) using a three-body cutoff Λcut,3N of 500 MeV [83] or 400 MeV [84],

depending on the mass region. The 3N contributions at N2LO consist of a two-pion

exchange term, a one-pion exchange two-nucleon contact term and a three-nucleon

contact term (see Fig. 1). The LECs in the two-pion exchange term c1, c3, and c4

already appear for the first time in the NN force and are fitted to NN data, while the

LECs cD and cE of the contact contributions appear for the first time and are fitted to the

triton beta-decay half life and the A = 3 or A = 4-body ground-state energies [85, 86].

This interaction is extensively studied in nuclear structure and reaction physics and

constitutes the starting point for the majority of the investigations in this review. It is

important to note that the rapid developments in the construction of chiral interactions

in recent years not only exploit different regularizations and fit procedures [40, 87–90],

but extend the accessible contributions to higher chiral orders [91, 92]. The chiral

interactions are currently optimized using advanced numerical techniques, showing

promising results for applications to heavier nuclei beyond the p shell [89, 90]. Moreover,

the LENPIC collaboration [93] provides consistent interactions for a sequence of cutoffs

constructed order by order up to N4LO in combination with a prescription to determine

propagated uncertainties of nuclear observables resulting from the interaction [92].

These developments will enhance the predictive power of ab initio calculations and

allow to determine theoretical uncertainties in the future.

2.2. Similarity renormalization group method

Chiral interactions are already rather soft compared to phenomenological high-precision

interactions such as the Argonne V18 [71] and CD-Bonn [72] owing to the regularization

that suppresses high-momentum contributions, as described in Sec. 2.1. Nevertheless,

most many-body methods cannot achieve convergence in feasible model spaces due

to present short-range and tensor correlation induced by the chiral interactions.

Therefore, additional transformations, such as the unitary correlation operator method

(UCOM) [94], the Vlow k renormalization group method [95–97] or the Okubo-Lee-Suzuki

similarity transformation [98, 99] are used to soften the interactions. The most successful

transformation approach in nuclear structure physics is the SRG [67–69] that is presented

in the following. This transformation provides a model-space and nucleus independent
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softened interaction and allows for consistent unitary transformations of the NN and

3N components of the interaction.

The basic concept of the SRG is the first-order differential operator equation

d

ds
Ĥs =

[
η̂s, Ĥs

]
, (3)

that defines the continuous unitary transformation Ĥs = Û †s Ĥ Ûs, where the unitary

operator Ûs depends on the continuous flow-parameter s. In this flow equation Ĥs

denotes the SRG evolved Hamiltonian depending on the flow parameter s and the anti-

Hermitian dynamic generator

η̂s = −Û †s
d

ds
Ûs = −η̂†s . (4)

The canonical choice for the generator (used in the majority of nuclear structure and

reaction applications) is the commutator of the kinetic energy with the Hamiltonian,

i.e.,

η̂s =
(

2
µ

~2

)2 [
T̂int, Ĥs

]
, (5)

where µ is the reduced nucleon mass and T̂int constitutes the trivial fix point of the

flow of the Hamiltonian, such that the high- and low-momentum contributions of the

interaction decouple. For this generator choice it is reasonable to associate the flow

parameter with a momentum scale, using the relation Λ = s−(1/4) as often done in the

literature [100, 101].

When aiming at observables other than binding and excitation energies it is formally

necessary to transform the corresponding operators Ôs = Û †s Ô Ûs, which can be

achieved by evaluating Ûs directly or by solving the flow equation

d

ds
Ôs =

[
η̂s, Ôs

]
. (6)

Because the dynamic generator contains the evolved Hamiltonian, the flow equations

for the operator Ôs and the Hamiltonian Ĥs need to be evolved simultaneously. We

refer to Ref. [102, 103] for recent applications and stress that there is work in progress

to perform SRG transformations of observables.

It is important to note that equation (3) is an operator relation in the A-body

Hilbert space. Due to the repeated multiplication of the operators on the right hand

side of the flow equation, irreducible many-body contributions beyond the initial particle

rank of the Hamiltonian are induced. Generally, contributions beyond the three-body

level cannot be considered. This limitation causes one of the most challenging problems

in context of the SRG transformation, since the unitarity is formally violated. Thus, it

is necessary to confirm the invariance of physical observables under the transformation.

In practice a variation of the flow-parameter Λ is used as an diagnostic tool to access

the impact of omitted many-body contributions. Moreover, to probe the induced and

initial 3N contributions individually one exploits three types of Hamiltonians.
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The NN-only Hamiltonian is obtained from an initial NN interaction performing

the SRG at the two-body level and does not contain any three- or higher many-body

contributions.

The NN+3N-ind Hamiltonian is obtained from an initial NN interaction performing

the SRG at the two- and three-body level such that the induced 3N contributions are

included.

The NN+3N-full or simply NN+3N Hamiltonian is obtained from an initial

NN+3N interaction performing the SRG at the two- and three-body level. This

Hamiltonian contains the complete set of NN and 3N contributions.

For practical applications the flow equation (3) is represented in a basis and the

resulting first-order coupled differential equations are solved numerically. Due to the

simplicity of the evolution the SRG can be implemented in the three-body space and even

beyond. The most efficient formulation for the SRG evolution with regard to descriptions

of finite nuclei is performed in the Jacobi HO representation [100, 104, 105] using a

subsequent Talmi-Moshinsky transformation [106] to the particle representation that is

utilized by the many-body approaches, see Ref. [86] for a detailed explanation. There

are also implementations of the three-body SRG evolution performed in other basis

representations, such as the partial-wave decomposed momentum-Jacobi basis [107]

and the hyperspherical momentum basis [108]. However, so far only the SRG in the

HO basis has been used to provide reliably evolved 3N interactions and operators for

nuclear structure calculations beyond the lightest nuclei.

It has been shown that the two-pion exchange part of the 3N interaction induces

irreducible contributions beyond the three-body level that become sizeable in the mid-p

shell [86]. As a consequence alternative formulations of the dynamic generator have been

explored to avoid induced many-body contributions from the outset [109]. In addition, it

has been observed that a reduction of the 3N cutoff from 500 MeV to 400 MeV strongly

suppresses the impact of induced many-body contributions [86] and allows for reliable

applications beyond p- and sd-shell nuclei.

2.3. Square-integrable eigenstates of clusters and the compound nucleus

Expansions on square integrable many-body states are among the most common

techniques for the description of the static properties of nuclei. The ab initio NCSM is

one of such techniques. Nuclei are considered as systems of A non-relativistic point-like

nucleons interacting through realistic inter-nucleon interactions discussed in Section 2.1.

All nucleons are active degrees of freedom. Translational invariance as well as angular

momentum and parity of the system under consideration are conserved. The many-

body wave function is cast into an expansion over a complete set of antisymmetric A-

nucleon HO basis states containing up to Nmax HO excitations above the lowest possible

configuration:

|ΨJπT
A 〉 =

Nmax∑
N=0

∑
i

cJ
πT
Ni |ANiJπT 〉 . (7)
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Here, N denotes the total number of HO excitations of all nucleons above the minimum

configuration, JπT are the total angular momentum, parity and isospin, and i additional

quantum numbers. The sum over N is restricted by parity to either an even or odd

sequence. The basis is further characterized by the frequency Ω of the HO well and

may depend on either Jacobi relative [110] or single-particle coordinates [14]. In the

former case, the wave function does not contain the center of mass (c.m.) motion, but

antisymmetrization is complicated. In the latter case, antisymmetrization is trivially

achieved using Slater determinants, but the c.m. degrees of freedom are included in the

basis. The HO basis within the Nmax truncation is the only possible one that allows

an exact factorization of the c.m. motion for the eigenstates, even when working with

single-particle coordinates and Slater determinants. Calculations performed with the

two alternative coordinate choices are completely equivalent.

Square-integrable energy eigenstates expanded over the Nmax~Ω basis, |ANiJπT 〉,
are obtained by diagonalizing the intrinsic Hamiltonian,

Ĥ|AλJπT 〉 = EJπT
λ |AλJπT 〉 , (8)

with Ĥ given by Eq. (1) and λ labeling eigenstates with identical JπT . Convergence

of the HO expansion with increasing Nmax values is accelerated by the use of effective

interactions derived from the underlying potential model through either Lee-Suzuki

similarity transformations in the NCSM space [13, 14, 111] or SRG transformations in

momentum space [68, 94, 100, 101, 104, 112] discussed in detail in Section 2.2. In this

latter case, the NCSM calculations are variational. Because of the renormalization of

the Hamiltonian, the many-body wave function obtained in the NCSM (as well as in

the NCSM/RGM and the NCSMC) are in general renormalized as well. This fact is

in particular important to keep in mind when using low SRG parameters, i.e., Λ / 2

fm−1. Finally, we note that with the HO basis sizes typically used (Nmax∼10−14), the

NCSM |AλJπT 〉 eigenstates lack correct asymptotic behavior for weakly-bound states

and always have incorrect asymptotic behavior for resonances.

2.4. Binary-cluster NCSM/RGM

A description of bound and scattering states within a unified framework can

already be achieved by adopting a simplified form of |ΨJπT
A 〉, limited to expansions

on microscopic cluster states chosen according to physical intuition and energetic

arguments. Expansions on binary-cluster states,

|ΦJπT
νr 〉 =

[(
|A− aα1I

π1
1 T1〉 |aα2I

π2
2 T2〉

)(sT )
Y` (r̂A−a,a)

](JπT ) δ(r − rA−a,a)
rrA−a,a

, (9)

are the most common, allowing to describe processes in which both entrance and exit

channels are characterized by the interaction of two nuclear fragments.

The above translational invariant cluster basis states describe two nuclei (a target

and a projectile composed of A−a and a nucleons, respectively), whose centers of mass
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are separated by the relative displacement vector ~rA−a,a. The translational-invariant

(antisymmetric) wave functions of the two nuclei, |A− aα1I
π1

1 T1〉 and |aα2I
π2
2 T2〉,

are eigenstates of the (A − a)- and a-nucleon intrinsic Hamiltonians, with angular

momentum Ii, parity πi, isospin Ti and energy labels αi, where i = 1, 2. The system

is further characterized by a 2s+1`J partial wave of relative motion, where s is the

channel spin resulting from the coupling of the total clusters’ angular momenta, `

is the relative orbital angular momentum, and J is the total angular momentum of

the system. Additional quantum numbers characterizing the basis states are parity

π = π1π2(−1)` and total isospin T resulting from the coupling of the clusters’ isospins.

In the notation of Eq. (9), all relevant quantum numbers are summarized by the index

ν = {A− aα1I
π1
1 T1; aα2I

π2
2 T2; s`}.

However, to be used as a continuous basis set to expand the many-body

wave function, the channel states (9) have to be first antisymmetrized with respect

to exchanges of nucleons pertaining to different clusters, which are otherwise

unaccounted for. This can be accomplished by introducing an appropriate inter-cluster

antisymmetrizer, schematically

Âν =

√
(A− a)!a!

A!

(
1 +

∑
P 6=id

(−)pP

)
, (10)

where the sum runs over all possible permutations of nucleons P (different from the

identical one) that can be carried out between two different clusters (of A − a and a

nucleons, respectively), and p is the number of interchanges characterizing them. The

operator (10) is labeled by the channel index ν to signify that its form depends on the

mass partition, (A− a, a), of the channel state to which is applied.

Equations (9) and (10) lead to the RGM ansatz for the many-body wave function,

|ΨJπT
A 〉 =

∑
ν

∫
dr r2 Âν |ΦJπT

νr 〉
γJ

πT
ν (r)

r
, (11)

where γJ
πT

ν (r) represent continuous linear variational amplitudes that are determined

by solving the RGM equations:∑
ν′

∫
dr′r′ 2

[
HJπT
νν′ (r, r′)− EN JπT

νν′ (r, r′)
] γJπTν′ (r′)

r′
= 0. (12)

Here E is the total energy in the c.m. frame, and N JπT
νν′ (r, r′) and HJπT

νν′ (r, r′), commonly

referred to as integration kernels, are respectively the overlap (or norm) and Hamiltonian

matrix elements over the antisymmetrized basis (9), i.e.

N JπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′
∣∣ Âν′Âν ∣∣ΦJπT

νr

〉
, HJπT

ν′ν (r′, r) =
〈
ΦJπT
ν′r′
∣∣ Âν′ĤÂν ∣∣ΦJπT

νr

〉
. (13)

In the above equation, Ĥ is the microscopic A−nucleon Hamiltonian of Eq. (2), which

can be conveniently separated into the intrinsic Hamiltonians for the (A − a)- and a-

nucleon systems, respectively Ĥ(A−a) and Ĥ(a), plus the relative motion Hamiltonian

Ĥ = T̂rel(r) + ˆ̄VC(r) + V̂rel + Ĥ(A−a) + Ĥ(a) . (14)
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Here, T̂rel(r) is the relative kinetic energy between the two clusters, ˆ̄VC(r) = Z1νZ2νe
2/r

(Z1ν and Z2ν being the charge numbers of the clusters in channel ν) the average

Coulomb interaction between pairs of clusters, and Vrel is a localized relative (inter-

cluster) potential given by:

V̂rel =
A−a∑
i=1

A∑
j=A−a+1

V̂ NN
ij +

A−a∑
i<j=1

A∑
k=A−a+1

V̂ 3N
ijk +

A−a∑
i=1

A∑
j<k=A−a+1

V̂ 3N
ijk − ˆ̄VC(r) . (15)

Besides the nuclear components of the interactions between nucleons belonging to

different clusters, it is important to notice that the overall contribution to the relative

potential (15) coming from the Coulomb interaction,

A−a∑
i=1

A∑
j=A−a+1

(
e2(1 + τ zi )(1 + τ zj )

4|~ri − ~rj|
− 1

(A− a)a
ˆ̄VC(r)

)
, (16)

is also localized, presenting an r−2 behavior, as the distance r between the two clusters

increases.

The calculation of the many-body matrix elements of Eq. (13), which contain all the

nuclear structure and antisymmetrization properties of the system under consideration,

represents the main task in performing RGM calculations. In the following we will

review the various steps required for one of such calculations when the eigenstates of

the target and the projectile are obtained within the ab initio NCSM (see Sec. 2.3).

This is the approach known as NCSM/RGM.

2.4.1. NCSM/RGM norm and Hamiltonian kernels When representing the target and

projectile eigenstates by means of NCSM wave functions, it is convenient to introduce

RGM cluster states in HO space (with frequency Ω identical to that used for the clusters)

defined by

|ΦJπT
νn 〉 =

[(
|A− aα1I

π1
1 T1〉 |aα2I

π2
2 T2〉

)(sT )
Y` (η̂A−a)

](JπT )

Rn`(rA−a,a) . (17)

The coordinate-space channel states of Eq. (9) can then be written as |ΦJπT
νr 〉 =∑

nRn`(r)|ΦJπT
νn 〉 by making use of the closure properties of the HO radial wave

functions. Following Eqs. (10) and (14), it is also useful to factorize the norm and

Hamiltonian kernels into “full-space” and “localized” components

N JπT
ν′ν (r′, r) = δν′ν

δ(r′ − r)
r′r

+N ex
ν′ν(r

′, r) , (18)

and

HJπT
ν′ν (r′, r) =

[
T̂rel(r

′) + ˆ̄VC(r′) + E
I′1T
′
1

α′1
+ E

I′2T
′
2

α′2

]
N JπT
ν′ν (r′, r) + VJπTν′ν (r′, r) , (19)
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where the exchange part of the norm, N ex
ν′ν(r

′, r), and the potential kernel, VJπTν′ν (r′, r),

(both localized quantities) are obtained in an HO model space of size Nmax consistent

with those used for the two clusters as:

N ex
ν′ν(r

′, r) =
∑
n′n

Rn′`′(r
′)Rn`(r)×


〈
ΦJπT
ν′n′
∣∣∑

P 6=id(−)pP̂
∣∣ΦJπT

νn

〉
if a′ = a

〈
ΦJπT
ν′n′
∣∣√ A!

(A−a′)!a′!Âν
∣∣ΦJπT

νn

〉
if a′ 6= a

(20)

and

VJπTν′ν (r′, r) =
∑
n′n

Rn′`′(r
′)Rn`(r)

〈
ΦJπT
ν′r′
∣∣√ A!

(A−a′)!a′!VrelÂν
∣∣ΦJπT

νr

〉
. (21)

We note that in deriving the above expressions we took advantage of the commutation

between antisymmetrizers (10) and A-nucleon Hamiltonian (2), [Âν , H]=0, and used

the following relationship dictated by symmetry considerations:

Âν′Âν |ΦJπT
νn 〉 =

√
A!

(A−a′)!a′!Âν |Φ
JπT
νn 〉 . (22)

Finally, while it can be easily demonstrated that the exchange part of the norm kernel

is Hermitian, i.e.,〈
ΦJπT
ν′n′
∣∣√ A!

(A−a′)!a′!Âν
∣∣ΦJπT

νn

〉
=
〈
ΦJπT
ν′n′
∣∣ Âν′√ A!

(A−a)!a!

∣∣ΦJπT
νn

〉
, (23)

the same is not true for the Hamiltonian kernel as defined in Eq. (19), once its localized

components are expanded within a finite basis. Therefore, we work with an Hermitized

Hamiltonian kernel H̃JπT
ν′ν given by

H̃JπT
ν′ν (r′, r)=

〈
ΦJπT
ν′r′
∣∣ 1

2

(
Âν′Ĥ

√
A!

(A−a)!a!
+
√

A!
(A−a′)!a′!ĤÂν

) ∣∣ΦJπT
νr

〉
. (24)

Being translationally-invariant quantities, the Hamiltonian and norm ker-

nels (20,21) can be “naturally” derived working within a translationally invariant Jacobi-

coordinate HO basis [50]. However, particularly for the purpose of calculating reac-

tions involving p-shell nuclei, it is computationally advantageous to use the second-

quantization formalism. This can be accomplished by defining Slater-determinant (SD)

channel states

|ΦJπT
νn 〉SD =

[(
|A− aα1I1T1〉SD |aα2I2T2〉

)(sT )
Y`(R̂

(a)
c.m.)

