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1 Introduction

Weak boson production processes, qq → W + X and qq → Z/γ∗ + X, play an important

role at hadron colliders. Their clean leptonic final states allow for precise measurements

with small experimental uncertainties that can be compared to theoretical predictions.

In proton-proton collisions, the W and Z bosons (denoted as V) are produced with zero

transverse momentum pT at leading order (LO). In a fixed-order perturbation theory, such

a description shows a divergent behaviour of the pT spectrum in the low-pT region, which

is sensitive to initial-state radiation and nonperturbative effects [1]. The high-pT region is

more sensitive to perturbative effects [2]; thus the experimental measurement of pV
T consti-

tutes a crucial test for both nonperturbative and perturbative quantum chromodynamics

(QCD) calculations.

This paper reports a measurement of the W and Z boson pT spectra and their ratios

via electron and muon decay channels for the W and the muon decay channel for the

Z boson within identical lepton fiducial volumes. The low-pileup data sample used in
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this analysis was collected during low instantaneous luminosity proton-proton collisions at√
s = 8 TeV [3]. This sample corresponds to an integrated luminosity of 18.4 pb−1 and

typically has only 4 collisions per bunch crossing (pileup) resulting in less background and

improved resolution compared to ref. [4]. A finer binning at low Z boson pT and a lower

lepton pT threshold of 20 GeV compared to the 25 GeV of ref. [4] also provide improvements

over ref. [4].

The CDF and D0 Collaborations at the Fermilab Tevatron measured the W boson

transverse momentum distribution in proton-antiproton collisions at
√
s = 1.8 TeV [5, 6]

and the inclusive W and Z boson cross sections using the electron and muon decay channels

at
√
s = 1.96 TeV [7]. The D0 Collaboration measured the differential cross sections of

Z/γ∗ production in the muon channel [8] and the pT distribution of Z/γ∗ production in the

electron or muon channel in proton-antiproton collisions at
√
s = 1.96 TeV [9–11].

The high yield of W and Z boson events at the CERN LHC enables detailed studies of

weak vector boson production mechanisms in different kinematic regions. The ATLAS and

CMS Collaborations have performed several measurements of W and Z boson production

via leptonic decays measured at both
√
s = 7 and 8 TeV. Measurements have been made of

the inclusive W and Z boson cross sections in both electrons and muons [3, 12, 13] and of the

Drell-Yan (DY) production differential cross section dσ/dm, where m is dilepton invariant

mass [14, 15]. The cross sections as a function of pT are measured for Z bosons [4, 16–

18] and W bosons [19], but the latter has only been measured at
√
s = 7 TeV. The

LHCb Collaboration has measured the forward W and Z boson production cross sections

and spectra for various kinematic variables at
√
s = 7 and 8 TeV using decays to lepton

pairs [20–25]. All of the results are consistent with standard model (SM) expectations.

The total and differential DY production cross sections are currently calculated up to

next-to-next-to-leading-order (NNLO) [2, 26] accuracy in perturbation theory, as imple-

mented in the fewz (version 3.1) simulation code [27–29]. The theoretical treatment of

soft-gluon emission is presently available to third order in the QCD coupling constant using

resummation techniques as used in the ResBos (P and CP versions) programs [30–32].

The measured cross sections can also be compared with predictions from an event generator

like powheg (version 1.0) [33–36], which uses next-to-leading-order (NLO) QCD matrix

elements. This package uses parton shower and hadronization processes implemented in

pythia (version 6.424) [37].

The paper is organized as follows. A brief description of the CMS detector is introduced

in section 2. Event samples and Monte Carlo (MC) simulations are presented in section 3.

We then describe the object reconstruction and event selection in section 4. These are

followed by the background estimation and the measurement of W and Z boson pT spectra

in sections 6 and 5, respectively. The evaluation of the systematic uncertainties is described

in section 7. We then present the results in section 8 and the summary in section 9.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter that provides a magnetic field of 3.8 T. Within the solenoid volume are a silicon
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pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and

a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two

endcap sections. Extensive forward calorimetry complements the coverage provided by the

barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded

in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS

detector, together with definitions of the coordinate system and the relevant kinematic

variables such as pseudorapidity η, can be found in ref. [38].

3 Data and simulated samples

In this analysis, W boson candidates are reconstructed from their leptonic decays to elec-

trons (W → eνe) or muons (W → µνµ), while Z bosons are reconstructed only via their

dimuon decays (Z → µµ). The candidate events were collected by using dedicated single-

lepton triggers for low instantaneous luminosity operation of the LHC that required the

presence of an electron (muon) with pT > 22 (15) GeV and |η| < 2.5 (2.1).