](JπT )

Rn`(R
(a)) , (25)

in which the eigenstates of the (A−a)-nucleon fragment are obtained in a HO SD basis as

|ΦJπT
νn 〉SD = |ΦJπT

νn 〉ϕ00(~R(A−a)) (while the second cluster is a NCSM Jacobi-coordinate

eigenstate [113]), with ~R(A−a) = (A − a)−1/2
∑(A−a)

i=1 ~ri and ~R(a) = a−1/2
∑A

i=A−a+1 ~ri
being the vectors proportional to the center of mass coordinates of the (A − a)- and

a-nucleon clusters, respectively. Indeed, it is easy to demonstrate that translationally
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invariant matrix elements can be extracted from those computed in the SD basis of

Eq. (25) by inverting the following expression:

SD

〈
ΦJπT
ν′n′
∣∣ Ôt.i.

∣∣ΦJπT
νn

〉
SD =

∑
n′r`′r,nr`r,Jr

〈
ΦJπrr T
ν′rn′r

∣∣∣ Ôt.i.

∣∣∣ΦJπrr T
νrnr

〉
×
∑
NL

ˆ̀̀̂ ′Ĵ2
r (−1)(s+`−s′−`′)

{
s `r Jr
L J `

}{
s′ `′r Jr
L J `′

}

× 〈nr`rNL`|00n``〉 a
A−a
〈n′r`′rNL`|00n′`′`′〉 a

A−a
. (26)

Here Ôt.i. represents any scalar, parity-conserving and translationally-invariant operator

(Ôt.i. = Âν , ĤÂν , etc.), 〈nr`rNL`|00n``〉 a
A−a

, 〈n′r`′rNL`|00n′`′`′〉 a
A−a

are general HO

brackets for two particles with mass ratio a/(A− a) [114] and the notation ˆ̀ stands for√
2`+ 1.

2.4.2. Algebraic expressions for the (A−1, 1) mass partition To give an example of the

algebraic expressions for the SD matrix elements on the left-hand-side of Eq. (26) here

we consider the case in which the projectile in both initial and final states is a single

nucleon (a′ = a = 1). The antisymmetrization operator for (A − 1, 1) mass partitions

can be written as

Âν ≡ Â(A−1,1) =
1√
A

[
1−

A−1∑
i=1

P̂iA

]
, (27)

where P̂iA is a permutation operator exchanging nucleon A (the projectile) with the

i-th nucleon of the target. Using the second-quantization formalism, the SD matrix

elements of the exchange-part of the norm kernel (20) for a single-nucleon projectile

can be related to linear combinations of matrix elements of creation and annihilation

operators between (A− 1)-nucleon SD states as [50]

SD〈ΦJπT
ν′ n′ |

∑
P 6=id

(−)pP̂ |ΦJπT
ν n 〉SD = −(A− 1) SD〈ΦJπT

ν′ n′ |P̂A−1,A|ΦJπT
ν n 〉SD

= −
∑
jj′Kτ

ŝŝ′ĵĵ′K̂τ̂(−1)I
′
1+j′+J(−1)T1+ 1

2
+T (28)

×

{
I1

1
2
s

` J j

}{
I ′1

1
2
s′

`′ J j′

}{
I1K I ′1

j′ J j

}{
T1 τ T

′
1

1
2
T 1

2

}

× SD〈A− 1α′I ′1T
′
1|||(a

†
n`j 1

2

ãn′`′j′ 1
2
)(Kτ)|||A− 1αI1T1〉SD .

In deriving this expression we took advantage of the symmetry properties of the (A−1)-

nucleon target, and introduced one-body density matrix elements of the target nucleus,

SD〈A−1α′I ′1T
′
1|||(a

†
n`j 1

2

ãn′`′j′ 1
2
)(Kτ)|||A−1αI1T1〉SD (reduced both in angular momentum

and isospin), where ãn′`′j′m′ 1
2
m′t

= (−1)j
′−m′+ 1

2
−m′t an′`′j′−m′ 1

2
−m′t .
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(a) (b) (c)

Figure 2. Diagrammatic representation of (a and b) “direct” and (c) “exchange”

components of the potential kernel for the (A − 1, 1) cluster basis. The first group of

circled lines represents the first cluster, the bound state of A−1 nucleons. The separate

line represents the second cluster, in the specific case a single nucleon. Bottom and

upper part of the diagrams represent initial and final states, respectively.

The derivation of the analogous matrix elements (21) for the NN and 3N potentials,

although more involved, is straightforward. It can be demonstrated that the NN

potential kernel for the same (A − 1, 1) partition in both initial and final states

(a′ = a = 1) takes the form [50]

SD〈ΦJπT
ν′ n′|
√
A V̂NNrel Â(A−1,1)|ΦJπT

ν n 〉SD = (A− 1) SD〈ΦJπT
ν′ n′|V̂A−1,A(1− P̂A−1,A)|ΦJπT

ν n 〉SD

(29)

− (A− 1)(A− 2) SD〈ΦJπT
ν′ n′|P̂A−1,AV̂A−2,A−1|ΦJπT

ν n 〉SD ,

where in the first and second lines, respectively, on the right-hand-side of Eq. (29)

one can identify a “direct” and an “exchange” term of the interaction, schematically

represented by the diagrams of Fig. 2. The SD matrix elements of the direct term of

the potential involve operations on the projectile and one of the nucleons of the target

(including a trivial exchange of the interacting nucleons shown in Fig. 2 (b)) and are

(b)(a) (c)

Figure 3. Diagrammatic representation of the components of the direct (a and b)

and exchange components of the 3N potential kernel for the same (A− 1, 1) partition

in both initial and final states (a′ = a = 1). The groups of circled lines represent the

(A− 1)-nucleon cluster. Bottom and upper part of the diagrams represent initial and

final states, respectively.
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given by

SD〈ΦJπT
ν′ n′|V̂A−1,A(1− P̂A−1,A)|ΦJπT

ν n 〉SD

= 1
(A−1)

∑
jj′Kτ

∑
nalaja

∑
nblbjb

∑
J0T0

ŝŝ′ĵĵ′K̂τ̂ Ĵ2
0 T̂

2
0 (−1)I

′
1+j′+J(−1)T1−

1
2

+T

{
I1

1
2
s

` J j

}{
I ′1

1
2
s′

`′ J j′

}

×

{
I1K I ′1

j′ J j

}{
jb jaK

j′ j J0

}{
T1 τ T

′
1

1
2
T 1

2

}{
τ 1

2
1
2

T0
1
2

1
2

}√
1 + δ(nalaja),(n′`′j′)

√
1 + δ(nblbjb),(n`j)

× 〈(nalaja
1

2
)(n′`′j′

1

2
)J0T0|V |(n`j

1

2
)(nblbjb

1

2
)J0T0〉

× SD〈A− 1α′I ′1T
′
1|||(a

†
nalaja

1
2

ãnblbjb 1
2
)(Kτ)|||A− 1αI1T1〉SD (30)

Different from Eqs. (28) and (30), the SD matrix elements of the exchange term of

the potential involve operations on two nucleons (projectile exchange with a first and

interaction with a second nucleon) of the (A−1) cluster and hence depend on two-body

density matrix elements of the target nucleus (last line in the right-hand side of the

equation):

SD〈ΦJπT
ν′ n′|P̂A−1,AV̂A−2,A−1|ΦJπT

ν n 〉SD

= 1
2(A−1)(A−2)

∑
jj′Kτ

∑
nalaja

∑
nblbjb

∑
nclcjc

∑
ndldjd

∑
KaτaKcdτcd

ŝŝ′ĵĵ′K̂τ̂ K̂aτ̂aK̂cdτ̂cd

× (−1)I
′
1+j′+J+K+j+ja+jc+jd(−1)T1+ 1

2
+τ+T

{
I1

1
2
s

` J j

}{
I ′1

1
2
s′

`′ J j′

}{
I1K I ′1

j′ J j

}

×

{
KaKcdK

j′ j ja

}{
T1 τ T

′
1

1
2
T 1

2

}{
τ τa τcd

1
2

1
2

1
2

}√
1 + δ(nalaja),(n′`′j′)

√
1 + δ(nclcjc),(ndldjd)

× 〈(n′`′j′1
2

)(nalaja
1

2
)Kcdτcd|V |(ndldjd

1

2
)(nclcjc

1

2
)Kcdτcd〉

× SD〈A− 1α′I ′1T
′
1|||((a

†
n`j 1

2

a†
nalaja

1
2

)(Kaτa)(ãnclcjc 1
2
ãndldjd 1

2
)(Kcdτcd))(Kτ)|||A− 1αI1T1〉SD .

(31)

The inclusion of the 3N force in the Hamiltonian further complicates the calculation

of the (A − 1, 1) NCSM/RGM kernels. As for the corresponding NN portion of the

potential kernel, there are a direct (including a trivial exchange of the interacting

nucleons) and an exchange term, described by diagrams (a) and (b), and diagram (c) of

Fig. 3, respectively. For a summary of their expressions we refer the interested readers

to Ref. [115]. While the first two diagrams are similar in complexity to the NN exchange

term, the third depends on three-body density matrix elements of the target nucleus.

Due to their rapidly increasing number in multi-major-shell basis spaces, storing in

memory three-body density matrices is very demanding and requires the implementation
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of specialized computational strategies [116]. One of such strategies is to develop an

efficient on-the-fly computation of these matrix elements by working in the m-scheme

and exploiting the fact that the target eigenstates |A− 1α1I
π1
1 M1T1MT1〉 are implicitly

given as expansions in HO many-body SDs within the NCSM model space. For example,

the matrix elements of the operator P̂A−1,AV̂A−3,A−2,A−1, characterizing the exchange

term of the 3N force, with respect to the basis states (25) can be written as

SD

〈
ΦJπT
ν′n′
∣∣P̂A−1,AV̂A−3A−2A−1|ΦJπT

νn 〉SD

= 1
6(A−1)(A−2)(A−3)

∑
jj′

ŝŝ′ĵĵ′(−1)2J+I1+I′1+j+j′

{
I1

1
2
s

` J j

}{
I ′1

1
2
s′

`′ J j′

}
×
∑
M1mj

∑
MT1

mt

∑
M ′1m

′
j

∑
M ′T1m

′
t

CJMJ
I1M1jmj

CTMT

T1MT1
1
2
mt
C
JM ′J
I′1M

′
1j
′m′j
C
TM ′T
T ′1M

′
T1
j′m′t

×
∑
abdef

〈ab n′`′j′m′j 1
2
m′t|V̂ 3N |def〉

× SD〈A− 1α′1I
′π′1
1 M ′

1T
′
1M

′
T1
|â†
n`jmj

1
2
mt
â†bâ
†
aâdâeâf |A− 1α1I

π1
1 M1T1MT1〉SD , (32)

where we introduced the notation {a, . . . , f} denoting the quantum numbers of `s-

coupled HO single-particle states, i.e. a = {na`ajamjamta}. The two summations

corresponding to the expansions in HO many-body SDs of the eigenstates of the target

(not shown explicitly in the equation) can be pulled in front of all other summations in

Eq. (32), obtaining an expression in which each term can be computed independently,

i.e., ideally suited for parallel computation. In addition, the sums over HO single-

particle states can of course be restricted to those combinations, which can connect

the two SDs of the density matrix. Here, we can make use of the technology that was

originally developed to compute A-body matrix elements of three-body operators during

the setup of the many-body matrix in the importance-truncated NCSM [17, 18]. The

next critical objects in Eq. (32) are the m-scheme matrix elements of the 3N interaction.

The storage of these matrix elements in memory is again prohibitive if we want to

proceed to large model spaces. However, we benefit from storing the matrix elements of

the 3N interaction in the JT -coupled scheme developed by Roth et al. [86, 105] and the

corresponding efficient on-the-fly decoupling into the m-scheme. Finally, we note from

Eq. (32) the necessity to treat the projection quantum numbers of the angular momenta

and isospins of the target states explicitly, including consistent relative phases. Both

can be accomplished using a single NCSM run to produce a specific eigenvector from

which all other vectors with necessary projection are obtained using angular momentum

raising and lowering operators.

The second option is to algebraically perform the summations over the projection

quantum numbers of Eq. (32) and introduce coupled densities using the Wigner-Eckart
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theorem as previously done for the NN case (30, 31), i.e.

SD〈ΦJπT
ν′n′ |P̂A−1,AV̂A−3,A−2,A−1|ΦJπT

νn 〉SD

= 1
6(A−1)(A−2)(A−3)

∑
jj′

ŝŝ′ĵĵ′(−1)2J+I1+I′1+j+j′

{
I1

1
2
s

` J j

}{
I ′1

1
2
s′

`′ J j′

}
×
∑
āb̄d̄ēf̄

∑
JabTab

∑
J0T0

∑
JdeTde

∑
JgTg

Ĵ0T̂0ĴgT̂gK̂τ̂(−1)j+j
′+Jab+K−Jg+I1+J+1+Tab+τ−Tg+T1+T

×〈ā, b̄; JabTab, n′`′j′ 12 ; J0T0|V̂ 3N |d̄, ē; JdeTde, f̄ ; J0T0〉 (33)

×

{
I1 K I ′1
j′ J j

}{
j′ K j

Jg Jab J0

}{
T1 τ T ′1
1
2

T 1
2

}{
1
2

τ 1
2

Tg Tab T0

}
×SD〈A−1α′1I

′π′1
1 T ′1|||

(((
a†āa

†
b̄

)JabTaba†
n`j

1
2

)JgTg((
ãd̄ãē

)JdeTde ãf̄)J0T0)Kτ |||A−1α1I
π1
1 T1〉SD,

where {ā, . . . , f̄} denote HO orbitals, i.e. ā = {nf , `f , jf}, and the triple vertical bars

indicate that the matrix elements are reduced in both angular momentum and isospin,

and 〈ā, b̄; JabTab, n′`′j′ 12 ; J0T0|V̂ 3N |d̄, ē; JdeTde, f̄ ; J0T0〉 are JT -coupled 3N -force matrix

elements. Further, to avoid the storage in memory of the reduced three-body density

matrix, we factorize this expression by inserting a completeness relationship over (A−4)-

body eigenstates leading to the final expression:

SD〈ΦJπT
ν′n′ |P̂A−1,AV̂A−3,A−2,A−1|ΦJπT

νn 〉SD

= 1
6(A−1)(A−2)(A−3)

∑
jj′

ŝŝ′ĵĵ′(−1)2J+I1+I′1+j+j′

{
I1

1
2
s

` J j

}{
I ′1

1
2
s′

`′ J j′

}

×
∑
āb̄d̄ēf̄

∑
JabTab

∑
J0T0

∑
JdeTde

∑
JgTg

∑
β

Ĵ0T̂0ĴgT̂g


Iβ Jg I ′1
J0 Jab j′

I1 j J




Tβ Tg T ′1
T0 Tab

1
2

T1
1
2

T


× 〈ā, b̄; JabTab, n′`′j′ 12 ; J0T0|V̂ 3N |d̄, ē; JdeTde, f̄ ; J0T0〉

× SD〈A− 1α′1I
′π′1
1 T ′1|||

((
a†āa

†
b̄

)JabTaba†
n`j

1
2

)JgTg
|||A− 4αβI

πβ
β Tβ〉SD

× SD〈A− 1α1I
π1
1 T1|||

((
a†
d̄
a†ē
)JdeTdea†

f̄

)J0T0
|||A− 4αβI

πβ
β Tβ〉SD . (34)

Compared to Eq. (33), there is an additional summation over the index β labeling the

eigenstates |A− 4αβ, I
πβ
β , Tβ〉 of the (A− 4)-body system. In this second approach, we

first calculate and store in memory the reduced matrix elements of the tensor operator((
a†
d̄
a†ē
)JdeTdea†

f̄

)J0T0
and compute the factorized three-body density of Eq. (34) on the

fly. This strategy reduces the computational burden and computer memory required

to perform the calculation. We work directly with the JT -coupled 3N matrix elements

exploiting their symmetries and using the appropriate Racah algebra if necessary. The

main limitation of this approach is the factorization of the reduced density which is

feasible only for light systems where a complete set of (A− 4)-body eigenvectors can be
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obtained, i.e., the four- and five-nucleon systems for the specific case of nucleon-nucleus

collisions. For such systems, however, it is still a more efficient approach when many

excited states of the target are included in the calculation as discussed in Sec. 3.1 in the

case of n-4He scattering calculations with seven 4He eigenstates. In terms of numerics we

have achieved a load-balanced parallel implementation by using a non-blocking master-

slave algorithm. Finally, following the application of the Wigner-Eckart theorem, the

isospin breaking terms of the nuclear Hamiltonian in the potential kernels are not treated

exactly in this approach. Rather, they are approximated by isospin averaging [116].

However, it should be noted that no isospin-symmetry breaking terms are typically

included in the chiral 3N interaction. With the exception of the treatment of isospin

symmetry, the two implementations described in this section are formally equivalent.

By storing in memory the reduced densities, the latter is more efficient for reactions

with different projectiles while the former is ideally suited for addressing heavier targets

as in the case of the 9Be study of Sec. 3.2.

More in general, the complexity of the integration kernels rapidly increases with

projectile mass, number of projectile/target states, and number of channels included,

making the NCSM/RGM a computationally intensive approach. In this section we have

presented a review of the algebraic expressions for the SD matrix elements entering the

norm and Hamiltonian kernels for equal (A − 1, 1) mass partitions in both initial and

final states. The explicit form of the inter-cluster antisymmetrizer for the case in which

the projectile is a deuterium nucleus (a = 2), together with algebraic expressions for

the SD matrix elements of Ôt.i. = Âν and VNNrel Âν for equal mass partitions in initial

and final states can be found in Ref. [117]. For reactions involving a deuterium-nucleus

entrance and nucleon-nucleus exit channels [e.g., 3H(d, n)4He] or vice versa, and, more in

general, whenever both nucleon-nucleus and deuterium-nucleus channel basis states are

used in the RGM model space, one has to address the additional contributions coming

from the off-diagonal matrix elements between the two mass partitions: (A− 1, 1) and

(A− 2, 2). A summary of their expressions in the case of a two-body Hamiltonian can

be found in Ref. [115]. Finally, the NCSM/RGM formalism can be generalized to the

description of collisions with heavier projectiles, such as 3H/3He-nucleus scattering [118]

and, in principle, α-nucleus scattering.