The W and Z boson processes are generated with powheg at NLO accuracy using

the parton distribution function (PDF) set CT10 [39]. The factorization and the renor-

malization scales in the powheg calculation are set to (M2
V + (pV

T)2)1/2, where MV and

pV
T refer to the mass and the transverse momentum, respectively, of the vector boson. For

the background processes, parton showering and hadronization are implemented by using

pythia with the kT-MLM prescription for the matrix element to parton showering match-

ing, as described in ref. [40]. For the underlying event, the Z2* tune is used. The pythia

Z2* tune is derived from the Z1 tune [41], which uses the CTEQ5L PDF set, whereas Z2*

adopts CTEQ6L [42].

The effect of QED final-state radiation (FSR) is implemented by using pythia. The

Z → ττ and diboson background event samples are generated with pythia. Inclusive tt

and W + jets processes are generated with the MadGraph 5 (version 1.3.30) [43] LO

matrix-element based generator package with V+n-jets (n = 0 . . . 4) predictions interfaced

to pythia using the CTEQ6L PDF set. The generated events are processed through

the Geant4-based [44] detector simulation, trigger emulation, and event reconstruction

chain of the CMS experiment. Independently simulated pileup events with pythia Z2*

are superimposed on the generated event samples with a distribution that matches pileup

events in data.

4 Event selection

The analysis uses the particle-flow (PF) algorithm [45, 46], which combines information

from various detector subsystems to classify reconstructed objects or candidates according

to particle type, thereby improving the precision of the particle energy and momentum

measurements especially at low momenta.

The electron reconstruction combines electromagnetic clusters in ECAL and tracks

reconstructed in the silicon tracker using the Gaussian Sum Filter algorithm (GSF) [47].

Electron candidates are selected by requiring a good agreement between track and cluster
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variables in position and energy, as well as no significant contribution in the HCAL [48].

Electrons from photon conversions are rejected by the vertex method described in ref. [49].

The magnitude of the transverse impact parameter is required to be <0.02 cm and the

longitudinal distance from the interaction vertex is required to be <0.1 cm for electrons;

this ensures that the electron candidate is consistent with a particle originating from the

primary interaction vertex, which is the vertex with the highest p2
T sum of tracks associ-

ated to it.

The muon reconstruction starts from a candidate muon seed in the muon detectors

followed by a global fit that uses information from the muon detectors and the silicon

tracker [50]. The track associated with each muon candidate is required to have at least

one hit in the pixel detector and at least five hits in different layers of the silicon tracker.

The track is also required to have hits in at least two different muon detector planes.

The magnitude of the transverse impact parameter is required to be <0.2 cm and the

longitudinal distance from the interaction vertex is required to be <0.5 cm.

The missing transverse momentum vector ~pmiss
T in the event is defined as the projec-

tion of the negative vector sum of all the reconstructed particle momenta onto the plane

perpendicular to the beam. Its magnitude is defined as missing transverse energy Emiss
T .

The analysis of the inclusive W boson production in the electron (muon) channel

requires events with a single isolated electron (muon) with pT > 25(20) GeV using the Emiss
T

distribution to evaluate the signal yield. Background events from QCD multijet processes

are suppressed by requiring isolated leptons. For the W boson analysis, the isolation is

based on the particle-flow information and is calculated by summing the pT of charged

hadrons and neutral particles in a cone with radius ∆R =
√

(∆η)2 + (∆φ)2 < 0.3 (0.4) for

electron (muon) events around the direction of the lepton at the interaction vertex

Ie
PF =

(∑
pcharged

T + max
[
0,
∑

pneutral
T +

∑
pγT − ρAeff

])
/pe

T, (4.1a)

IµPF =
(∑

pcharged
T + max

[
0,
∑

pneutral
T +

∑
pγT − 0.5

∑
pPU

T

])
/pµT, (4.1b)

where
∑
pcharged

T is the scalar pT sum of charged hadrons originating from the primary

vertex,
∑
pPU

T is the energy deposited in the isolation cone by charged particles not asso-

ciated with the primary vertex, and
∑
pneutral

T and
∑
pγT are the scalar sums of the pT for

neutral hadrons and photons, respectively. A correction is included in the isolation vari-

ables to account for the neutral particles from pileup and underlying events. For electrons,

the average transverse-momentum density ρ is calculated in each event by using the “jet

area” Ajet [51], where ρ is defined as the median of the pjet
T /Ajet distribution for all jets

coming from pileup in the event, where pjet
T is the transverse momentum of a jet. This

density is convolved with the effective area Aeff of the isolation cone, where the effective

area Aeff is the geometric area of the isolation cone times an η-dependent correction factor

that accounts for the residual dependence of the isolation on pileup. For muons, the cor-

rection is applied by subtracting
∑
pPU

T multiplied by a factor 0.5. This factor corresponds

approximately to the ratio of neutral to charged particle production in the hadronization

process. The W boson events are selected if Ie
PF < 0.15 or IµPF < 0.12.
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For the W boson analysis, events with a second electron with pe
T > 20 GeV or a second

muon with pµT > 17 GeV that passes loose selection criteria are rejected as W boson events

to reduce the background contributions from the Z/γ∗ DY processes. The second electron

selection uses a loose selection working point [48], which mainly relaxes the match of the

energy and position between the GSF tracks and the associated clusters in the ECAL. For

the second muon, the required number of hits in the pixel detector, the silicon tracker, and

the muon detector are relaxed [50].

Several corrections are applied to the simulated events to account for the observed

small discrepancies between data and simulation. A better description of the data is

obtained by applying corrections to the lepton pT and Emiss
T . There are two main sources

of disagreement in the pT description: the momentum scale and the modeling of the pT

resolution. The corrections for these effects are determined from a comparison of the

Z→ `+`− mass spectrum between data and simulation [13]. The lepton momentum scale

correction factor is found to be close to unity with an uncertainty of 0.2% (0.1%) for

electrons (muons). An additional smearing of the lepton pT- and η-dependent resolution

in the range 0.4 to 0.9 (0.1 to 0.7) GeV for electrons (muons) is applied to reproduce the

distribution of the dilepton invariant mass observed in data.

The vector boson recoil is defined as the vector sum of the transverse momenta of

all the observed particles, excluding the leptons produced in the vector boson decay. The

Emiss
T spectra in the W boson signal simulation rely on the modeling of the W boson

recoil and the simulation of the detector response. The correction factors for the W boson

recoil simulation are estimated using a comparison of the Z boson recoil between data and

simulation [13, 52]. The factors for the recoil scale (resolution) range from 0.88 to 0.98

(from 0.84 to 1.09) as a function of the boson pT with an uncertainty of about 3 (5)%.

They are applied to the simulated W boson recoil distributions.

The corrected Emiss
T and corrected lepton momenta are used to calculate the transverse

mass MT of the W,

MT =
√

2 p`TE
miss
T (1− cos ∆φEmiss

T ,`), (4.2)

where ∆φEmiss
T ,` is the azimuthal angle between ~pmiss

T and lepton ~pT. MT is used for

the signal yield extraction for the muon channel in the high-pT region, as described in

section 5.1.

A set of lepton efficiencies, namely the lepton reconstruction and identification, and

trigger efficiencies, are estimated in simulation and then corrected for the differences be-

tween data and simulation. These corrections are evaluated by using a “tag-and-probe”

method [53] and the total efficiency correction factor for the simulated samples ranges

between 0.92± 0.03 (0.93± 0.05) and 1.03± 0.08 (1.04± 0.03) for electrons (muons).

For the inclusive Z boson events we require two isolated oppositely charged muons

with pT > 20 GeV. A vertex fit is performed to ensure that the candidates originate from

the same Z boson. The background due to cosmic ray muons passing through the detector

and mimicking dimuon events is suppressed by requiring that the two muons are not back-

to-back, i.e. the three-dimensional opening angle between the two muons should be smaller
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than π− 0.02 radians. Finally, the muon pair is required to have a reconstructed invariant

mass in the range 60–120 GeV.

For the Z boson analysis, the dimuon invariant mass selection and a vertex fit enables

the use of a simpler isolation variable based only on charged tracks. The track isolation

variable Itrk is defined as the scalar sum of the track momenta of charged particles lying

within a cone of radius ∆R = 0.3 around the muon direction. The muons are isolated if

Itrk/p
µ
T < 0.1.

5 Measurement of the transverse momentum spectra

The transverse momentum of the vector boson pV
T is computed from the momentum sum

of the decay leptons for the Z boson, or the lepton and ~pmiss
T for the W boson. The mea-

surements are performed within the lepton fiducial volumes defined by pT > 25 (20) GeV,

|η| < 2.5 (2.1) for the electron (muon) channel. The fiducial region for the boson differential

cross section is defined by the pT and η requirements on the leptons.

The transverse momentum spectra are analyzed as binned histograms, with bin widths

varying from 7.5 (2.5) GeV for the W (Z) boson up to 350 GeV, in order to provide sufficient

resolution to observe the shape of the distribution, limit the migration of events between

neighbouring bins, and ensure a sufficient number of events in each bin. The cross section

in the ith pV
T bin is defined as

dσi

dpV
T, i

=
Ni

∆i εi
∫
Ldt

, (5.1)

where Ni is the estimated number of signal events in the bin, ∆i is the width of the bin, εi
is the efficiency of the event selection in that bin, and

∫
Ldt is the integrated luminosity.