2.4.3. Orthogonalization of the RGM equations An important point to notice, is

that Eq. (12) does not represent a system of multichannel Schrödinger equations, and

γJ
πT

ν (r) do not represent Schrödinger wave functions. This feature, which is highlighted

by the presence of the norm kernel N JπT
ν′ν (r′, r) and is caused by the short-range

non-orthogonality induced by the non-identical permutations in the inter-cluster anti-

symmetrizers (10), can be removed by working with orthonormalized binary-cluster

states ∑
ν′

∫
dr′r′

2 N−
1
2

νν′ (r, r
′) Âν′|ΦJπT

ν′r′ 〉 , (35)
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and applying the inverse-square root of the norm kernel, N−
1
2

νν′ (r, r
′), to both left and

right-hand sides of the square brackets in Eq. (12). Here, we review how this can be

done in practice.

Following Eq. (20), the norm kernel in r-space representation can be written as a

convolution of a localized kernel

N JπT
νnν′n′ = δνν′δnn′ −


〈
ΦJπT
ν′n′
∣∣∑

P 6=id(−)pP
∣∣ΦJπT

νn

〉
if a′ = a

〈
ΦJπT
ν′n′
∣∣√ A!

(A−a′)!a′!Âν
∣∣ΦJπT

νn

〉
if a′ 6= a

(36)

plus a correction owing to the finite size of the model space, i.e.

N JπT
νν′ (r, r′) = δνν′

[
δ(r − r′)
rr′

−
∑
nn′

Rn`(r)δnn′Rn′`′(r
′)

]
+
∑
nn′

Rn`(r)N JπT
νnν′n′Rn′`′(r

′) .

(37)

Square and inverse-square roots of the norm kernel can then be defined in an analogous

way as:

N±
1
2

νν′ (r, r
′) = δνν′

[
δ(r − r′)
rr′

−
∑
nn′

Rn`(r)δnn′Rn′`′(r
′)

]
+
∑
nn′

Rn`(r)N
± 1

2

νnν′n′Rn′`′(r
′) ,

(38)

where the matrix elements N±
1
2

νnν′n′ , can be obtained from the eigenvalues and eigenstates

of the matrix (36) by using the spectral theorem, and it can be easily demonstrated

that, e.g., the convolution of N
1
2
νµ(r, y) with N−

1
2

µν′ (y, r
′) yields the full-space identity,

δνν′δ(r − r′)/rr′. Similarly, the Hermitized Hamiltonian kernel within the orthonormal

basis of Eq. (35) follows from applying the inverse-square root of the norm from the left

and right-hand sides of Eq. (24), i.e.

HJπT

νν′ (r, r′) =
∑
µµ′

∫ ∫
dydy′y2y′

2N−
1
2

νµ (r, y)H̃JπT
µµ′ (y, y′)N−

1
2

µ′ν′(y
′, r′) , (39)

and the orthogonalized RGM equations take the form of a set of non-local coupled

channel Schrödinger equations:∑
ν′

∫
dr′ r′ 2HJπT

νν′ (r, r′)
χJ

πT
ν′ (r′)

r′
= E

χJ
πT
ν (r)

r
. (40)

Here, the Schrödinger wave functions of the relative motion χJ
πT
ν (r) are the new

unknowns, related to the original functions γJ
πT

ν (r) by

χJ
πT
ν (r)

r
=
∑
ν′

∫
dr′ r′ 2N

1
2

νν′(r, r
′)
γJ

πT
ν′ (r′)

r′
, (41)

For more details on the NCSM/RGM kernels we refer the interested reader to Ref. [50].
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2.5. Three-cluster NCSM/RGM

When considering ternary clusters, the NCSM/RGM emerges in the same way as

for binary clusters. However, in this case, the relative motion behavior of the wave

function must be described in terms of two different coordinates that characterize

the relative position among the clusters. Therefore, we can represent a system of A

nucleons arranged into three clusters respectively of mass number A − a23, a2, and a3

(a23 = a2 + a3 < A), by the many-body wave function

|ΨJπT 〉 =
∑
ν

∫∫
dx dy x2 y2GJπT

ν (x, y) Âν |ΦJπT
νxy 〉 , (42)

where GJπT
ν (x, y) are continuous variational amplitudes of the integration variables x

and y, Âν is an appropriate intercluster antisymmetrizer introduced to guarantee the

exact preservation of the Pauli exclusion principle, and

|ΦJπT
νxy 〉 =

[(
|A− a23 α1I

π1
1 T1〉 (|a2 α2I

π2
2 T2〉|a3 α3I

π3
3 T3〉)(s23T23)

)(ST )

(
Y`x(η̂23)Y`y(η̂1,23)

)(L)
](JπT )

× δ(x− η23)

xη23

δ(y − η1,23)

yη1,23

, (43)

are three-body cluster channels of total angular momentum J , parity π and isospin

T . Here, |A − a23 α1I
π1
1 T1〉, |a2 α2I

π2
2 T2〉 and |a3 α3I

π3
3 T3〉 denote the microscopic

(antisymmetric) wave functions of the three nuclear fragments, which are labelled by the

spin-parity, isospin and energy quantum numbers Iπii , Ti, and αi, respectively, with i =

1, 2, 3. Additional quantum numbers characterizing the basis states (43) are the spins

~s23 = ~I2+~I3 and ~S = ~I1+~s23, the orbital angular momenta `x, `y and ~L = ~̀
x+~̀y, and the

isospin ~T23 = ~T2+ ~T3. In our notation, all these quantum numbers are grouped under the

cumulative index ν = {A−a23 α1I
π1
1 T1; a2 α2I

π2
2 T2; a3 α3I

π3
3 T3; s23 T23 S `x `y L}. Besides

the translationally invariant coordinates (see e.g. Ref. [50] Sec. II.C) used to describe

the internal dynamics of clusters 1, 2 and 3, respectively, in Eq. (43) we have introduced

the Jacobi coordinates ~η1,23 and ~η23 where

~η1,23 = η1,23η̂1,23 =
√

a23
A(A−a23)

A−a23∑
i=1

~ri −
√

A−a23
Aa23

A∑
j=A−a23+1

~rj (44)

is the relative vector proportional to the displacement between the center of mass (c.m.)

of the first cluster and that of the residual two fragments, and

~η23 = η23η̂23 =
√

a3
a23 a2

A−a3∑
i=A−a23+1

~ri −
√

a2
a23 a3

A∑
j=A−a3+1

~rj (45)

is the relative coordinate proportional to the distance between the centers of mass of

cluster 2 and 3 (See figure 4). Here, ~ri denotes the position vector of the i-th nucleon.
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Figure 4. (Color online) Jacobi coordinates for three cluster configurations, ~η1,23
(proportional to the vector between the c.m. of the first cluster and that of the residual

two fragments) and ~η23 (proportional to the vector between the c.m. of clusters 2 and

3). In the figure, a case with three clusters of four, two and one nucleons are shown,

however the formalism is general and could be used to describe any three cluster

configuration.

When using the expansion (42), the many-body problem can be described through

a set of coupled integral-differential equations that arise from projecting the A-body

Schrödinger equation onto the cluster basis states Âν |ΦJπT
νxy 〉,∑

ν

∫∫
dx dy x2y2

[
HJπT
ν′ν (x′, y′, x, y)− EN JπT

ν′ν (x′, y′, x, y)
]
GJπT
ν (x, y) = 0 (46)

where GJπT
ν (x, y) are the unknown continuum amplitudes and E is the energy of the

system in the c.m. frame. The integration kernels are defined now as

HJπT
ν′ν (x′, y′, x, y) =

〈
ΦJπT
ν′x′y′

∣∣ Âν′ĤÂν ∣∣ΦJπT
νxy

〉
, (47)

N JπT
ν′ν (x′, y′, x, y) =

〈
ΦJπT
ν′x′y′

∣∣ Âν′Âν ∣∣ΦJπT
νxy

〉
(48)

where Ĥ is the intrinsic A-body Hamiltonian.

The system of multi-channel equations (46) can be Hermitized and orthogonalized

obtaining the analogous of Eq. (40) for binary cluster systems, i.e.:

∑
ν

∫∫
dx dy x2y2

[
H̄JπT
ν′ν (x′, y′, x, y)− E δνν′

δ(x′ − x)

x′x

δ(y′ − y)

y′y

]
χJ

πT
ν (x, y) = 0 . (49)

In this case, the relative motion wave functions χJ
πT
ν (x, y) depend on two relative

coordinates. In order to solve these equations, it is convenient to perform a

transformation to the hyperspherical hamornics (HH) basis. This basis has the great

advantage that its elements are eigenfunctions of the hyper-angular part of the relative

kinetic operator when written in hyperspherical coordinates [119]. The hyperspherical

coordinates (hyperradius ρ and hyperangle α) can be defined in terms of the relative

coordinates of Eqs. (44) and (45) as:

η23 = ρη sinαη , x = ρ sinα , (50)

η1,23 = ρη cosαη , y = ρ cosα . (51)
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The continuous amplitudes χJ
πT
ν (x, y) can then be expanded in HH functions as

χJ
πT
ν (ρ, α) =

1

ρ5/2

∑
K

uJ
πT
Kν (ρ)φ

`x,`y
K (α) (52)

where the basis elements are

φ
`x,`y
K (α) = N

`x`y
K (sinα)`x(cosα)`yP

`x+ 1
2
,`y+ 1

2
n (cos 2α), (53)

here Pα,β
n (ξ) are Jacobi polynomials, and N

`x`y
K normalization constants.

When projecting Eqs. (49) over the HH basis and integrating on the hyperangle α,

this expansion allows to reduce those equations to a set of nonlocal integral-differential

equations in the hyperradial coordinate:

∑
Kν

∫
dρρ5H̄K′K

ν′ν (ρ′, ρ)
uJ

πT
Kν (ρ)

ρ5/2
= E

uJ
πT
K′ν′(ρ

′)

ρ′ 5/2
, (54)

which is the three-cluster analogous of Eq. (40).

For details on the method adopted to solve the above set of equations, we refer the

interested reader to Sec. 2.7.

At the moment, the method has been implemented exclusively for systems in which

two of the clusters are single nucleons. In this case, the calculation of the integration

kernels (47) is performed, up to a great extent, through the same expressions as when

studying a binary system with a two-nucleon projectile, which can be found in Ref. [117].

However, it is important to note that in the case of the two-body projectile formalism the

interaction between those nucleons has been already taken into account through NCSM

eigenstates of the projectile. Therefore, when considering such nucleons as different

clusters, one has to additionally account for the intrinsic two-nucleon hamiltonian Ĥ(x).

In particular, the specific expression for the kernel produced by the interaction between

the nucleons V̂ (x) can be found in Eq. (39) of Ref. [120]. In the absence of Coulomb

interaction between the two nucleons, such term is localized in the x coordinate, but

not in the y variables where a Dirac’s δ appear. For computational purposes, this δ is

approximated by an extended-size expansion in HO radial wave functions that goes well

beyond the adopted HO model space (Next >> Nmax). The convergence of the results

with respect to the newly introduced parameter Next is discussed in Sec. 2.8.2 in order

to determine the effect of such approximation.

2.6. NCSMC

The unified description of structure and reaction properties of an A-nucleon system is

most efficiently obtained working within a generalized model space spanned by fully

antisymmetric A-body basis states including both square-integrable wave functions,

|AλJπT 〉, and continuous RGM binary-cluster (and/or multi-cluster, depending on the
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particle-emission channels characterizing the nucleus in consideration) channel states,

Âν |ΦJπT
νr 〉, of angular momentum J , parity π and isospin T :

|ΨJπT
A 〉 =

∑
λ

cJ
πT
λ |AλJπT 〉+

∑
ν

∫
dr r2 γ

JπT
ν (r)

r
Âν |ΦJπT

νr 〉. (55)

When the compound, target and projectile wave functions are eigenstates of their

respective intrinsic Hamiltonians computed within the NCSM [see Eqs. (7) and (8)

of Sec. 2.3 and Sec. 2.4], this approach is known as no-core shell model with continuum

(NCSMC) and the unknown discrete, cJ
πT
λ , and continuous, γJ

πT
ν (r) linear variational

amplitudes can be simultaneously obtained by solving the set of coupled equations,(
E h̄

h̄ H

)(
c

χ

)
= E

(
I ḡ

ḡ I

)(
c

χ

)
, (56)

where χJ
πT (r) are the relative motion wave functions in the NCSM/RGM sector when

working within the orthogonalized cluster channel states of Eq. (35). The two by two

block-matrices on the left- and right-hand side of Eq. (56) represent, respectively, the

NCSMC Hamiltonian and norm (or overlap) kernels. The upper diagonal blocks are

given by the Hamiltonian (overlap) matrix elements over the square-integrable part of

the basis. In particular, as the basis states are NCSM eigenstates of the A-nucleon

Hamiltonian, these are trivially given by the diagonal matrix Eλλ′ = Eλδλλ′ of the

eigenergies (the identity matrix Iλλ′ = δλλ′). Similarly, those over the continuous portion

of the basis appear in the lower diagonal blocks and are given by the orthogonalized,

Hermitized Hamiltonian kernel of Eq. (39) and Iνν′(r, r′) = δνν′δ(r − r′)/rr′. The off-

diagonal blocks contain the couplings between the two sectors of the basis, with

ḡλν(r) =
∑
ν′

∫
dr′ r′ 2〈AλJπT |Aν′ |ΦJπT

ν′r′ 〉N
−1/2
ν′ν (r′, r) (57)

the cluster form factor, and the coupling form factor analogously given by

h̄λν(r) =
∑
ν′

∫
dr′ r′ 2〈AλJπT |ĤAν′ |ΦJπT

ν′r′ 〉N
−1/2
ν′ν (r′, r) . (58)

As for the RGM kernels in Secs. 2.4.1 and 2.4.2 these form factors can be computed

using the second-quantization formalism. Their algebraic expressions can be found in

Refs. [51, 52]. Similar to the NSCM/RGM in Sec. 2.5, the NCSMC formalism presented

here can also be generalized for the description of three-cluster dynamics. A detailed

presentation of such formalism will be given in Ref. [121].

2.6.1. Orthogonalization of the NCSMC equations The NCSMC equations can be

orthogonalized in an analogous way to that presented in Sec. 2.4.3 for the binary-cluster

NCSM/RGM. To define the square and inverse square roots of the NCSMC norm in
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r-space representation, we first rewrite the two-by-two matrix on the left-hand-side of

Eq. (56) as the convolution of a NCSMC model-space norm kernel,

N λ̃λ̃′
ν̃n ν̃′n′ ≡

(
δλ̃λ̃′ ḡλ̃ν̃′n′

ḡλ̃′ν̃n δν̃ν̃′δnn′

)
, (59)

plus a correction owing to the finite size of the HO model-space, i.e.:

Nλλ′
νrν′r′ ≡

(
Iλλ′ ḡλν′(r

′)

ḡλ′ν(r) Iνν′(r, r′)

)

=

(
0 0

0 δνν′
δ(r−r′)
rr′ − δνν′Rn`(r)δnn′Rn′`′(r

′)

)

+

(
δλλ̃ 0

0 Rνrν̃n

)
N λ̃λ̃′
ν̃n ν̃′n′

(
δλ̃′λ′ 0

0 Rν′r′ν̃′n′

)
, (60)

Here, Rνrν̃n = Rn`(r)δνν̃ , the model-space cluster form factor is related to the r-space one

through ḡλν(r) =
∑

nRnl(r)ḡλνn, and the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′,

and n′ is implied. The square and inverse square roots of N can then be defined as:

(N±
1
2 )λλ

′
νrν′r′ ≡

(
(N±

1
2 )λλ

′
(N±

1
2 )λν′(r

′)

(N±
1
2 )λ

′
ν (r) (N±

1
2 )νν′(r, r

′)

)

=

(
0 0

0 δνν′
δ(r−r′)
rr′ − δνν′Rn`(r)δnn′Rn′`′(r

′)

)

+

(
δλλ̃ 0

0 Rνrν̃n

)
(N±

1
2 )λ̃λ̃

′
ν̃n ν̃′n′

(
δλ̃′λ′ 0

0 Rν′r′ν̃′n′

)
. (61)

These expressions can be easily generalized to the case in which expansion (55) contains

RGM components of the three-cluster type. In general, inserting the identity N−
1
2N+ 1

2

in both left- and right-hand sides of Eq. (56), and multiplying by N−
1
2 from the left,

one finally obtains,

H

(
c̄

χ̄

)
= E

(
c̄

χ̄

)
, (62)

where the orthogonalized NCSMC Hamiltonian H is given by,

H = N−
1
2

(
E h̄

h̄ H

)
N−

1
2 , (63)

and the orthogonal wave functions by(
c̄

χ̄

)
= N+ 1

2

(
c

χ

)
. (64)
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Finally, starting from Eq. (55) the orthogonalized NCSMC wave function takes then the

general form:

|ΨJπT
A 〉 =

∑
λ

|AλJπT 〉

[∑
λ′

(N−
1
2 )λλ

′
c̄λ′ +

∑
ν′

∫
dr′ r′ 2 (N−

1
2 )λν′(r

′) χ̄ν′(r
′)

]

+
∑
νν′

∫
dr r2

∫
dr′ r′ 2 Âν |ΦJπT

νr 〉 N
− 1

2

νν′ (r, r
′) (65)

×

[∑
λ′

(N−
1
2 )λ

′
ν′(r

′) c̄λ′ +
∑
ν′′

∫
dr′′r′′ 2(N−

1
2 )ν′ν′′(r

′, r′′) χ̄ν′′(r
′′)

]
.

2.7. Microscopic R-matrix approach

Within the RGM, solving the integro-differential Eqs. (40) or (49), for binary or ternary

clusters respectively, provides the continuum coefficients of the cluster expansion, i.e.,

the relative motion wave functions. In order to solve these equations, we use the coupled-

channel R-matrix method on a Lagrange mesh [122, 123]. The formalism for binary and

ternary clusters is completely analogous and therefore, here we present details only for

the binary cluster case. Details of the generalization for ternary clusters can be found

on [120].

The configuration space is first divided in two regions delimited by a matching

radius r = a. In the internal region, the complete internuclear interaction is considered

and the radial wave function is expanded on a Lagrange basis.

In the external region, only the Coulomb interaction is assumed to be relevant.