The differential distributions are unfolded to the lepton level before QED final-state

radiation (pre-FSR) within the same fiducial volume.

5.1 The W boson signal extraction

The W boson signal yield and the backgrounds for each pW
T bin are determined using an

extended likelihood fit to the Emiss
T distributions. The fits constrain the sum of signal plus

background to the data within each bin. Figure 1 shows an example of the fit for the bin

17.5 < pW
T < 24 GeV. The signal and background shapes are determined separately for

W+ and W− bosons to account for the difference in the kinematical configuration arising

from the parity-violating nature of the weak interaction. The signal yield and background

contaminations are estimated from the fit, which is performed simultaneously in the signal

candidate sample and in the corresponding QCD control sample for each pW
T bin. The

QCD multijet-enriched control samples are defined by inverting the selection on some

identification variables for the electron channel, and by inverting the isolation requirement

for the muon channel, while maintaining the rest of the signal selection criteria.

The W boson signal and electroweak (EW) background (explained in section 6) tem-

plates are produced by using simulated events including all corrections described in sec-

tion 4. The EW contribution is constrained for the W signal yield by fixing the ratio of
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the theoretical cross section of the EW contribution to that of W boson production. The

QCD shape of Emiss
T distribution is parameterized by a modified Rayleigh function [3],

f(x) = x exp

(
− x2

2(σ0 + σ1x)2

)
, (5.2)

where σ0 and σ1 are free parameters of the fit. The fit uses x = Emiss
T for pW

T > 17.5 GeV

and x = (Emiss
T − a) for pW

T < 17.5 GeV, where a is a parameter of the fit needed to

take into account the minimum Emiss
T value at each pW

T bin due to trigger requirements on

the p`T. The parameter σ0 in eq. (5.2) is, however, kept floating separately in signal and

control regions.

In the muon channel, the QCD multijet contribution decreases noticeably with in-

creasing pW
T because the probability of the background muon to pass the isolation criteria

decreases. For pW
T > 70 GeV the MT distributions, instead of Emiss

T , are fitted to maintain a

good separation between the signal and the QCD background shape. The extracted signal

and background yields are shown as a function of pW
T in figure 2 for electrons (upper) and

muons (lower).

In order to obtain the differential cross section before FSR, the detector resolution and

FSR effects need to be corrected. This is achieved by a two-step unfolding process using

the singular value decomposition (SVD) method [54]. SVD uses two response matrices.

The first matrix maps the intra-bin migration effects to the reconstructed pW
T from leptons

after a possible FSR (post-FSR) effect, using the powheg simulated signal sample as the

baseline, after applying lepton momentum resolution, efficiency, and recoil corrections. The

second matrix maps the pW
T distribution taking into account the FSR effect of the lepton,

i.e. from pre-FSR to post-FSR.

The event reconstruction efficiency is corrected bin-by-bin after unfolding for the detec-

tor resolution by using the simulated signal sample. An acceptance correction is applied to

the pre-FSR distribution after FSR unfolding; about 5.1% (1.9%) of the events with a pre-

FSR level electron (muon) generated within the fiducial region do not pass the post-FSR

lepton requirements of the fiducial volume.

5.2 The Z boson signal extraction

The number of observed Z boson events is obtained by subtracting the estimated number

of background events from the total number of detected events in each of the pZ
T bins. The

transverse momentum distribution of the dimuon system for the reconstructed events is

shown in figure 3 separately for the low- and high-pZ
T regions to show the level of agreement

between data and simulation. The NLO QCD calculation in powheg underestimates the

data by 27% in the pZ
T range below 2.5 GeV.

The measured pZ
T distributions are corrected for bin migration effects that arise from

the detector resolution and FSR effects with a similar technique to the W boson analysis

described in section 5.1 using a matrix-based unfolding procedure [55]. The final result is

corrected by the bin width and is normalized by the measured total cross section σ within

the fiducial region (section 5) in the range of the dimuon mass, 60 < mµµ < 120 GeV.
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Figure 1. The Emiss
T distributions for the selected W+ → e+ν (upper) and W+ → µ+ν (lower)

candidates for 17.5 < pWT < 24 GeV (left) and the corresponding QCD multijet-enriched control

sample (right). Solid lines represent the results of the fit. The dotted lines represent the signal

shape after background subtraction. The bottom panels show the difference between data and fitted

results divided by the statistical uncertainty in data, σData.