Therefore, in this region the wave function is approximated by its known asymptotic

form, which is proportional to the Whittaker functions W`(ην , κνr) for bound states,

uJ
πT
ν,ext(r) = CJπT

ν W`(ην , κνr) (66)

with CJπT being the asymptotic normalization constant. It can be written in terms

of incoming and outgoing functions H±(ην , κνr) and the Scattering matrix SJ
πT

νi when

studying continuum states:

uJ
πT
ν,ext(r) =

i

2
v
− 1

2
ν

[
δνiH

−
` (ην , κνr)− SJ

πT
νi H+

` (ην , κνr)
]
. (67)

with vν the speed, κν the wave number, and ην the Sommerfield parameter of the final

state. Labels i and ν refer to the initial and final state, respectively. The R-matrix

formalism is expressed in terms of the Bloch-Schrödinger equations:∑
ν

∫
drr2

(
H̄ν′ν(r

′, r) + L̂ν(r)− E
δ(r − r′)

r2
δν′ν

)
uJ

πT
ν,int(r)

r

=
∑
ν

∫
drr2L̂ν(r)

uJ
πT
ν,ext(r)

r
(68)
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where the Bloch operator, which has the dual function of restoring the Hermiticity of

the Hamiltonian in the internal region and enforcing a continuous derivative at the

matching radius [124], is defined as

L̂ν(r) =
~

2µν
δ(r − a)

(
d

dr
− Bν

r

)
(69)

here the constants Bν are arbitrary and therefore can be chosen to facilitate the solution

of the equations (68). When calculating a bound state the constants Bν are chosen as

the logarithmic derivative of uJ
πT
ν,ext(r) evaluated in the matching radius. This election

cancels the right hand side of Eq. (68) and gives rise to an eigenvalue problem that

can be solved iteratively starting from Bν = 0 (convergence is typically reached within

a few iterations). When calculating a continuum state the constants Bν are chosen to

be zero, and the scattering matrix is obtained through the calculation of the R-matrix.

The details of this procedure can be found in [122].

The solution of Eq. (68), is conveniently achieved on a Lagrange mesh by projecting

the equations on a set of N Lagrange functions. Due to its properties, the Lagrange

basis provides straightforward expressions for the matrix elements of the relative kinetic

operator, the Bloch operator and the non-local Hamiltonian kernel. The basis is defined

as a set of N functions fn(x) (see [122] and references therein), given by

fn(x) = (−1)na−1/2

√
1− xn
xn

xPN(2x/a− 1)

x− axn
, (70)

where PN(x) are Legendre polynomials, and xn satisfy

PN(2xn − 1) = 0 . (71)

The Lagrange mesh associated with this basis consists of N points axn on the interval

[0, a] and satisfies the Lagrange condition

fn′(axn) =
1√
aλn

δnn′ , (72)

where the coefficients λn are the weights corresponding to a Gauss-Legendre quadrature

approximation for the [0, 1] interval, i.e.∫ 1

0

g(x)dx ∼
N∑
n=1

λng(xn) . (73)

Using the Lagrange conditions of Eq. (72), it is straightforward to see that within the

Gauss approximation the Lagrange functions are orthogonal, i.e.∫ a

0

fn(x)fn′(x)dx ∼ δnn′ . (74)
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2.7.1. Using the R-matrix method within the NCSMC. When working within the

NCSMC formalism, the wave function is described by a short/mid range contribution

from the discrete NCSM basis and a long range contribution coming from the cluster

basis. Due to the fact that at the matching radius only the long range behavior is

present, the only relevant component of the wave function comes from the cluster basis

states. Therefore, it is possible to perform the matching between internal and external

regions using only this contribution.

This is accomplished by defining a matrix Bloch surface operator in which only the

right-bottom block is non-zero

L̂ν =

(
0 0

0 L̂ν(r)

)
(75)

where the operator L̂ν(r) is given by Eq. (69) for binary clusters. The Bloch-Schrödinger

equations can be written as

(H̄ + L̂− E)

(
c̄

χ̄

)
= L̂

(
c̄

χ̄

)
(76)

and their solution is obtained in an analogous way as within the NCSM/RGM approach.

2.8. Convergence properties

In this section we give an overview of the convergence properties of the NCSM/RGM

(for both binary and ternary scattering processes) and NCSMC (for binary reactions)

approaches with respect to all relevant parameters characterizing their model spaces.

In particular, as an example in Sec. 2.8.1 we present an analysis performed on the

N+4He and d+4He scattering phase shifts obtained with the SRG-evolved chiral

NN+3N -full Hamiltonian with resolution scale Λ=2.0 fm−1 by solving the NCSM/RGM

equations (39) and NCSMC equations (62) with scattering boundary conditions by

means of the microscopic R-matrix method on Lagrange mesh outlined in Sec. 2.7.

Because of the additional expansion on HH basis states, the treatment of three-cluster

dynamics introduces a new set of parameters controlling the behavior of the results. For

this reason, as an example in Sec. 2.8.2 we also show results for the bound and scattering

states of the 4He+n+n system obtained by solving the NCSM/RGM equations (49)

with bound and scattering boundary conditions starting from the SRG N3LO NN -only

interaction evolved to Λ = 1.5 fm−1.

2.8.1. Binary clusters. For binary reactions, a channel radius of a = 18 fm is typically

large enough for the clusters to interact only through the Coulomb force and about

Ns = 36 mesh points (roughly 2 mesh points per fm) are usually sufficient to obtain

convergence with respect to the Lagrange expansion. In this section we will present

results obtained with these Lagrange parameters and concentrate on the remaining

convergence properties of the scattering calculation.
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Figure 5. Left panel: Convergence of the n-4He 1S1/2, 2P1/2, 2P3/2, and 2D3/2

phase shifts with respect to the model-space size Nmax at ~Ω=20 MeV. Brown dotted

lines, green long-dashed lines, blue dashed lines and red solid lines correspond to

Nmax = 7, 9, 11 and 13, respectively. Right panel: Dependence of the n-4He phase

shifts on the HO frequency. Green long-dashed lines, blue dashed lines and red solid

lines correspond to ~Ω = 16, 20 and 24, respectively. The model space is truncated

at Nmax = 11. In both panels all curves were obtained including the g.s. of 4He and

employing the SRG-evolved chiral NN+3N -full interaction with Λ = 2.0 fm−1.

In both NCSM/RGM and NCSMC methods, the NCSM eigenstates of the target

and projectile (and, for the second, also of the compound nucleus) are essential building

blocks. Naturally the properties of the these eigenstates propagate to the NCSM/RGM

and NCSMC calculations and we find the HO frequency Ω and the maximum number of

major HO shell Nmax (of the HO basis used to expand the NCSM wave functions of the

clusters and the localized parts of the NCSM/RGM kernels) to be parameters regulating

the behavior of the results. Therefore, we begin our overview by presenting in Fig. 5

the dependence of NCSM/RGM calculations of the n-4He phase shifts with respect to

Nmax and ~Ω. The left panel presents single channel calculations for Nmax=7, 9, 11, and

13 carried out using n-4He channel states with the 4He in its ground state (g.s.). The

phase shifts for the first four partial waves exhibit a good convergence behavior. With

the exception of the 2P3/2 resonance, where we can observe a difference of less than 5 deg

in the energy region 4 ≤ Ekin ≤ 10 MeV, the Nmax=11 and Nmax=13 phase shifts are on

top of each other. An analogous behavior is obtained when using the NN+3N -induced

interaction and the N3LO NN -only interaction evolved to the same Λ value [125]. In

the latter case, working only with a two-body potential, we were able to obtain results

for Nmax values as high as 17, but no substantial differences were found with respect

to those obtained for Nmax=13. Therefore, given the large scale of these computations,

we study the sensitivity with respect to the HO frequency within an Nmax = 11 model

space. This is shown in the right panel of Fig. 5, where we compare ~Ω=16, 20 and 24

MeV results. We find essentially no dependence on the HO frequency when comparing

the ~Ω = 20 and 24 MeV, i.e., the phase shifts are in good agreement: the 2S1/2 and
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2D3/2 phase shifts are on top of each other while the 2P1/2 and 2P3/2 phase shifts show

very small deviations around the resonance positions. At the same time, we note that

using the lower frequency of ~Ω = 16 MeV is problematic due to the finite size of the

HO model space used during the SRG transformation. This has to be cured using a

frequency conversion technique [86].

As explained previously in Sec. 2.2, employing an effective interaction obtained

from the SRG method requires to account for induced effects, a priori of an A-body

nature. This is impractical to achieve for larger A values. Therefore the SRG scale Λ

became a parameter of the model and, as long as the reminding higher-order induced

effects remain negligible we can, in the context of an ab initio framework, claim that

renormalized results in a finite model space are almost unitary equivalent to their bare

counterpart. Thus it is essential to study our reaction observables with respect to Λ.

While the proper way to address this is to show that renormalized results are consistent

with those of Λ = ∞, because of the finiteness of the model space together with the

sensitivity of reaction observables to g.s. energies of the reactant nuclei, it can only

be done within a restricted range of values. In figure 6, we show a sensitivity study

of the n-4He phase shifts with respect to Λ. Only two values are displayed due to the

computational difficulty of the calculation. We can see that the effects of the missing

four- and five-body SRG induced interactions are small, of the order or smaller than

the effects of the Nmax and ~Ω parameters. In the corresponding study of Ref. [116], it

was shown that the 3N -induced interaction was essential to correct for the SRG scale

dependence of the NN -only phase shifts for the same values of Λ.

With the behavior with respect to the parameters Ω, Nmax and Λ of our many-

body space discussed above, we can now focus on the convergence properties of the

phase shifts with respect to the number and types of NCSM/RGM cluster states. In

the case of the n-4He scattering phase shifts, this means investigating the dependence

on the number of target eigenstates included in the calculation. This is shown in the

left panel of Fig. 7, where we employ our largest model space of Nmax=13. As can be

seen in the figure, the target excitations are crucial in particular for the resonant phase
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2D3/2 phase shifts with respect to

SRG scale Λ using the SRG-evolved

chiral NN+3N -full interaction and

a model-space size Nmax=13 major

HO shells at ~Ω=20 MeV. Blue

dashed lines and red solid lines

correspond to Λ = 1.88 and 2.0

fm−1, respectively. Additionally,

the first six excited state of 4He are

included in the calculation.
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Figure 7. Left panel: Dependence of the n-4He phase shifts on the considered

target eigenstates. Results with only the g.s. of 4He (thin gray long-dashed lines) are

compared to those obtained by including in addition up to the 0+0 (thin black dashed

lines), 0−0 (thin violet lines), 2−0 (thick brown dotted lines), 2−1 (thick green long-

dashed lines), 1−1 (thick blue dashed lines), and 1−0 (thick red lines) excited states of
4He, respectively. Right panel: Comparison between the phase shifts obtained using

the NCSM/RGM (dashed blue lines) and NCSMC (continuous red lines) methods for

the 4He(p,p)4He reaction. The R-matrix analysis of data from Ref. [126] is shown

as guidance (purple crosses). In both calculations, the first five excited states of 4He

are included and the chiral NN+3N interaction SRG-evolved to a typical scale of 2

fm−1 is used. Additionally, in the NCSMC, all the influential NCSM eigenstates of 5Li

are accounted for. In both panels the model space is truncated at Nmax=13. Other

parameters are identical to those of the left panel of Fig. 5.

shifts, where they lead to an enhancement. Specifically, the resonance of the 2P3/2 wave

is strongly influenced by the inclusion of the JπT=2−0 state, while the 2P1/2 phase shift

is slowly enhanced near its resonance with the addition of the odd-parity states, among

which the 1− states have the strongest effect. On the other hand, the 2S1/2 wave is

Pauli blocked and mostly insensitive to these polarizations effects. However, despite the

inclusion of up to the first seven eigenstates of the 4He, overall the convergence is clearly

slow. This is further demonstrated by the right panel of Fig. 7, comparing NCSM/RGM

calculations (dashed blue lines) to the corresponding results obtained within the NCSMC

(continuous red lines) by including the same number of target eigenstates. Here, the

figure shows the phase shifts for a proton elastically colliding on a 4He target. We can see

that the coupling to the discrete 5Li NCSM eigenstates is instrumental to reproduce the

experimental phase shifts obtained from an R-matrix analysis of the data, in particular

the position and width of the resonances. More in detail, the inclusion of the eigenstates

of the compound nucleus tends to influence the resonances around the energy (Ekin)

corresponding to their eigenvalues Eλ. The more efficient simultaneous description

of both short and medium-to-long range correlations, and hence faster convergence,

obtained within the NCSMC approach [51] by augmenting the NCSM/RGM basis with

NCSM A-body eigenstates of the compound (here 5He) system is further demonstrated
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by the plot of Fig. 8. The convergence of the n−4He scattering phase shits with respect

to the number of target excitations included in the calculations is now excellent.

Similarly to this case, the distortion that arises from the projectile polarization can

play a role in scattering calculations. This is illustrated in Fig. 9 where the phase shifts

of a deuterium impinging on a 4He target computed within the NCSMC approach are

compared starting from the case where only the 2H g.s. is included in the model space, to

the case in which up to seven deuterium pseudo states in each of the influential channels

(3S1−3D1, 3D2 and 3D3−3G3) are considered. Stable results are found with as little as

three deuteron states per channel. This is a strong reduction of the d? influence with

respect to the NCSM/RGM study of Ref. [117], lacking the coupling of square-integrable
6Li eigenstates. Still, although the convergence in term of pseudo states is fast, their

effect cannot be entirely disregarded. This is due to the fact that the deuterium is only

bound by 2.224 MeV resulting in a very low breakup threshold for this reaction system.

In turn, it means that the system transitions from a two- to a three-body nature. Thus

the discretization of the deuterium continuum consists in an approximation above this

threshold, where the appropriate three-body asymptotic should be accounted for. Part

of these effects are absorbed in the coupling to the discrete 6Li eigenstates, but a true
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modeling of the system above 2.224 MeV of excitation energy should include a ternary

cluster basis.

2.8.2. Ternary clusters. For ternary clusters, we present convergence properties when

performing calculations with the NCSM/RGM basis alone. (The implementation of the

NCSMC within ternary clusters and its convergence behavior will be presented elsewhere

[121].) In this case, the asymptotic condition is reached for larger values of the matching

(hyper) radius a. This can be understood from the fact that for a three-cluster motion,

a large hyper radius can result from configurations in which two of the clusters are still

relatively close to each other. In practice the value of a and the number of radial mesh

points Ns needed to achieve convergence have to be carefully chosen for each partial wave

and tend to grow together with the value of Nmax and Next (the parameter introduced

to approximately describe the effect of the interaction between the two single-nucleon

clusters, see Sec. 2.5). Typically, a ranges between 30 and 45 fm and one needs on the

order of 60 ≤ Ns ≤ 130 radial mesh points to achieve convergence.

The convergence pattern with respect to the size of the HO model space is similar

to the one seen in the binary cluster case. Although, when studying continuum

states, the computational challenge of these calculations prevents us from obtaining

accurate quantitative results, the degree of convergence is sufficient to provide a very

good qualitative description of the continuum. As an example, in Fig. 10, we show

convergence of the 4He + n + n eigenphase shifts for Jπ = 1−, 0+, 2+ and 1+ channels

with respect to the size of the model space Nmax. Here, it can be seen that, despite

the lack of complete convergence, the presence of resonances is well determined as they

clearly appear even at low Nmax. This is easily seen in the right panel of the figure

where two 2+ resonances and one 1+ are shown. An approximate position and width of

those resonances can also be extracted.

It is important to additionally study the convergence of the results with respect

to the parameters that appear exclusively when performing a three-cluster calculation:

the maximum hypermomentum Kmax included in the hyperspherical expansion (52)

and the extended model space used for the description of the potential kernel (Next).

Further, one also has to consider the convergence with respect to the integration in the

hyperangles, which we perform numerically using a Chebyshev-Gauss quadrature and

is usually well under control using Nα = 40 angular mesh points.

In figure 11, we show the convergence pattern of the ground state energy of 6He

respect to Kmax and Next for an Nmax = 6 calculation. In both cases very stable results

are reached. It is found that for higher values of Nmax convergence patterns are very

similar, however convergence is reached at slighter higher values of the correponding

parameters.

When studying continuum states, the values needed in order to reach convergence

depend greatly on the particular channel that is being considered. For example, in

Fig. 12, convergence with respect to the maximum hypermomentun Kmax used in

the expansion (52) when calculating phase shifts is shown. For this parameter the
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Figure 10. (Color online) Convergence behavior of calculated 4He+n+n (a) Jπ = 1−

and (b) 0+ eigenphase shifts at Kmax = 19 and 28, respectively, and (c) 2+ and (d) 1+

diagonal phase shifts at Kmax = 20 with respect to the size Nmax of the NCSM/RGM

model space. For these calculations we used a matching radius of a = 30 fm, N = 60

Lagrange mesh points, and an extended HO model space of Next = 70.
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at Nmax = 6 within a 4He+n+n basis using a matching radius of a = 20 on (left

panel) the maximum value of the hypermomentum Kmax used in the HH expansion

(Next = 40) and (right panel) the size of the extended HO model space Next (results
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convergence pattern is very smooth, however, the particular value needed for Kmax in

order to reach convergence can be as low a 19 for the 1− channel or as high as 24 for

the 0+ case in an Nmax = 7 calculation.
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2.9. Electric dipole transitions in the NCSMC

The ab initio NCSMC approach, introduced in Sec. 2.6, provides an efficient

simultaneous description of bound and scattering states associated with a microscopic

Hamiltonian. It can thus be naturally applied to the description of radiative-capture

reactions, which involve both scattering (in the initial channels) and bound states (in

the final channels). While the main components of the formalism have been introduced

in Sec. 2.6, here we provide the algebraic expressions for the matrix elements – between

NCSMC basis states – of the electric dipole operator

~E1 = e
A∑
i=1

1 + τ
(3)
i

2

(
~ri − ~R(A)

c.m.

)
, (77)

(usually the dominant electromagnetic multipole at low excitation energies, when the

long wavelength limit applies) required to compute radiative-capture cross sections.

Here e is the electric charge, ~ri and τi are the position vector and isospin of the ith

nucleon, and

~R(A)
c.m. =

1

A

A∑
i=1

~ri (78)

the center of mass (c.m.) coordinate of the A-nucleon system. Working within a binary

cluster basis, it is convenient to re-write Eq. (77) in terms of three components: i) an
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operator acting exclusively on the first A − a nucleons (pertaining to the first cluster

or target); ii) an operator acting exclusively on the last a nucleons (belonging to the

second cluster or projectile); and, finally, iii) an operator acting on the relative motion

wave function between target and projectile:

~E1 = e

A−a∑
i=1

1 + τ
(3)
i

2

(
~ri − ~R(A−a)

c.m.

)
+ e

A∑
j=A−a+1

1 + τ
(3)
j

2

(
~ri − ~R(a)

c.m.

)
+ e

Z(A−a)a− Z(a)(A− a)

A
~rA−a,a . (79)

Here, ~R
(A−a)
c.m. and ~R

(a)
c.m. are the c.m. coordinates the (A − a)- and a-nucleon systems,

respectively, and ~rA−a,a = ~R
(A−a)
c.m. − ~R

(a)
c.m. is the relative displacement vector between

the two clusters, while Z(A−a) and Z(a) represent respectively the charge numbers of the

target and of the projectile. It can be easily demonstrated that Eqs. (77) and (79) are

exactly equivalent.

Noting that the dipole operator can be expanded in terms of spherical basis vectors

{êµ, µ = 0,±1} as ~E1 =
√

4π
3

∑
µME

1µêµ, with components

ME
1µ = e

A∑
j=1

1 + τ
(3)
j

2

∣∣~rj − ~R(A)
c.m.

∣∣Y1µ(
̂

rj −R(A)
c.m.) , (80)

it is convenient to introduce the reduced matrix elements between two bound states of

an A-body nucleus with spin Ji, parity πi, isospin Ti, energy Ei in the initial state and

Jf , πf , Tf , Ef in the final state:

BE1
fi ≡

〈
Ψ
J
πf
f Tf
A (Ef )

∣∣∣∣∣∣ME
1

∣∣∣∣∣∣ΨJ
πi
i Ti
A (Ei)

〉
(81)

=

√
2Jf + 1

C
JfMf

JiMi1µ

〈
Ψ
fMf

A (Ef )
∣∣∣e A∑

j=1

1 + τ
(3)
j

2

∣∣~rj − ~R(A)
c.m.

∣∣Y1µ(
̂

rj −R(A)
c.m.)

∣∣∣ΨiMi
A (Ei)

〉
.

In the second line of Eq. (81) we have introduced the short notation f(i) for the group

of quantum numbers {Jπf(i)f(i) Tf(i)} that will be used throughout the rest of this section.

In the NCSMC formalism the matrix element of Eq. (81) is given by the sum of four

components, specifically, the reduced matrix element in the NCSM sector of the wave

function, the “coupling” reduced matrix elements between NCSM and NCSM/RGM
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(and vice versa) basis states, and the reduced matrix element in the NCSM/RGM sector:

BE1
fi =

∑
λλ′

c∗fλ′ 〈Aλ
′J
πf
f Tf ||ME

1 ||AλJ
πi
i Ti〉 ciλ

+
∑
λ′ν

∫
drr2 c∗fλ′ 〈Aλ

′J
πf
f Tf ||ME

1 Âν ||Φi
νr〉

γiν(r)

r

+
∑
λν′

∫
dr′r′ 2

γ∗fν′ (r
′)

r′
〈Φf

ν′r′ ||Âν′M
E
1 ||AλJ

πi
i Ti〉 ciλ

+
∑
νν′

∫
dr′r′ 2

∫
drr2γ

∗f
ν′ (r

′)

r′
〈Φf

ν′r′ ||Âν′M
E
1 Âν ||Φi

νr〉
γiν(r)

r
. (82)

The algebraic expression for the reduced matrix elements in the NCSM sector

〈Aλ′Jπff Tf ||ME
1 ||AλJ

πi
i Ti〉 can be easily obtained working in the single-particle SD

harmonic oscillator basis. In the following, we consider the reduced matrix elements

in the NCSM/RGM sector. First, we notice that the inter-cluster antisymmetrizer

commutes with the A-nucleon ~E1 dipole operator of Eq. (77) and

〈Φf
ν′r′ ||Âν′M

E
1 Âν ||Φi

νr〉= 1
2

(√
A!

(A−a)!a!
〈Φf

ν′r′ ||Âν′M
E
1 ||Φi

νr〉+
√

A!
(A−a′)!a′!〈Φ

f
ν′r′||M

E
1 Âν ||Φi

νr〉
)
.

(83)

Second, using the ~E1 operator in the form of Eq. (79) we can rewrite, e.g., the first

matrix element in the right-hand side of Eq. (83) as:

〈Φf
ν′r′ ||Âν′M

E
1 ||Φi

νr〉 = 〈Φf
ν′r′ ||Âν′ e

A−a∑
i=1

1 + τ
(3)
i

2

∣∣∣~ri − ~R(A−a)
c.m.

∣∣∣Y1(
̂

~ri − ~R
(A−a)
c.m. )||Φi

νr〉

+ 〈Φf
ν′r′ ||Âν′ e

A∑
j=A−a+1

1 + τ
(3)
j

2

∣∣∣~rj − ~R(a)
c.m.

∣∣∣Y1(
̂

~rj − ~R
(a)
c.m.)||Φi

νr〉

+ e
Z(A−a)a− Z(a)(A− a)

A
〈Φf

ν′r′ ||Âν′ rA−a,aY1(r̂A−a,a)||Φi
νr〉 (84)

Given the long-range nature of the electric dipole operator and the fact that the effect

of the exchange part of the antisymmetrization operator is short-ranged, if there are no

allowed E1 transitions between the target (projectile) eigenstate in the initial state and

that in the final state (e.g., only positive-parity eigenstates of the target/projectile are

included in the model space), the first two terms on the right hand side of Eq. (84) are

expected to be negligible and one obtains:

〈Φf
ν′r′ ||Âν′M

E
1 ||Φi

νr〉 ' e
Z(A−a)a− Z(a)(A− a)

A
〈Φf

ν′r′ ||Âν′ rA−a,aY1(r̂A−a,a)||Φi
νr〉

= e
Z(A−a)a− Z(a)(A− a)

A

√
(2Ji + 1)(2Jf + 1)(2`+ 1) (−)s+Jf δTiTf

×
∑

˜̀

√
2˜̀+ 1

(
1 ` ˜̀

0 0 0

){
` s Ji

Jf 1 ˜̀

}
N f
ν′ν̃(r

′, r) r , (85)
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where all quantum numbers in the index ν̃ are identical to those in the index ν except

for the angular momentum `, which is replaced by ˜̀.

The “coupling” E1 reduced matrix elements between NCSM and NCSM/RGM

components of the basis can be derived making similar considerations:

〈Aλ′Jπff Tf ||ME
1 Âν ||Φi

νr〉

= 〈Aλ′Jπff Tf ||ÂνME
1 ||Φi

νr〉

= 〈Aλ′Jπff Tf ||Âν e
A−a∑
i=1

1 + τ
(3)
i

2

∣∣∣~ri − ~R(A−a)
c.m.

∣∣∣Y1(
̂

~ri − ~R
(A−a)
c.m. )||Φi

νr〉

+ 〈Aλ′Jπff Tf ||Âν e
A∑

j=A−a+1

1 + τ
(3)
j

2

∣∣∣~rj − ~R(a)
c.m.

∣∣∣Y1(
̂

~rj − ~R
(a)
c.m.)||Φi

νr〉

+ e
Z(A−a)a− Z(a)(A− a)

A
〈Aλ′Jπff Tf ||Âν rA−a,aY1(r̂A−a,a)||Φi

νr〉 . (86)

Once again, the first two terms in the right-hand side of Eq. (86) are expected to be

negligible provided there are no E1 transitions between the (A− a)-nucleon (a-nucleon)

eigenstates included in the model space. This can be easily understood by inserting – to

the left of the antisymmetrization operator – an approximate closure relationship with

respect to the binary cluster basis. In such a case, one can make the approximation:

〈Aλ′Jπff Tf ||ME
1 Âν ||Φi

νr〉 ' e
Z(A−a)a− Z(a)(A− a)

A
〈Aλ′Jπff Tf ||Âν rA−a,aY1(r̂A−a,a)||Φi

νr〉

(87)

= e
Z(A−a)a− Z(a)(A− a)

A

√
(2Ji + 1)(2Jf + 1)(2`+ 1) δTiTf

× (−)s+Jf
∑

˜̀

√
2˜̀+ 1

(
1 ` ˜̀

0 0 0

){
` s Ji

Jf 1 ˜̀

}
gfλ′ν(r) r ,

where gfλ′ν(r) = 〈Aλ′Jπff Tf |ÂνΦ
J
πf
f Tf
νr 〉 is the non-orthogonalized cluster form factor,

related to the form factor of Eq. (57) by the relationship

gλν(r) =
∑
ν′

∫
dr′r′ 2ḡλν′(r

′)N
1
2

ν′ν(r
′, r) , (88)

and ν̃ has the same meaning as in Eq. (85).

To summarize, in the following we provide the algebraic expressions for the reduced

matrix elements of theME
1 operator within the fully orthogonalized NCSMC basis, that

is:

B̄E1
fi =

(
c̄f χ̄f

)
N f−

1
2

(
Afi Bfi

B̄fi Cfi

)
N i−

1
2

(
c̄i

χ̄i

)
, (89)
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where c̄i(f) and χ̄i(f) are, respectively, the NCSM and NCSM/RGM components of the

orthogonal NCSMC basis function of Eq. (65), N f(i)−
1
2 the inverse-square roots of the

NCSMC norm kernel, defined in Eq. (61), and Afi, Bfi, B̄fi and Cfi four matrices given

by:

Afiλ′λ = 〈Aλ′Jπff Tf ||ME
1 ||AλJ

πi
i Ti〉 , (90)

Bfi
λ′µy =

∑
µ̃

∫
dỹ ỹ2 ḡfλ′µ̃(ỹ)Efi

µ̃µ(ỹ, y) (91)

B̄fi
µ′y′λ =

∑
µ̃′

∫
dỹ′ ỹ′ 2 Ēfi

µ′µ̃′(y
′, ỹ′) ḡiλµ̃′(ỹ

′) (92)

Cfi
µ′y′µy = 1

2

[
Efi
µ′µ(y′, y) + Ēfi

µ′µ(y′, y)
]
. (93)

Here, we have introduced the orthogonalized E1 integration kernel

Efi
µ′µ(y′, y) ' δTiTf

√
(2Ji + 1)(2Jf + 1)

∑
ν ˜̀

e
Z(A−a)a− Z(a)(A− a)

A

× (−)s+Jf
√

(2`+ 1)(2˜̀+ 1)

(
1 ` ˜̀

0 0 0

){
` s Ji

Jf 1 ˜̀

}

×
∫
dr r2N f

1
2
µ′ν̃(y

′, r) rN i−
1
2

νµ (r, y) , (94)

and its Hermitian conjugate

Ēfi
µ′µ(y′, y) = (−)Jf−Ji Eif

µµ′(y, y
′)

' δTiTf

√
(2Ji + 1)(2Jf + 1)

∑
ν′ ˜̀′

e
Z(A−a′)a

′ − Z(a′)(A− a′)
A

× (−)s
′+Jf

√
(2`′ + 1)(2˜̀′ + 1)

(
1 `′ ˜̀′

0 0 0

){
`′ s′ Jf

Ji 1 ˜̀′

}

×
∫
dr′r′ 2N f−

1
2

µ′ν′(y
′, r′) r′N i

1
2
ν̃′µ(r′, y) , (95)

where a′ is the mass number of the projectile in the final state, the quantum numbers

in the index ν̃ ′ are identical to those in the index ν ′ except for `′, which is replaced by
˜̀′, and the phase (−1)Jf−Ji is a result of the symmetry properties of the reduced matrix

elements of the ME
1 operator under Hermitian conjugation:

〈n′Jf ||ME
1 ||nJi〉 = (−1)Jf−Ji〈nJi||ME

1 ||n′Jf〉∗ . (96)

The formalism presented in this section for the matrix elements of the electric

dipole operator can be extended to any electromagnetic multipole of interest, although
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in general – different form the ~E1 case – the partition of the operator into terms acting

exclusively on the target, projectile and relative motion wave functions [see Eq. (79)] will

only be approximate. For a general multipole operator the assumption of zero internal

transitions between target’s (projectile’s) eigenstates used to arrive at Eqs. (85) and

(87) may also no longer be valid. In those instances, the matrix elements of the target’s

and projectile’s portion of the operators can be estimated by inserting an approximate

closure relationship with respect to the binary cluster basis.

3. Structure and reaction observables of light nuclei with chiral two- and

three-nucleon forces

Light nuclei exhibit strong clustering effects mostly due to the tightly bound alpha

particle, i.e., the 4He nucleus. One of the consequences is the presence of low-lying

thresholds resulting in few (or even no) bound states and many resonances at low

excitation energies. A realistic description of light nuclei must take into account the

presence of these thresholds and include a continuum description of the inter-cluster

motion. Further, it has been known for a long time that significant effects due to the

3N forces are manifest in the structure of p-shell nuclei. Consequently, for a realistic

description of light nuclei the 3N interactions should also be included. As described in

the previous section, we have now developed a capability to include both these aspects

in the NCSMC formalism. In this section, we present results for nucleon scattering on
4He and properties of A = 5 nuclei, for a simultaneous description of the structure of
6Li and the deuteron scattering on 4He, and for the structure of 9Be with a focus on

continuum and 3N-force effects.

3.1. Nucleon and deuterium scattering on s-shell targets

A few-nucleon projectile impinging on an s-shell target at low energy is among the most

suited systems to build the foundations of a theory designed to tackle simultaneously

bound and resonant states. Even in such a restricted mass region, nuclei exhibit a sharp

transition from a unit of MeV of binding energy per nucleons for the deuteron (d), to

7 MeV per nucleon for the α particle, thus indicating a leap from dilute systems to the

dense and tightly bound α particle. As a direct consequence the low-energy continuum

of 5He (5Li) consists of a single open channel per total angular momentum J and orbital

angular momentum `, up to an energy of 17.638 MeV (18.35 MeV) where the 3H(d,n)4He

(3He(d,p)4He) channel become energetically opened. These simple features have turned

this scattering system into the tool of choice to test ab initio structure augmented by a

reaction framework. Despite the conceptual simplicity of these two systems, it is only

recently that an ab initio description of the elastic collision of a neutron and a α particle

has been performed by Nollett et al. [53]. In the work of Nollett et al., the realistic two-

nucleon AV18 and two different (UIX and IL2) three-nucleon force models are employed.

The findings of Nollett et al. showed that an accurate three-nucleon interaction is
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crucial to reproduce the low-energy phase shifts, and spurred global interest on the

subject. In the meantime, the development of chiral Effective Field Theory[76] had

reached its maturity allowing nuclear physicists to unravel nuclear properties starting

from the fundamental theory of QCD [82]. These interactions are non-local by nature

and therefore difficult to implement in the Green’s Function Monte Carlo method used

by Nollett et al., but can be applied in the context of the NCSM/RGM, which is able to

address non-local interactions [49, 50, 116]. Nevertheless, using the GFMC framework,

a recent work of Lynn et al. [41] employed the local part of the chiral N2LO two-nucleon

interaction to describe this reaction system. Figure 13 shows the first application of the
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Figure 13. Computed 4He(n,n)4He

phase shifts obtained with the NC-

SMC using the SRG-evolved N3LO

NN interaction augmented with the

three-nucleon SRG-induced (NN, blue

dashed lines) and total NN+3N (con-

tinuous red lines) Hamiltonian. The R-

matrix analysis of data from Ref. [126]

is shown as guidance (purple crosses).

The results are computed in a HO

model of Nmax = 13 with a HO fre-

quency of ~Ω = 20 MeV, all the in-

fluential eigenstates of the compound

nuclei (5He) and only the g.s. of the

target nuclei are included. The SRG-

resolution scale is Λ = 2 fm−1, which,

for this system, approximates well a

unitary representation of the initial in-

teraction [116].

NCSMC to this reaction system. The calculated phase shifts are obtained with the SRG-

evolved N3LO two-nucleon chiral interaction supplemented by the induced three-nucleon

forces (blue dashed lines) and the complete NN+3N chiral interaction (continuous red

lines). At the present HO frequency (~Ω = 20 MeV) and SRG-resolution scale (Λ = 2

fm−1), the former and the latter are representations of the initial chiral NN and NN+3N

interaction, respectively, as the SRG unitarity is broken only mildly in this case (see

Fig. 6 as well as Figs. 6 and 7 in Ref. [116] and the related discussion). The observed

disagreement between the two-nucleon force model results and experiment, particularly

regarding the relative position of the P 3
2

to P 1
2

centroids, corroborates the conclusions

of Nollett et al. Accordingly, the inclusion of the chiral three-nucleon force is necessary

to the reproduction of the observed splitting between the P -waves and given that the

spin-orbit interaction is responsible of the fine tuning of the relative position of the 3
2

−

and 1
2

−
resonances, we conclude that the chiral three-nucleon force brings an important

part of the nuclear spin physics. Here we stress that it would not have been possible to

draw such conclusions working within the many-body model space of the NCSM/RGM,
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where it is difficult to account for the short-range many-body correlations. This is

exemplified by Figs. 7 and 8 of Sect. 2.8.

Therefore, the advent of the NCSMC treating on the same footing bound and

resonant states permits us to reach convergence with respect to the parameters of the

HO model space henceforth revealing insights into the details of the nuclear interaction.