6 Background estimation

6.1 The W boson analysis

QCD multijet events are the dominant source of background in the W boson analysis. The

level of contamination is estimated from data as described in section 5.1. It is about 40%

and 19% of the selected W → eν and W→ µν event yields, respectively.

The contributions of EW and tt background sources are estimated by using simulated

events. The DY processes with Z/γ∗ → `+`− contribute to the W → `ν background when

one of the two leptons is not detected. These processes account for approximately 4.7%

(5.0%) of the selected events in the electron (muon) channel. Events from W → τν (where
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Figure 2. Signal and background yields after fitting the data for W+ → e+ν (upper left), W− →
e−ν (upper right), W+ → µ+ν (lower left), and W− → µ−ν (lower right) as a function of the W

boson pT. The points are data yields with statistical uncertainties. The stacked histogram shows

the signal and background components estimated from a fit to the Emiss
T or MT distribution at

each W boson pT bin.

the τ decays leptonically) have, in general, a softer lepton than the signal events. They are

strongly suppressed by using a high value of the minimum pe,µ
T requirement for acceptance.

The background contribution from W → τν is 1.7% (3.3%) of selected events in the

electron (muon) channel. The background originating from tt production is estimated to

be 0.35% (0.41%) of the selected events, while that from boson pair production (WW, WZ,

and ZZ) is even smaller, about 0.03% of the selected events for both decay channels.

6.2 The Z boson analysis

The main sources of background in the dimuon analysis are Z → ττ , tt, W+jets, and

diboson (WW, WZ, and ZZ) production with the subsequent decay of W, Z, and τ to
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Figure 3. Data and simulated events for both DY processes and various backgrounds after event

reconstruction. Left (right): events for low (high) pZT, pZT < 30 (≥ 30) GeV. The lower panels show

the difference between the data and the simulation predictions divided by the statistical uncertainty

in data, σData.

muons. The simulation of these backgrounds is validated with data by measuring the pT

of the final state with an electron and a muon. The residual background contribution

is due to QCD multijet hadronic processes that contain energetic muons, predominantly

from the semileptonic decays of B hadrons. A control sample of events with a single muon

that passes all the requirements of this analysis except the isolation criteria is selected to

estimate the contribution of this source. This sample is subsequently used to estimate the

probability for a muon to pass the isolation requirements as a function of the muon pT and

η. This probability is used to predict the number of background events with two isolated

muons based on a sample of events with two nonisolated muons. This procedure, which is

validated by using simulated events, predicts a negligible contribution from QCD multijet

production over the full range of our pZ
T spectrum. After the full selection, the background

contamination, which consists primarily of Z → ττ and tt processes, with an uncertainty

dominated by the statistical uncertainties in the background simulation is estimated to be

less than 1% of the total event yield.

7 Systematic uncertainty

The leading sources of systematic uncertainties are mostly common to both the W and Z

boson analyses. They include the determination of the correction factors for the lepton

efficiency (reconstruction, isolation, and trigger), the electron or muon momentum resolu-

tion parameters, and the construction of the response matrices for unfolding the detector

resolution and FSR effects. The simulated distributions are corrected for the efficiency dif-

ferences between data and simulation using scale factors obtained from the tag-and-probe

method. The variation of the measured scale factors due to different choices of signal and

background models and the pT and η binnings for the measured lepton are treated as sys-
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Channel σ B [nb] (fiducial)

Z→ µ+µ− 0.44± 0.01 (stat)± 0.01 (syst)± 0.01 (lumi)

W → eν 6.27± 0.03 (stat)± 0.10 (syst)± 0.16 (lumi)

W → µν 6.29± 0.02 (stat)± 0.09 (syst)± 0.16 (lumi)

Table 1. The fiducial cross sections at pre-FSR level calculated as the sum of differential cross

sections. The fiducial volumes are defined in section 5.

tematic uncertainties. The momentum resolution is estimated by comparing data and the

simulated Z boson mass distribution. The uncertainties in the parameterization of the mass

distribution are propagated in the resolution calculation. The uncertainty in the model-

dependent FSR simulation is estimated by reweighting the simulated data samples. We are

using event-dependent weights from a soft collinear approach [56] and higher-order correc-

tions in α(p2
T) [57]. The difference in signal yields before and after reweighting is assigned

as a systematic uncertainty. The systematic uncertainty in the luminosity measurement is

completely canceled out since the results are presented as normalized distributions.

The uncertainty in the recoil corrections to Emiss
T is taken into account for the W boson

analysis. The systematic uncertainty associated with the shape of the Emiss
T distribution

from the QCD multijet process is estimated by introducing an additional term σ2x
2 into

eq. (5.2), where σ2 is another shape parameter to describe the tail of Emiss
T at the second

order, and repeating the fit procedure. A set of pseudo-experiments is generated by varying

all parameters of the equation within their uncertainties. The bias in the measured values

with the pseudo-experiments provides the systematic uncertainty in the parameterization

of the shape. An additional uncertainty is assigned due to the simultaneous fit procedure

by floating the tail parameter σ1 in the extraction of the signal yields. These are used to

estimate the shape dependence of the fits to the QCD multijet-enriched control samples.

The cross section for each of the EW backgrounds in the W boson analysis is varied

around the central value within its uncertainty and the resulting fluctuation of signal yield

extraction by the fit in each pW
T bin is assigned as a systematic uncertainty.

The unfolding procedure is sensitive to the statistical uncertainties in the construction

of the response matrix. These uncertainties range from 0.1% to 1.0% depending on the

channel and pV
T bin. The boson distributions are compared with those obtained by using

an alternative response matrix derived from a different generator, MadGraph 5. The

difference is taken as the unfolding bias.

The background for the dimuon final state is measured from simulation with correc-

tion factors derived from data, the corresponding uncertainty is estimated by varying its

contribution. The uncertainty is about 0.4% level up to 40 GeV of dimuon pT.

8 Results

The fiducial cross sections at pre-FSR level are calculated as the sum of contributions from

all bins and listed in table 1.
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The low-pileup data is adjusted to the lepton fiducial volume at post-FSR level used in

ref. [3]. The results are 0.40±0.01 (stat)±0.01 (syst)±0.01 (lumi) nb for the Z channel and

5.47± 0.02 (stat)± 0.06 (syst)± 0.14 (lumi) nb for the mean value of W electron and muon

channel results weighted by uncertainties. These are consistent with the supplemental

material of ref. [3], where the fiducial inclusive Z boson cross section is 0.40± 0.01 (stat)±
0.01 (syst)±0.01 (lumi) nb and the W boson cross section is 5.42±0.02 (stat)±0.06 (syst)±
0.14 (lumi) nb.

The differential cross sections dσ/dpV
T, corrected for FSR, are normalized to the total

fiducial cross section. Some uncertainties are canceled in the normalized cross sections,

thus allowing for a more precise shape comparison. The uncertainties in the measurement

of the lepton efficiencies are decreased by factors of 1.6 to 7.7 with respect to the cross

section before the normalization. The uncertainties in the EW background cross sections

affect both the numerator and the denominator, hence the corresponding uncertainty is

decreased by a factor of 20. The other sources of uncertainty remain at a level similar to

the differential cross section measurements before normalization.

The differential cross sections in the electron and muon channels, derived individually

for W+ and W− bosons, are combined after taking into account the possible correlations.

The systematic uncertainties due to FSR and EW background cross sections are added lin-

early under the assumption that these uncertainties are 100% correlated. All other charge-

dependent uncertainties are assumed to be uncorrelated and are added in quadrature.

The data unfolded to the pre-FSR level are compared to various theoretical predictions:

ResBos-P version (CP version) with scale (scale and PDF) variation for the W (Z) boson

result, powheg with PDF uncertainty, and fewz with PDF and renormalization and

factorization scale uncertainties. ResBos adopts the Collins-Soper-Sterman formalism

with four parameters (C1, C2, C3, and C4) for the resummation of the multiple and

collinear gluon emissions [58, 59], which yields a next-to-next-to-leading-order accuracy. It

allows also for the use of a K factor grid to get an effective NNLO description. The scale

parameters in C2 (µF ) and C4 (for αs and PDF) are set to M``/2 (where M`` is the invariant

mass of the lepton pair) as the nominal value and different grid points are generated

with scale variations M`` and M``/4 for the determination of the scale uncertainty. The

nonperturbative function implemented in ResBos affects mostly the low-pT region around

1–4 GeV and the intermediate-pT region with small contribution.

8.1 The W and Z differential cross sections

The numerical results and all of the uncertainties for the normalized differential cross

section are listed in tables 2 and 3 for the electron and muon channels of the W boson

decay, respectively. The results for the pZ
T spectrum are summarized in table 4. After

combining the effects discussed in section 7, the total systematic uncertainty in each bin is

found to be smaller than the corresponding statistical uncertainty for the Z boson and at

a similar level for the W boson except in the high-pW
T region.