A typical example of the precision that can be attained is displayed in Fig. 14. There, the
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Figure 14. The computed
1H(α,p)4He angular differential

cross-section at proton recoil angle

of ϕp = 4◦, 16◦, 20◦ and 30◦ as

a function of the proton incident

energy is plotted versus the data

(symbols) of Refs. [128–133]. Pa-

rameters of the computed angular

distributions are identical to those

of fig 13. (Figure adapted from

Ref. [134])

1H(α,p)4He angular differential cross-section calculated with the NCSMC is compared

to data of Refs. [128–133] for a set of proton recoil angles (ϕ). The range in energy

of the impinging α particle covers the 3
2

−
and 1

2

−
resonances where the cross section

deviates the most from the Rutherford limit (limit of structureless charged particle

scattering). Numerous experiments have been performed in this region to understand

the nuclear enhancement and thus obtain precise cross-section needed for Ion-Beam

Analysis. For instance, the cross section shown here are essential for the determination

of the concentration and depth of 4He impurity in superconductors used in fusion energy

research. Here, we benefit from the wealth of data and use it to probe the precision of

the (SRG-evolved NN+3N) nuclear force model. For almost all angles, the theoretical

results are within the error bars of data, and only at small angles we see disagreements

that could be related to the remaining inaccuracies of the interaction to reproduce the

centroid positions. Despite this, the present NCSMC formalism and the state-of-the-art

chiral interaction has reached the stage where it can be used as a predictive tool in

particular in light nuclei where the convergence and the SRG sensitivity is more-or-less

under control [134]. Furthermore, it is essential to stress that a consistent framework

for bound and resonant states is constitutive to the agreement of the cross section with

data. For instance, Fig. 7 in Sect. 2.8 sheds the light on the effects of the coupling to

the NCSM 5Li eigenstates.

In Fig. 15 the 4He(n,n)4He angular differential cross section and a polarization

observable (Ay) of Refs. [135–137] are compared to NCSMC results using the chiral

N3LO NN and its 3N induced interaction (dashed blue lines) and the full NN+3N

(continuous red lines), which includes the chiral N2LO 3N interaction. In panel (a), the

agreement between the NCSMC results and experiment is nearly within the error bars

of data and the effect of the initial three-nucleon force is almost indistinguishable. In
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Figure 15. Comparison between an-

gular differential cross-section and po-

larization observable for 4He(n,n)4He

computed with SRG-evolved N3LO

NN interaction augmented with the

three-nucleon SRG-induced (NN, blue

dashed lines) and total NN+3N (red

lines) Hamiltonian, and data (purple

crosses) from Refs. [135–137]. From

top to bottom, respectively, the an-

gular differential cross-section at neu-

tron incident energy of 17.6 MeV, the

polarization observable at 11 and 15

MeV are shown. Parameters of the

computed cross section are identical to

those of fig 13.

this respect, panels (b) and (c) give more insight as the Ay analyzing power is a more

sensitive probe of the spin-orbit force. In particular we can see that the differences

between the chiral two- and two-plus-three-nucleon force models are mostly concentrated

in the spin physics, which is better reproduced in the latter model. The remaining

disagreement with experiment, in particular in panel (b), hints that there is still room

for improvement of our understanding of the nuclear interaction. Additionally, we can

see that as the incident neutron energy increased from panels (b) to (c), the disagreement

between the NCSMC NN+3N and experiment widens. This is related to the missing

distortion effects induced by the closed but neighboring 3H(d,n)4He channel. This is

more readily visible in Fig. 16 where the total cross-section of the 5He continuum is

plotted up to 22 MeV of excitation energy. The calculated cross-sections correspond to

the phase shifts and angular distributions shown in Fig. 13 and 15 with the same color

coding. The calculations are compared to data (purple crosses) and R-matrix fit (black

line) from the ENDF library. Once again, the difference between the two nuclear force

models is apparent around the positions of the two low-lying resonances while, at higher

energies, the cross sections are indistinguishable and differences can only probe using

more sensitive observables such as the Ay shown in Fig. 15. We can see here that the
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Figure 16. Comparison between the

computed 4He(n,n)4He cross-section

obtained with the NCSMC using

the SRG-evolved N3LO NN interac-

tion augmented with the three-nucleon

SRG-induced (NN, blue dashed lines),

the total NN+3N (continuous red lines)

Hamiltonian, R-matrix analysis from

ENDF (black line) and data (purple

crosses). Parameters of the computed

cross section are identical to those of

fig 13.

enhancement of the cross-section due to d+3H fusion is already present in the NCSMC

calculation however at the wrong energy due to the lack of the appropriate 3H-d cluster

states in the basis, which encode the correct reaction threshold as well as escape width.

Along the path towards the treatment of 3H(d,n)4He transfer channel (or, in the

present case, d+3H fusion) within the NCSMC, the formalism needs to be extended

to treat two-nucleon projectile. In the NCSM/RGM framework, reaction channels are

treated as an essential building block of the theory and thus need to be implemented

incrementally as they become energetically relevant to the reaction mechanism (see for

instance Sects. 2.4 and 2.5). In addition to this technical aspect, among the possible two-

nucleon projectile only the deuteron is bound henceforth it can be observed in the final

state of a nuclear collision, though with its binding energy of 2.224 MeV, the deuteron is

likely to break into a neutron and a proton. Consequently, the problem takes on a three-

body nature and we have the additional challenge of accounting for the breakup channel.

However, below the breakup threshold we can incorporate the distortion effects through

the inclusion of pseudo-states of the deuterium (E > 0) such that the continuum is

discretized. Above the breakup threshold, we make an approximation using this scheme,

which should be tested with the implementation of the three-body cluster technique

described in Sect. 2.5. This approach is feasible and we have demonstrated in Sect. 2.8

that the combination of the NCSMC and the discretization of the deuteron continuum

results in a satisfactory convergence pattern and represents a reliable approximation

even above the breakup threshold (see Fig. 9). This step of extending the binary-cluster

to heavier projectile mass is necessary to address reaction systems where the compound

nuclei breaks apart ejecting, for instance, a deuteron.

As a summary of the power of the NCSMC using chiral NN+3N forces, we show

in Fig. 17, the low-lying spectrum of 6Li comparing the NCSM, experiment (black) and

NCSMC on the left, middle and right, respectively. All the influential NCSM eigenvalues

of 6Li and pseudo states of the deuteron are included. The chiral NN interaction (blue)

is compared to the chiral NN+3N (red) nuclear interaction. Both are softened via the

SRG method to a resolution scale of Λ = 2 fm−1 providing negligible four-body induced

effects for the energy of the lowest lying states in 6Li [104, 105]. We see that the three-
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the positive parity low-lying states

of 6Li and their width Γ computed

with (red lines) and without (blue

lines) the initial chiral 3N force, and

augmented (right-hand side) or not

(left-hand side) with the coupling

between NCSM/RGM and NCSM 6Li

wave functions within the NCSMC.

The NCSM extrapolated spectra (red

thick lines) towards Nmax → ∞ is

obtained using an exponential form.

All parameters are identical to those

of Fig 13 but the Nmax is limited, for

computational reasons, to 11 major HO

shell. (Figure adapted from Ref. [127])

nucleon force is essential to the reproduction of the g.s. energy of 6Li yielding −32.01

MeV compared to the experimental −31.994 MeV and, at the same time, to account for

the correct spacing between the 3+ and 2+ excited states, but slightly overestimates the

energy of the 3+ resonance by 350 keV. On the other hand, the comparison at a given

Nmax, i.e., without taking into account the Nmax extrapolation of the NCSM result (left

versus right spectra), shows that the NCSMC is able to grasp long-range correlations far

above the Nmax truncation of traditional NCSM. Nevertheless, once the eigenenergies of

the NCSM are extrapolated to Nmax →∞ (in the present case assuming an exponential

form) thus accounting for the finiteness of the HO model space, all but the high-energy

resonant states are reproduced. In fact due to their resonant nature, no bound-state

techniques, like the NCSM, is able to fully describe them. Accordingly, we can describe

the reaction observables using the same wave functions that yield Fig. 17 starting from

the elastic 4He(d,d)4He reaction. The corresponding S-, 3P0- and D-wave computed

phase-shifts are shown in panel (a) of Fig. 18. We use the same color coding as in

Fig. 17 for the NN+3N-ind and NN+3N nuclear force models. We find again that the

chiral 3N force affects essentially the splitting between the 3D3- and 3D2-partial waves,

which corresponds to the main difference between the two spectra at the right-hand side

of Fig. 17. Thus, owing to a fairly good reproduction of the g.s. and low-lying spectrum

of 6Li with the chiral NN+3N interaction model, we compare directly differential cross-

section to data of Refs. [140, 141] in panel (b). At the available experimental energies

of Ed = 2.93, 6.96, 8.97 and 12 MeV, the computed angular distribution reproduces

the bulk and resonant structure. However it would fail around the 3+ resonance due

to the remaining 350 keV discrepancy between NN+3N calculation and experiment. In

addition to the phase shifts shown in panel (a), the negative-parity partial-waves are

mandatory to the computation of the cross-section while the partial-wave expansion

runs up to J = 6.

Moreover, only in the NCSMC case do the wave functions present the correct
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Figure 18. (a) 4He(d,d)4He phase shifts computed with the SRG-evolved N3LO

NN interaction augmented with the three-nucleon SRG-induced (blue dashed lines)

and total NN+3N (red lines) Hamiltonian, compared to R-matrix fits of data (purple

crosses) from Refs. [138, 139]. In panel (b), the calculated c.m. angular distributions

(lines) is compared to the measured one (symbols) at Ed = 2.93, 6.96, 8.97 [140] and 12

MeV [141]. The cross sections are scaled by an appropriate factor to fit in the figure.

Other parameters are identical to those of Fig 17. (Figure adapted from Ref. [127])

asymptotic of the 6Li ground state, which is essential for the extraction of the asymptotic

normalization constant yielding a D- to S-state ratio of −0.027 in agreement with a

determination from 6Li-4He elastic scattering [142] and the value previously obtained

by Nollettet al. using variational Monte Carlo [143]. As shown in Refs. [117, 127] and

exemplified by Fig. 17, the combination of NCSMC and a realistic NN+3N force model

is essential to the reproduction of the cross-section of such a reaction system. This is

particularly true for an accurate description of the low-energy regime that is essential for

the determination of astrophysical S-factor or, in the present case, 2H(α,γ)6Li radiative

capture. This work demonstrates that the NCSMC is a technique capable of addressing

simultaneously bound and resonant states using the latest nuclear interaction fitted

on the A ≤ 3 nuclear properties. In the s-shell target sector, we are able to achieve

convergence within the computationally feasible model space henceforth providing a

stepping stone towards ab initio calculations of reaction observables of astrophysical

interest together with a test bed for further approximations required to address the

challenging p-shell target sector.

3.2. Nucleon scattering on p-shell targets

The efficient developments for treatments and inclusions of 3N interactions in ab initio

nuclear structure and reaction calculations allow to study continuum effects also for p-

shell targets. In the case of the single-nucleon projectile 3N interactions can be included

explicitly via the extended kernel calculations formalism introduced in Sec. 2.4.2 (see,



Unified ab initio approaches to nuclear structure and reactions 47

e.g., Eq. (32) and Refs. [116, 144]). As a first application of the NCSMC with 3N effects

the spectrum of 9Be is studied.

The 9Be spectrum is sensitive to the truncations of the localized HO model

space, as shown, in the convergence problems of previous NCSM calculations where

the positive-parity states were found too high in excitation energy compared to

experiment [145, 146]. The splitting between the lowest 5/2− and 1/2− states is found

overestimated in NCSM calculations using the INOY interaction model that includes

3N effects [145]. This splitting is also sensitive to the 3N interactions, as shown by

GFMC calculations [11]. The 3N contributions appeared to shift the splitting away from

experiment, highlighting deficiencies of the applied 3N force models. The spectrum of
9Be has also relevance for astrophysics by providing seed material for the 12C production

in the core collapse supernovae, via the (ααn,γ)9Be(α,n)12C reaction, an alternative

to the triple-α reaction [146–148]. In particular, the accurate description of the first

1/2+ state, relevant for the cross sections and reaction rates, poses a long standing

problem [146, 147, 149].

The starting point for the ab inito NCSMC calculations are the chiral NN

interaction at N3LO by Entem and Machleidt [82] combined with the local 3N interaction

at N2LO [83] with a cutoff Λcut,3N = 400 MeV [84] (see Sec. 2.1). This choice is motivated

by the observation that for Λcut,3N = 500 MeV the Hamiltonian tend to overbind the

n-8Be threshold by about 800 keV in calculations with the IT-NCSM at Nmax = 12 [144].

In addition, the NN and NN+3N interaction is softened by the SRG evolution, leading

to the NN+3N-ind and NN+3N-full Hamiltonian, respectively, as described in Sec. 2.2.

The 9Be spectrum is an ideal candidate for the NCSMC with explicit 3N interactions

using a single-nucleon-projectile channel, since only the ground-state is bound, while

all excited states are in the continuum above the n-8Be threshold energy, which is

experimentally located at 1.665 MeV [150].

The NCSMC wave function (55) in Sec. 2.6 consist of the eigenstates of the

compound system and the NCSM/RGM expansion of the cluster channel. For the first

term we include the first 4 positive and 6 negative parity eigenstates of 9Be obtained

with the NCSM. This selection consists of the 1/2+, 5/2+, 3/2+, 9/2+ and 3/2−, 5/2−,

1/2−, 3/2−, 7/2−, 5/2− states and contains all excited states up to 8 MeV above the

n-8Be threshold, which is consistent with experimental data [150]. Moreover, in the

NCSM calculations and experiment there is a gap of about 3 MeV between the included

second 5/2− state, and the next known resonance at 11.2 MeV. For the second term of

expansion (55) we restrict ourselves to channels with a single-neutron projectile and 8Be

target. For the target we include the 0+ ground state of 8Be, as well as its first excited

2+ state obtained from the NCSM.

To reduce the computational costs of the eigenstate calculations the importance

truncated NCSM (IT-NCSM) [17, 18] is used, which also simplifies the calculations

of the NCSM/RGM and NCSMC coupling kernels. This is because only relevant

Slater determinants are considered for the expansion of the eigenstates. The basis

reduction within the IT-NCSM has only a minor impact on the resonance positions in
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FIG. 2: (color online) Nmax dependence of NCSMC n-8Be eigen-
phase shifts. The left- and right-hand columns show the results
for the NN+3N-induced and NN+3N-full Hamiltonian, respectively.
Remaining parameters identical to Fig. 1.

the expansion of the computed eigenstates. As discussed in
Ref. [41] the IT-NCSM usually includes the a posteriori ex-
trapolation to the full NCSM space. For (eigen)phase shifts
we waive such extrapolations and use IT-NCSM eigenvec-
tors computed with the smallest importance thresholds κmin =
2 · 10−5 and Cmin = 10−4. We assess the quality of the IT in
Fig. 1 by direct comparison with phase shifts computed with
full NCSM vectors in the largest feasible model space, i.e.,
Nmax = 8. Overall, we find the (eigen)phase shifts with and
without the use of the IT on top of each other. The only excep-
tions are the 5

2
− and 7

2
− resonance positions near 7MeV for

which we find differences of about 100 keV, while the non-
resonant 52

− eigenphase shift is not affected. For the results
presented in the following we use IT-NCSM eigenvectors for
Nmax ≥ 7. Furthermore, we concentrate the following dis-
cussions on the physically more relevant eigenphase shifts,
while phase-shift plots are included in the Supplemental Ma-
terial [42].
Next, we analyze the convergence of the n-8Be eigenphase

shifts with respect to the HO model-space parameter Nmax.
In Fig. 2 we show the results for the NN+3N-induced and
NN+3N-full Hamiltonians. For negative parity changing the
model-space size almost exclusively affects the resonance po-
sitions. The typical convergence pattern shows a shift of the
resonance positions when going from Nmax = 8 to 10 but only
a minor change from the step to Nmax = 12. Exceptions are
the 7

2
− and the first 52

− resonances that are practically inde-
pendent of Nmax. We do not expect that an Nmax = 14 cal-
culation would significantly change the present results. Also
the positive-parity eigenphase shifts are most sensitive to the
model-space size near resonances. The sole exception is the
1
2
+ eigenphase shift that is affected at all energies. Overall,
the Nmax dependence is stronger than for the negative-parity
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FIG. 3: (color online) SRG flow-parameter dependence of the NC-
SMC n-8Be eigenphase shifts for the NN+3N-full Hamiltonian at
Nmax = 10 (11) for negative (positive) parity. Remaining parameters
identical to Fig. 1.

partial waves. Nevertheless, we use the Nmax = 11 results for
the investigation of the positive-parity spectrum of 9Be in the
following.
Since we use SRG-transformed Hamiltonians we check

the dependence of our results on the flow parameter α. Al-
though flow-parameter dependencies are typically negligible
in the domain of light nuclei [2, 40] and we employ the
3N interaction with cutoff Λ3N = 400MeV/c that addition-
ally reduces SRG-induced multi-nucleon forces [3], possible
non-convergences or inconsistent truncations may neverthe-
less cause α dependencies, cf. Refs. [6, 7, 10, 18]. Hence,
we study the n-8Be eigenphase shifts for flow parameters
α = 0.04, 0.0625, and 0.08 fm4 for the NN+3N-full Hamil-
tonian in Fig. 3. For negative parity we find only negligible
differences between the eigenphase shifts for α = 0.0625 and
0.08 fm4. In contrast, for α = 0.04 fm4 we observe larger de-
viations at least near resonances. This is most likely due to
the slower convergence of the many-body calculation for this
smaller flow-parameter as the direction of the deviations is
consistent with the Nmax-convergence pattern of Fig. 2. For
positive parity the overall conclusions are identical, however,
the differences are larger compared to the negative-parity re-
sults. Again this may be tied to the slower rate of convergence
we observed for positive parity in Fig. 2. For these reasons we
use α = 0.0625 fm4 in the following.
As argued above, contributions to the α dependence could

also originate from additional truncations. Although we ex-
ploit the JT -coupled storage scheme for the 3N matrix ele-
ments [2, 40] we have to truncate the set of 3N matrix el-
ements by specifying a maximum three-nucleon energy via
E3max ≤ e1 + e2 + e3 with ei as single-particle HO energy
quantum number. For all calculations presented here we use
E3max = 14. For the NCSM/RGM kernels H̄ we found almost
no dependence on E3max in calculations of neutron elastic scat-
tering on 4He [18]. The sensitivity of the NCSMC Hamilto-
nian form factors h̄ is still smaller, because of the Nmax trun-
cation of the composite eigenstates.

9Be Energy Levels. For a direct assessment of the im-
pact of the continuum and the 3N interactions on the 9Be en-
ergy levels, we extract the resonance centroids ER with corre-

Figure 19. NCSMC n-8Be eigenphase shifts for negative (top panels) and
positive (bottom panels) parity at Nmax = 6 − 12. The left- and right-hand
columns show the results for the NN+3N-ind and NN+3N-full Hamiltonian,
respectively. Remaining parameters are ~Ω = 20 MeV, Λ = 2.0 fm−1, and
E3max = 14. Same colors correspond to identical angular momenta. Figure
taken from [144].

the 9Be spectrum [144]. The convergence with respect to Nmax is illustrated in Fig. 19

for the positive- and negative-parity eigenphase shifts of n-8Be using the NN+3N-ind

and NN+3N-full Hamiltonian. The typical convergence pattern shows a shift of the

resonance positions when going from Nmax = 8 to 10 but only a minor change from the

step to Nmax = 12, indicating an approach to convergence. The eigenphase shifts are

most sensitive to the model-space size near resonances with the sole exception of the

1/2+ eigenphase shift, which is affected at all energies. Overall the eigenphase shifts

and the spectrum resulting from the resonance centroids are reasonably converged, in

particular for the negative parity states. An extensive study of the effect of incorporated

truncations can be found in Ref. [144].

In Fig. 20 we illustrate the excitation spectrum of 9Be, and compare the results

for the NCSM and NCSMC using the NN+3N-ind and NN+3N-full Hamiltonian. The
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FIG. 5: (color online) Negative (a) and positive (b) parity spec-
trum of 9Be relative to the n-8Be threshold at Nmax = 12 and 11,
respectively. Shown are NCSM (first two columns) and NCSMC
(last two columns) results compared to experiment [23]. First and
last columns contain the energies for the NN+3N-induced and the
second and fourth column for the NN+3N-full Hamiltonian, respec-
tively. Shaded areas denote the width of the energy levels. Remain-
ing parameters identical to Fig. 4.

conclusion would have been opposite based on the NCSM
alone, and highlights the importance of a proper treatment of
the continuum as in the NCSMC to correctly assess the role
of the 3N force. Interestingly, the 52

− resonance is not affected
at all by the inclusion of the chiral 3N interactions, and for
the 7

2
− state the energy shift caused by the chiral 3N interac-

tion has the wrong sign, hinting at possible deficiencies in the
spin-orbit structure of the initial Hamiltonian. In Fig. 5(b) we
find the positive-parity states with both methods rather insen-
sitive to initial 3N interactions. For the 9

2
+ and 3

2
+ states we

find slightly increased energies and minor effects for the 5
2
+

energy. The 1
2
+ state is particularly unaffected and remains

slightly above threshold in excellent agreement with experi-
ment for both Hamiltonians. Note, however, that we found
this state very weakly bound in calculations with NN forces
only (not shown).
Finally, for the NCSMC calculations in Fig. 5 we com-

pare the extracted resonance widths to experiment. Overall

the widths are of the same order of magnitude but typically
smaller than the experimental ones, except for the 9

2
+ and the

5
2
− resonances. For the 1

2
−, 12

+ and 5
2
+ widths we find good

agreement with experiment. In particular, the narrow 5
2
− reso-

nance with experimental width of 0.78 keV is also very narrow
in our NCSMC calculations. See Supplemental Material [42]
for a table of the extracted energies and widths.
Conclusions. We have generalized the NCSMC approach

to explicitly include 3N interactions with access to p- and
lower-sd-shell target nuclei, and have studied the energy spec-
trum of 9Be as first application. We have found significant
contributions of the continuum degrees of freedom, in par-
ticular for states with low angular momenta for which the
centrifugal barrier is small or nonexistent. The continuum
contributions significantly improve the model-space conver-
gence, such that the 9Be spectrum is essentially converged
at Nmax = 6. Furthermore, we have found the NCSMC par-
ticularly important for the assessment of the 3N interactions,
which can be misleading based on NCSM calculations alone.
With the NCSMC we found the chiral 3N interaction gener-
ally improving the agreement with experiment for the low-
energy spectrum of 9Be. The sole exception is the 7

2
− state,

which is rather insensitive to both additional continuum de-
grees of freedom and larger model spaces. Although we can-
not rule out the relevance of cluster structures beyond the
single-nucleon binary-cluster ansatz used here, one might ex-
pect larger sensitivities to the NCSM model-space size if such
structures were to be relevant. Therefore, the present devia-
tions from experiment are likely to be connected to deficien-
cies of the chiral NN+3N Hamiltonian.
Future work will use the 9Be wave function with proper

asymptotic behaviour with respect to the n-8Be threshold to
calculate various observables, including E1 transitions and
the n-8Be capture cross section. Furthermore, the formalism
will be generalized to multi-nucleon projectiles, namely the
deuteron, 3H, 3He and 4He.
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+ and the

5
2
− resonances. For the 1

2
−, 12

+ and 5
2
+ widths we find good

agreement with experiment. In particular, the narrow 5
2
− reso-

nance with experimental width of 0.78 keV is also very narrow
in our NCSMC calculations. See Supplemental Material [42]
for a table of the extracted energies and widths.
Conclusions. We have generalized the NCSMC approach

to explicitly include 3N interactions with access to p- and
lower-sd-shell target nuclei, and have studied the energy spec-
trum of 9Be as first application. We have found significant
contributions of the continuum degrees of freedom, in par-
ticular for states with low angular momenta for which the
centrifugal barrier is small or nonexistent. The continuum
contributions significantly improve the model-space conver-
gence, such that the 9Be spectrum is essentially converged
at Nmax = 6. Furthermore, we have found the NCSMC par-
ticularly important for the assessment of the 3N interactions,
which can be misleading based on NCSM calculations alone.
With the NCSMC we found the chiral 3N interaction gener-
ally improving the agreement with experiment for the low-
energy spectrum of 9Be. The sole exception is the 7

2
− state,

which is rather insensitive to both additional continuum de-
grees of freedom and larger model spaces. Although we can-
not rule out the relevance of cluster structures beyond the
single-nucleon binary-cluster ansatz used here, one might ex-
pect larger sensitivities to the NCSM model-space size if such
structures were to be relevant. Therefore, the present devia-
tions from experiment are likely to be connected to deficien-
cies of the chiral NN+3N Hamiltonian.
Future work will use the 9Be wave function with proper

asymptotic behaviour with respect to the n-8Be threshold to
calculate various observables, including E1 transitions and
the n-8Be capture cross section. Furthermore, the formalism
will be generalized to multi-nucleon projectiles, namely the
deuteron, 3H, 3He and 4He.
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Figure 20. Negative (a) and positive (b) parity spectrum of 9Be relative to the
n-8Be threshold at Nmax = 12 and 11, respectively. Shown are NCSM (first two
columns) and NCSMC (last two columns) results compared to experiment[150].
First and last columns contain the energies for the NN+3N-ind and the second
and fourth column for the NN+3N-full Hamiltonian, respectively. Shaded areas
denote the width of the energy levels. Remaining parameters are ~Ω = 20 MeV
and Λ = 2.0 fm−1. Figure taken from [144].

NCSMC experiment
9Be ER [MeV] Γ [MeV] ER [MeV] Γ [MeV]
5
2

+
3.39 0.17 1.38 0.28

3
2

−
-1.367 - -1.66 -

1
2

−
1.15 0.95 1.11 1.08

5
2

−
1.25 0.02 keV 0.76 0.78 keV

3
2

−
3.4 0.26 3.92 1.33

7
2

−
6.21 0.84 4.71 1.21

Table 1. Energies of the bound state and resonances relative to the n-8Be threshold

and resonance width in MeV for the NCSMC with the NN+3N-full Hamiltonian with

Λcut,3N = 400 MeV and Nmax = 11 and 12 for positive and negative parity states,

respectively. The values are extracted from the procedure described in the text and

compared to experiment [150].

resonance centroid ER is determined by the inflection point of the eigenphase shifts and

the width follows from Γ = 2/(dδ(Ekin)/dEkin)|ER=Ekin
with the eigenphase shifts δ in

units of radians [151]. The resonance positions and widths are summarized in Tab. 1.

Note, that the applied procedure for the determination ER and Γ is generally only valid

for narrow resonances that can be approximated by a Breit-Wigner shape. Thus, the

1/2+- and 3/2+-states as well as the broad resonances are not quoted in the table and

require more elaborated approaches [152], that are currently investigated [153]. The

positive-parity states in Fig. 20(b) with both methods are rather insensitive to initial
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3N interactions. On the other hand, for the negative parity states in Fig. 20(a), all

states, except the first 5/2− resonance, are sensitive to the inclusion of the initial chiral

3N interaction with effects of roughly similar size for both the NCSM and the NCSMC:

the inclusion of the chiral 3N interaction increases the resonance energies relative to

the threshold. For the NCSM calculations the agreement with experiment generally

deteriorates when the initial 3N interaction is included, while once the continuum effects

treated properly with the NCSMC the overall agreement clearly improves when the 3N

interaction is included.

In this context it is important to note that the NCSMC spectrum is reasonably

well converged, while the spectrum resulting from the pure (IT)-NCSM calculations is

poorly converging at similar Nmax values [144], such that conclusions about the impact

of 3N interactions are only reliable for investigations that cope with continuum effects.

Although the relevance of cluster structures beyond the single-nucleon binary-

cluster ansatz used here cannot be ruled out, one might expect larger sensitivities to the

NCSM model-space size if such structures were relevant. Therefore, even though one

has to be also wary of some impact of SRG transformations the present deviations from

experiment are likely to be connected to deficiencies of the chiral NN+3N Hamiltonian.

4. Ground and continuum states of the 6He nucleus

The lightest Borromean nucleus is 6He [154, 155], that makes it the perfect candidate to

be studied within the NCSM/RGM for three-cluster systems. Therefore the method was

first used in [120, 156] to study such nucleus. Both, its ground and continuum states have

been studied using a two-body interaction, namely the SRG evolved [68, 112] potential

obtained from the chiral N3LO NN interaction [82] with the evolution parameter Λ=1.5

fm−1. Using such a soft potential has the great advantage of providing fast convergence.

Furthermore, obtaining an accurate binding energy within the NCSM is possible and

therefore it provides a well-founded benchmark for the NCSM/RGM results.

For present calculations, only the ground state of 4He was included in the cluster

basis. The inclusion of some of its excited states may be necessary in order to take

into account all many-body correlations, however, it implies an increase in the size of

the problem that is not feasible given current computational capabilities. In order to

overcome this limitation, it is possible to use an extension of the NCSMC to ternary

cluster, in this case the NCSM eigenstates of the six-body system can compensate for

the missing many-body correlations. The extension of NCSMC to three-cluster systems

and its results for 6He will be presented elsewhere [121].

4.1. Ground state of 6He

We calculate the ground state (g.s.) of 6He by solving Eq. (49). The convergence of this

JπT = 0+1 state is studied with respect to all parameters included in the calculation.

Examples of this study are shown in section 2.8.2, where a good stability and convergence
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Nmax
4He-NCSM 6He-NCSM/RGM 6He-NCSM

6 −27.984 −28.907 −27.705

8 −28.173 −28.616 −28.952

10 −28.215 −28.696 −29.452

12 −28.224 −28.697 −29.658

Extrapolation −28.23(1) — −29.84(4)

Experimental −28.296 −29.268

Table 2. In the second column we show the convergence in terms of model space

size Nmax of ground state energy of 4He (in MeV) within the NCSM formalism. The

third column shows the same for 6He within the NCSM/RGM method. The last

column shows the 6He g.s. energies (in MeV) for a model space size of Nmax − 2. The

extrapolated values for the NCSM calculations to Nmax →∞ has been obtained by an

exponential fit using E(Nmax) = E∞ + a e−bNmax . In the last row, the experimental

values are shown.

with respect to the maximuun hypermomentum used in the expansion (52) and with

respect to the size of the extension of the model space (Next) is shown. In particular,

the NCSM/RGM convergence of the energy with respect to the size of the model space

is shown in the third column of Table 2. While the convergence is rather fast, the

obtained energy is about 1 MeV less bound compared to the expected result with the

NN potential used (i.e. from the extrapolated value obtained through NCSM shown

in the fourth column of Table 2). This missing binding energy gives a measure of the

effect of the many-body correlations that remain unaccounted for when using only the

ground state of 4He in the cluster basis. As shown in Ref. [121], the extrapolated NCSM

result for the binding energy is recovered, already at Nmax = 10, when working with the

NCSMC.

Despite the limitation of the NCSM/RGM as to obtaining the correct binding

energy due to the restrictions imposed in the cluster basis, i.e., the lack of inclusion

of excited states of the α core, the formalism gives rise to a wave function that has

the correct asymptotic behavior, which is included by construction when using the R-

matrix method. This is extremely important when describing halo nuclei such as 6He

that exhibit an extended tail. This is a great advantage with respect to the NCSM that

yields Gaussian asymptotic behavior due to the expansion over HO basis states.

Plotting the probability distribution (or probability density) provides a visual

description of the structure of the 6He g.s., in particular, it gives an idea of the

distribution of the neutrons respect to the α core. In Fig. 21, we show such distribution

which presents two peaks corresponding to the characteristic di-neutron (two neutrons

close together) and cigar (two neutrons far apart in opposite sides of the α particle)

configurations of 6He.
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Figure 21. Probability distribution (left) and its contour diagram (right) for the

main component of the 4He+n+n relative motion wave function for the JπT = 0+1

ground state. The quantum numbers corresponding to this component are S = L =

`x = `y = 0. Here rnn =
√

2 ηnn and rα,nn =
√

3/4 ηα,nn are respectively the distance

between the two neutrons and the distance between the c.m. of 4He and that of the

two neutrons. Figures first appeared in [120].

4.2. 4He+n+n Continuum

For the study of the contiuum of 6He, we used the same NN potential we used in the

previous section, which allows our results to reach convergence in the HO expansions

within Nmax ∼ 13 (the largest model space currently feasible). We solve Eqs. (54)

using the corresponding asymptotic conditions (67) in order to obtained the three-body

phase shifts for the Jπ = 0±, 1± and 2± channels. The phase shifts can be extracted

either from the diagonal elements of the scattering matrix (diagonal phase shifts) or

from its diagonalization (eigenphase shifts), however, when large off-diagonal couplings

are present, the use of eigenphase shifts is more appropriate.

From the behavior of the phase shifts it is possible to identify the presence of

resonances in the different channels. In Fig. 22, we show in the left hand panel the

positive and negative parity eigenphase shifts as a function of the kinetic energy Ekin

with respect to the two-neutron emission threshold, while in the right hand panel, we

show the energy spectrum for 6He, the energies and widths of the resonances were

extracted from the phase shifts obtained for the corresponding channels.

We found several resonances, in particular we found two resonances in the 2+

channel, which include the well-known narrow 2+
1 and the recently measured broader

2+
2 . Additional resonances were located in the 2−, 0− and 1+ channels. However, we did

not find a resonance in the 1− channel, and therefore our results do not support the idea
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Figure 22. In the left, calculated 4He+n+n (a) positive- and (b) negative-parity

attractive eigenphase shifts as a function of the kinetic energy Ekin with respect to the

two-neutron emission threshold. In the right, energy spectrum obtained from those

phase shifts, compared to the most recent experimental spectrum [157]. Figures first

appeared in [156].

that the accumulation of dipole strength at low energy is originated by a three-body

resonance in this channel.

5. The 7Be(p, γ)8B radiative capture

The core temperature of the Sun can be determined with high accuracy through

measurements of the 8B neutrino flux, currently known with a ∼ 9% precision [158].

An important input in modeling this flux are the rates of the 3He(α, γ)7Be and the
7Be(p, γ)8B radiative capture reactions [159, 160]. The 7Be(p, γ)8B reaction constitutes

the final step of the nucleosynthetic chain leading to 8B. At solar energies this reaction

proceeds by external, predominantly nonresonant E1, S- and D-wave capture into the

weakly-bound ground state (g.s.) of 8B. Experimental determinations of the 7Be(p, γ)8B

capture include direct measurements with proton beams on 7Be targets [161–164] as well

as indirect measurements through the breakup of a 8B projectile into 7Be and proton

in the Coulomb field of a heavy target [165–169]. Theoretical calculations needed to

extrapolate the measured S-factor to the astrophysically relevant Gamow energy were

performed with several methods: the R-matrix parametrization [170], the potential

model [171–173], microscopic cluster models [174–176] and also using the ab initio no-

core shell model wave functions for the 8B bound state [177]. The most recent evaluation

of the 7Be(p, γ)8B S-factor (proportional to the cross section) at zero energy, S17(0), has

a ∼10% error dominated by the uncertainty in theory [159, 160].

We performed many-body calculations of the 7Be(p, γ)8B capture within the
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Figure 23. Dominant

P -wave components of

the 2+ 8B g.s. wave func-

tion for Nmax = 10 and

~Ω = 18 MeV, using the

SRG-N3LO NN poten-

tial with Λ = 1.86 fm−1.

The NCSM/RGM calcu-

lation includes 7Be g.s.

and 1/2−, 7/2−, 5/2−1
and 5/2−2 excited states.

Figure from Ref. [178].

NCSM/RGM starting from a NN interaction that describes two-nucleon properties with

a high accuracy [178]. In particular, we used an SRG evolved chiral N3LO NN [82] and

chose the SRG evolution parameter Λ so that the experimental separation energy (s.e.)

of the 8B weakly bound 2+ ground-state with respect to the 7Be+p is reproduced in the

largest-space calculation that we were able to reach. We note that for the calculation

of the low-energy behavior of the S17 S-factor, a correct s.e. is crucial. Using the five

lowest eigenstates of 7Be (i.e., 3/2− g.s. and 1/2−, 7/2−, 5/2−1 and 5/2−2 excited states)

in the Nmax=10 model space and solving the NCSM/RGM equations with bound-state

boundary conditions we were able to reproduce experimental s.e. for Λ = 1.86 fm−1.

In Fig. 23, we plot the most significant components of the radial wave functions χ(r)

for the 2+ g.s. of 8B. The dominant component is clearly the channel-spin s=2 P -wave

of the 7Be(g.s.)-p that extends to a distance far beyond the plotted range. Remarkably,

we notice a substantial contribution from the 7Be(5/2−2 )−p P -wave in the channel spin

s=2. (The other possible s=3 P -wave configuration is negligible). At the same time,

the 7Be 5/2−2 state is dominated by a 6Li-p channel-spin s=3/2 P -wave configuration.