The results are compared to three different theoretical predictions: ResBos, powheg,

and fewz using CT10 [39] PDFs with uncertainties estimated by the method described in
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Bin Lept. Mom. Emiss
T QCD QCD

EW
SVD

FSR
Unfld. Total

Stat.
(1/σ)(dσ/dpT)

( GeV) recon. res. res. bkgr. shape unfld. bias syst. ( GeV−1)

0–7.5 0.31 0.21 0.22 0.51 0.20 0.05 0.08 0.05 0.75 1.03 0.60 (4.74 ± 0.06) × 10−2

7.5–12.5 0.26 0.09 0.10 0.64 0.26 0.04 0.08 0.05 1.43 1.62 0.74 (4.12 ± 0.07) × 10−2

12.5–17.5 0.17 0.24 0.10 0.48 0.37 0.02 0.08 0.04 1.11 1.31 0.89 (2.42 ± 0.04) × 10−2

17.5–24 0.16 0.30 0.27 0.66 0.43 0.04 0.09 0.00 0.36 0.98 0.95 (1.49 ± 0.02) × 10−2

24–30 0.37 0.26 0.35 0.80 0.51 0.05 0.10 0.06 0.58 1.25 1.28 (9.64 ± 0.17) × 10−3

30–40 0.62 0.23 0.34 1.27 0.40 0.09 0.12 0.12 0.29 1.56 1.28 (6.07 ± 0.12) × 10−3

40–50 0.86 0.33 0.26 0.86 0.45 0.12 0.14 0.17 0.34 1.43 1.71 (3.51 ± 0.08) × 10−3

50–70 1.09 0.46 0.17 1.74 0.58 0.16 0.16 0.20 0.47 2.26 1.75 (1.78 ± 0.05) × 10−3

70–110 1.28 0.35 0.13 0.79 0.63 0.18 0.19 0.22 2.30 2.87 2.16 (5.66 ± 0.20) × 10−4

110–150 1.44 0.51 0.14 1.37 0.62 0.20 0.22 0.25 2.31 3.18 4.46 (1.45 ± 0.08) × 10−4

150–190 1.55 1.24 0.17 1.25 0.47 0.22 0.24 0.29 4.57 5.18 7.74 (4.54 ± 0.42) × 10−5

190–250 1.62 1.04 0.20 1.19 0.62 0.23 0.26 0.29 2.96 3.81 11.14 (1.50 ± 0.18) × 10−5

250–600 1.65 0.62 0.20 1.78 0.66 0.23 0.27 0.34 4.07 4.85 18.07 (1.18 ± 0.22) × 10−6

Table 2. The W boson normalized differential cross sections for the electron channel in bins of pWT ,

(1/σ)(dσ/dpT) (W → eν), and systematic uncertainties from various sources in units of %, where

σ is the sum of the cross sections for the pWT bins. (1/σ)(dσ/dpT) is shown with total uncertainty,

i.e. the sum of statistical and systematic uncertainties in quadrature.

Bin Lept. Mom. Emiss
T QCD QCD

EW
SVD

FSR
Unfld. Total

Stat.
(1/σ)(dσ/dpT)

( GeV) recon. res. res. bkgr. shape unfld. bias syst. ( GeV−1)

0–7.5 0.22 0.11 0.04 0.62 0.17 0.00 0.14 0.00 0.93 1.16 0.51 (4.88 ± 0.06) × 10−2

7.5–12.5 0.11 0.06 0.02 0.95 0.26 0.02 0.12 0.00 1.72 1.99 0.65 (4.16 ± 0.09) × 10−2

12.5–17.5 0.18 0.09 0.04 0.87 0.22 0.03 0.14 0.00 1.15 1.48 0.79 (2.37 ± 0.04) × 10−2

17.5–24 0.32 0.20 0.06 0.94 0.27 0.04 0.17 0.00 0.30 1.11 0.85 (1.43 ± 0.02) × 10−2

24–30 0.40 0.25 0.06 0.94 0.28 0.02 0.18 0.00 0.65 1.28 1.14 (9.25 ± 0.16) × 10−3

30–40 0.38 0.24 0.06 1.52 0.26 0.03 0.19 0.01 0.27 1.64 1.14 (5.91 ± 0.12) × 10−3

40–50 0.31 0.17 0.06 0.89 0.15 0.06 0.21 0.01 0.44 1.09 1.58 (3.50 ± 0.07) × 10−3

50–70 0.29 0.14 0.07 1.47 0.31 0.10 0.26 0.01 0.78 1.74 1.57 (1.77 ± 0.04) × 10−3

70–110 0.32 0.28 0.09 0.68 0.25 0.12 0.34 0.02 1.97 2.17 2.03 (5.39 ± 0.16) × 10−4

110–150 0.36 0.40 0.12 0.68 0.14 0.15 0.44 0.02 4.32 4.44 4.11 (1.30 ± 0.08) × 10−4

150–190 0.39 0.49 0.15 0.70 0.62 0.16 0.53 0.02 3.07 3.32 7.89 (4.21 ± 0.36) × 10−5