Within the NCSM framework relevant to the present calculations this was shown (for

the mirror 7Li-n system) in Ref. [179]. Therefore, such a large contribution of the

s=2 7Be(5/2−2 )−p P -wave to the 8B ground state seems to indicate the presence of

two antiparallel protons outside of a 6Li core, and that their exchanges are important.

Clearly, for a realistic description of the 8B g.s., this state must be taken into account.

Next, using the same NN interaction, we solve the NCSM/RGM equations with

scattering-state boundary conditions for a chosen range of energies and obtain scattering

wave functions and the scattering matrix. The resulting phase shifts and cross sections

are displayed in Fig. 24. All energies are in the center of mass (c.m.). We find several

P -wave resonances in the considered energy range. The first 1+ resonance, manifested

in both the elastic and inelastic cross sections, corresponds to the experimental 8B 1+

state at Ex=0.77 MeV (0.63 MeV above the p-7Be threshold) [150]. The 3+ resonance,

responsible for the peak in the elastic cross section, corresponds to the experimental 8B
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(a) diagonal phase shifts

of p-7Be elastic scat-

tering and the inelas-

tic 7Be(p,p′)7Be(1/2−)

cross section (b). Cal-

culations as described in

Fig. 23. Figure adapted

from Ref. [178].

3+ state at Ex=2.32 MeV. However, we also find a low-lying 0+ and additional 1+ and

2+ resonances that can be distinguished in the inelastic cross section. In particular, the

s=1 P -wave 2+ resonance is clearly visible. There is also an s=2 P -wave 2+ resonance

with some impact on the elastic cross section. These resonances are not included in

the current A=8 evaluation [150]. We note, however, that the authors of the recent

Ref. [180] do claim observation of low-lying 0+ and 2+ resonances based on an R-matrix

analysis of their p-7Be scattering experiment. Their suggested 0+ resonance at 1.9 MeV

is quite close to the calculated 0+ energy of the present work.

With the resulting bound- and scattering-state wave functions that are properly

orthonormalized and antisymmetrized, we calculate the 7Be(p,γ)8B radiative capture

using a one-body E1 transition operator. We use the one-body E1 operator defined

in Eq. (77) that includes the leading effects of the meson-exchange currents through

the Siegert’s theorem. The resulting S17 astrophysical factor is compared to several

experimental data sets in Figure 25. In the data, one can see also the contribution

from the 1+ resonance due to the M1 capture that does not contribute to a theoretical

calculation outside of the resonance and is negligible at astrophysical energies [159, 160].

Our calculated S-factor is somewhat lower than the recent Junghans data [164] but the

shape reproduces closely the trend of the GSI data [168, 169], which were extracted

from Coulomb breakup. The shape is also quite similar to that obtained within the

microscopic three-cluster model [176] (see the dashed line in Fig. 25 (a)) used, after

scaling to the data, in the most recent S17 evaluation [159]. The contributions from the
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initial 1−, 2− and 3− partial waves are shown in panel (b) of Fig. 25.

An interesting feature of the S-factor is its flattening around 1.5 MeV. As seen in

Fig. 25 (b), this phenomenon is due to the S-wave contribution that dominates the Ji=2−

and 1− partial waves at low energies. The increase of flattening with the number of 7Be

eigenstates included in the calculation, see Fig. 5 in Ref. [178], indicates that this is

an effect due to the many-body correlations. This finding corroborates the observations

of Ref. [176], where the flattening was attributed to the deformation of the 7Be core.

We also note that the flattening found in the present work is slightly larger than that

obtained in the microscopic three-cluster model of Ref. [176]. Presumably, this is because

in the three-cluster model the 7Be structure was assumed to be of 3He-4He nature only,

while the NCSM wave functions include in addition 6Li-p configurations, particularly

for the 5/2−2
7Be state, as discussed earlier.

The convergence of our results with respect to the size of the HO model space

was assessed by means of calculations up to Nmax=12 within the importance-truncated

NCSM with (due to computational limitations) only the first three-eigenstates of 7Be.

The Nmax=10 and 12 S-factors are very close. As for the convergence in the number of
7Be states, we explored it by means of calculations including up to 8 7Be eigenstates in

a Nmax=8 basis (larger Nmax values were out of reach with more then five 7Be states).

Based on this analysis, we estimated the uncertainty of the obtained S-factor. Finally,

our calculated S17(0)=19.4(7) eV b is on the lower side, but consistent with the latest

evaluation 20.8± 0.7(expt)± 1.4(theory) eV b [159, 160].

The calculations discussed in this section and published in Ref. [178] can and will

be further improved. In particular, we should include the 3N interaction, both the

chiral 3N as well as the induced 3N from the SRG transformation. This is a neccessary

step towards an ab initio description. As demonstrated in Sec. 3.2 in calculations for
9Be, we have now developed the capability to do that. Also, to further improve the
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convergence of the capture calculations, we should utilize the NCSMC expansion of

the wave functions rather than just the NCSM/RGM. Again, this has been developed

including the capability to calculate the E1 andM1 contributions to the capture S-factor

as discussed in Sections 2.6 and 2.9.

Concerning the related reaction, 3He(α, γ)7Be, we have already performed

calculations of its S-factor using similarly the SRG evolved chiral EFT NN interaction

this time, however, within the NCSMC formalism [153]. Actually, for the 3He-
4He system, we would be unable to achieve any reasonable convergence within the

NCSM/RGM alone for technical reasons. The application of the NCSMC becomes

unavoidable in this case. We plan to include the 3N interactions also for this reaction

in the future, most likely using the normal-ordering approximation.

6. The 3H(d, n)4He fusion

The 3H(d,n)4He and 3He(d,p)4He reactions are leading processes in the primordial

formation of the very light elements (mass number, A ≤ 7), affecting the predictions

of Big Bang nuleosynthesis for light nucleus abundances [181]. With its low activation

energy and high yield, 3H(d,n)4He is also the easiest reaction to achieve on Earth,

and is pursued by research facilities directed toward developing fusion power by either

magnetic (e.g. ITER) or inertial (e.g. NIF) confinement. The cross section for the

d+3H fusion is well known experimentally, while more uncertain is the situation

for the branch of this reaction, 3H(d, γn)4He that produces 17.9 MeV γ-rays [182,

183] and that is being considered as a possible plasma diagnostics in modern fusion

experiments. Larger uncertainties dominate also the 3He(d,p)4He reaction that is known

for presenting considerable electron-screening effects at energies accessible by beam-

target experiments. Here, the electrons bound to the target, usually a neutral atom

or molecule, lead to increasing values for the reaction-rate with decreasing energy,

effectively preventing direct access to the astrophysically relevant bare-nucleus cross

section. Consensus on the physics mechanism behind this enhancement is not been

reached yet [184], largely because of the difficulty of determining the absolute value of

the bare cross section.

Past theoretical investigations of these fusion reactions include various R-matrix

analyses of experimental data at higher energies [185–188] as well as microscopic

calculations with phenomenological interactions [189–191]. However, in view of

remaining experimental challenges and the large role played by theory in extracting the

astrophysically important information, it is highly desirable to achieve a microscopic

description of the 3H(d,n)4He and 3He(d,p)4He fusion reactions that encompasses the

dynamic of all five nucleons and is based on the fundamental underlying physics: the

realistic interactions among nucleons and the structure of the fusing nuclei.

We made the first step in this direction by performing NCSM/RGM calculations

using a realistic NN interaction [192]. We started from the SRG-evolved chiral N3LO

NN interaction [82] with Λ=1.5 fm−1, for which we reproduce the experimental Q-values
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tic n-4He phase shifts. The
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clei in their g.s. The full

lines represent calculations
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NN potential with Λ=1.5

fm−1 and the HO space with

Nmax=12 (Nmax=13 for the

negative parity) and ~Ω=14

MeV were used. Figure

adapted from Ref. [192].

of both reactions within 1%. This interaction, at the same time, provides an accurate

description of the two-nucleon scattering data and of the deuteron properties. The

NCSM/RGM calculations were performed starting from eigenstates of the interacting

nuclei, i.e. 2H, 3H, 3He and 4He, calculated within the NCSM with the above NN

interaction. Important for determining the magnitude of the fusion reactions considered

here is the Coulomb interaction. The NCSM/RGM (and the NCSMC) allows for a

proper handling of such interaction (particularly its long-range component, which is

treated exactly), as described in Sec. 2.4 (see Eqs. (14)-(16)). Further, even though the

fusion proceeds at very low energies, the deformation and virtual breakup of the reacting

nuclei cannot be disregarded, particularly for the weakly-bound deuteron. A proper

treatment of deuteron-breakup effects requires the inclusion of three-body continuum

states (neutron-proton-nucleus) and is very challenging. In the first fusion application

we limited ourselves to binary-cluster channels and approximated virtual three-body

breakup effects by discretizing the continuum with excited deuteron pseudostates,

strategy that proved successful in our d-4He calculations as demonstrated in Sec. 3.1.

Also in Sec. 3.1, we discussed the nucleon-4He scattering phase shifts calculated

by considering only the n(p)-4He binary cluster channels. Here, we extend those

calculations by including the coupling to the d-3H (d-3He) channels. The impact of

this coupling can be judged (in the n-4He case) from Fig. 26. Besides a slight shift of

the P -wave resonances to lower energies, the most striking feature is the appearance of a

resonance in the 2D3/2 partial wave, just above the d-3H (d-3He) threshold. The further

inclusion of distortions of the deuteron via an 2H 3S1-3D1 pseudostate (d∗), enhances

this resonance. By investigating also the d-3H(3He) scattering, we find a resonance in

the 4S3/2 channel, i.e., an S-wave between the d and 3H(3He) with their spins aligned, at

the same energy where we observe a resonance in the 2D3/2 n(p)-4He phase shift. This

resonance is further enhanced by distortions of the deuteron. On the contrary, when the
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spins of the d and 3H(3He) are opposite, i.e., in the 2S1/2 channel, the Pauli blocking

causes a repulsion between the two nuclei.

The 3H(d,n)4He and 3He(d,p)4He fusion (or more accurately transfer) reactions

cross sections are then strongly enhanced near the resonance energy (experimentally at

50 keV and 200 keV, respectively). The fusion at the resonance proceeds from the 4S3/2

d-3H(3He) channel to the 2D3/2 n(p)-4He channel with a realease of large amount of

energy due to the dramatic difference in the threshold energies of the two binary-cluster

systems (17.6 MeV and 18.35 MeV, respectively). Our calculated S-factors (proportional

to the cross sections) are shown in Figs. 27 and 28. In paticular, Fig. 27 presents

results obtained for the 3He(d, p)4He S-factor. The deuteron deformation and its virtual

breakup, approximated by means of d pseudostates, play a crucial role. The S-factor

increases dramatically with the number of pseudostates until convergence is reached for

9d∗ + 5d′∗. The dependence upon the HO basis size is illustrated by the 3H(d, n)4He

results of Fig. 28. The convergence is satisfactory and we expect that an Nmax = 15

calculation, which is currently out of reach, would not yield significantly different

results. The experimental position of the 3He(d, p)4He S-factor is reproduced within

few tens of keV. Correspondingly, we find an overall fair agreement with experiment

for this reaction, if we exclude the region at very low energy, where the accelerator

data are enhanced by laboratory electron screening. The 3H(d, n)4He S-factor is not

described as well with Λ = 1.5 fm−1, see Fig. 2(a) in Ref. [192]. Due to the very

low activation energy of this reaction, the S-factor (particularly peak position and

height) is extremely sensitive to higher-order effects in the nuclear interaction, such

as three-nucleon force (not included in this calculation) and missing isospin-breaking
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effects in the integration kernels (which are obtained in the isospin formalism). To

compensate for these missing higher-order effects in the interaction and reproduce the

position of the 3H(d, n)4He S-factor, we performed additional calculations using lower

Λ values. This led to the theoretical S-factor of Fig. 28 (obtained for Λ = 1.45 fm−1),

that is in overall better agreement with data, although it presents a slightly narrower

and somewhat overestimated peak. This calculation would suggest that some electron-

screening enhancement could also be present in the 3H(d, n)4He measured S factor below

≈10 keV c.m. energy. However, these results cannot be considered conclusive until more

accurate calculations using a complete nuclear interaction are performed.

Overall, however, the results discussed above and published in Ref. [192] are

promising and pave the way for microscopic investigations of polarization and electron

screening effects, of the 3H(d,γn)4He bremsstrahlung and other reactions relevant to

fusion research that are less well understood or hard to measure. Due to the rapid

progress in the formulation and implementation of our formalism, we are in a position

to perform significantly improved calculations for these reactions within the NCSMC

formalism outlined in the previous sections of this paper. By coupling the NCSM/RGM

binary-cluster basis with the NCSM eigenstates for 5He (5Li) will take into account

more five-nucleon correlations and polarization of not just the deuteron but also of

the 3H(3He) and the 4He at and near the resonance energy and further improve the

converence of the calculations compared to those discussed in this section. Further,

since we developed the capability to include the 3N interaction in the NCSMC (for both

the single-nucleon and the deuteron projectiles) we are in a position to calculate the
3H(d,n)4He and 3He(d,p)4He fusion with a realistic chiral EFT NN+3N Hamiltonian.

Work in this direction is under way with the first preliminary results published in
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Ref. [193]. In Fig. 29, we present the n-4He scattering phase shifts obtained within the

NCSMC wih the chiral NN+3N interaction with Λcut,3N=500 MeV. The phase shifts

are comparable to those shown in Fig. 26. The difference is, however, that now we are

not fine-tuning the SRG parameter Λ. We selected a standard value, Λ=2 fm−1, and

checked that phase shift and resonance position results are less sensitive to variations

of the Λ compared to the NN-only case of Fig. 26. This was done in particular by

repeating calculations using Λ=1.7 fm−1. More on the SRG Λ sensitivity of nucleon-
4He phase shifts, see Fig. 6 and the discussion in Ref. [116]. Despite the fairly small size

of the HO basis, the calculation is in close agreement with experiment. In particular,

besides a slight shift of the P -wave resonances to lower energies, the inclusion of d+3H

channels leads to the appearance of a resonance in the 2D3/2 partial wave, just above the

d+3H threshold. This is the exit channel of the deuterium-tritium fusion. What is in

particular encouraging is the fact that the resonance appears close to the experimental

resonance energy. It is a consequnce of the chiral NN+3N interaction rather than of an

SRG fine-tuning.

It should be noted that the (d,p), (d,n) transfer reaction formalism can be readily

generalized for A>5 masses. We took the first steps in that direction and investigated

the 7Li(d,p)8Li reaction witin the NCSM/RGM [194].

7. Conclusions and outlook

Ab initio theory of light and medium mass nuclei is a rapidly evolving field with many

exciting advances in the past few years. Several new methods have been introduced

capable to describe bound-state properties of nuclei as heavy as nickel. Similarly, there

has been a significant progress in calculations of unbound states, nuclear scattering and

reactions, mostly in light nuclei so far.

In this contribution, we reviewed the recently introduced unified approach to

nuclear bound and continuum states based on the coupling of a square-integrable

basis (A-nucleon NCSM eigenstates), suitable for the description of many-nucleon

correlations, and a continuous basis (NCSM/RGM cluster states) suitable for a

description of long-range correlations, cluster correlations and scattering. This ab initio

method, the No-Core Shell Model with Continuum, is capable of describing efficiently:

i) short- and medium-range nucleon-nucleon correlations thanks to the large HO basis

expansions used to obtain the NCSM eigenstates, and ii) long-range cluster correlations

thanks to the NCSM/RGM cluster-basis expansion.

We demonstrated the potential of the NCSMC in calculations of nucleon scattering

on 4He, in highlighting the connection between the deuteron scattering on 4He and the

structure of 6Li, and in studying the continuum and 3N effects in the structure of 9Be.

We further presented the extension of the formalism to three-body cluster systems and

discussed in detail calculations of bound and resonance states of the Borromean halo

nucleus 6He.

We introduced in this paper the formalism for electromagnetic transition
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calculations within the NCSMC and reviewed our first application to reactions important

for astrophysics, the 7Be(p, γ)8B radiative capture. We also discussed our past and

ongoing calculations of the 3H(d, n)4He transfer reaction relevant to future energy

generation on Earth.

The NCSMC is a versatile method with many applications. We are developing the

formalism needed to study transfer (d, p), (d, n) and (p, t) reactions frequently used in

radioactive beam experiments. We will extend the calculations throughout the p-shell

and light sd-shell nuclei and investigate (p, γ), (α, γ) and (n, γ) capture reactions relevant

to nuclear astrophysics. We will investigate the bremsstrahlung process 3H(d, nγ)4He

relevant to the fusion research. We will calculate weak decays relevant to testing of

fundamental symmetries such as the 6He beta decay that is being measured with high

precision at present.

Our long-term goals are then studies of systems with three-body clusters, in

particular the Borromean exotic nucleus 11Li, and in general reactions with three-body

final states such as 3He(3He,2p)4He. Ultimate goal for the forseeable future is to study

alpha clustering, e.g., in 12C and 16O, and reactions involving 4He, e.g., 8Be(α, γ)12C,
12C(α, γ)16O important for stellar burning, the 11B(p, α)8Be aneutron reaction explored

as a candidate for the future fusion energy generation as well as the 13C(α, n)16O relevant

to the i- and s-processes. The first two of these reactions were identified as one of the

drivers of exascale computing [195].
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Lett. 90(23) 232501 URL http://link.aps.org/doi/10.1103/PhysRevLett.90.232501

[170] Barker F 1995 Nuclear Physics A 588 693 – 705 ISSN 0375-9474 URL

http://www.sciencedirect.com/science/article/pii/037594749500021R

[171] Robertson R G H 1973 Phys. Rev. C 7(2) 543–547 URL

http://link.aps.org/doi/10.1103/PhysRevC.7.543

[172] Typel S, Wolter H and Baur G 1997 Nuclear Physics A 613 147 – 164 ISSN 0375-9474 URL

http://www.sciencedirect.com/science/article/pii/S0375947496004150

[173] Davids B and Typel S 2003 Phys. Rev. C 68(4) 045802 URL

http://link.aps.org/doi/10.1103/PhysRevC.68.045802

[174] Descouvemont P and Baye D 1994 Nuclear Physics A 567 341 – 353 ISSN 0375-9474 URL

http://www.sciencedirect.com/science/article/pii/0375947494901538
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