190–250 0.41 0.55 0.17 0.71 0.67 0.17 0.61 0.02 5.46 5.62 12.69 (1.40 ± 0.19) × 10−5

250–600 0.44 0.58 0.18 0.72 0.67 0.18 0.66 0.02 4.94 5.14 19.67 (1.15 ± 0.23) × 10−6

Table 3. The W boson normalized differential cross sections for the muon channel in bins of pWT ,

(1/σ)(dσ/dpT) (W → µν), and systematic uncertainties from various sources in units of %. Other

details are the same as in table 2.

ref. [60]. The resulting spectra for the W boson normalized differential cross section are

shown in figure 4.

powheg with pythia using the Z2* tune shows good agreement with the data in the

low- and high-pW
T regions, but overestimates the yield by up to 12% in the transition region

at around 25 GeV.

ResBos-P expectations are consistent with the data for 12.5 < pW
T < 110 GeV. Yields

are underpredicted for 7.5 < pW
T < 12.5 GeV. Above 110 GeV, the predictions systemati-

cally overestimate the data by approximately 20%.
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Bin
Bkg.

Muon Mom. Unfld.
FSR

Total
Stat.

(1/σ)(dσ/dpT)

( GeV) recon. res. bias syst. ( GeV−1)

0–2.5 0.43 0.01 0.02 2.71 0.03 2.74 5.53 (3.34 ± 0.21) × 10−2

2.5–5 0.42 0.00 0.02 1.32 0.02 1.38 4.59 (5.53 ± 0.26) × 10−2

5–7.5 0.41 0.00 0.01 0.28 0.01 0.50 4.79 (5.19 ± 0.25) × 10−2

7.5–10 0.29 0.00 0.01 1.30 0.01 1.34 5.78 (3.86 ± 0.23) × 10−2

10–12.5 0.29 0.00 0.01 1.43 0.01 1.46 5.91 (3.55 ± 0.22) × 10−2

12.5–15 0.23 0.00 0.00 2.31 0.03 2.33 7.52 (2.41 ± 0.19) × 10−2

15–17.5 0.15 0.00 0.02 1.29 0.02 1.30 7.59 (2.25 ± 0.17) × 10−2

17.5–20 0.22 0.00 0.01 1.63 0.04 1.65 8.88 (1.72 ± 0.15) × 10−2

20–30 0.01 0.00 0.01 0.41 0.02 0.41 4.08 (1.17 ± 0.05) × 10−2

30–40 0.37 0.00 0.01 0.56 0.00 0.67 5.49 (6.51 ± 0.36) × 10−3

40–50 0.78 0.00 0.01 1.03 0.01 1.29 7.09 (4.02 ± 0.29) × 10−3

50–70 1.54 0.00 0.01 0.26 0.02 1.56 6.51 (2.16 ± 0.14) × 10−3

70–90 2.70 0.00 0.03 0.37 0.04 2.72 10.43 (8.89 ± 0.96) × 10−4

90–110 3.51 0.00 0.05 0.67 0.01 3.57 15.67 (4.10 ± 0.66) × 10−4

110–150 3.54 0.00 0.05 1.14 0.13 3.72 16.74 (1.65 ± 0.28) × 10−4

150–190 2.00 0.01 0.01 0.14 0.18 2.01 24.67 (7.65 ± 1.89) × 10−5

190–250 6.13 0.01 0.14 9.91 0.33 11.66 68.85 (8.98 ± 6.27) × 10−6

250–600 2.03 0.00 0.04 0.45 0.23 2.09 44.11 (4.44 ± 1.96) × 10−6

Table 4. The Z boson normalized differential cross sections for the muon channel in bins of pZT,

(1/σ)(dσ/dpT) (Z→ µ+µ−), and systematic uncertainties from various sources in units of %. Other

details are the same as in table 2.

fewz calculates the cross section for gauge boson production at hadron colliders

through order O(α2
s) in perturbative QCD. The pW

T distribution is generated by fewz

using perturbative QCD at NNLO. The CT10 NNLO PDF set is used with dynamic renor-

malization and factorization scales set to the value of
√
M2

W + (pW
T )2. The uncertainty

of the CT10 PDF set is numerically propagated through fewz generation. Scale varia-

tions by factors of 1/2 and 2 are applied to estimate the uncertainty. The predictions of

fewz are in agreement with the data across the whole range in pW
T within large theoretical

uncertainties, except around 60 GeV where it shows 10% discrepancy.

The results for the Z boson differential cross section are presented in figure 5. The

ResBos-CP prediction shows good agreement with data in the accessible region of pZ
T,

whereas powheg shows 30% lower expectation in the range 0–2.5 GeV and 18% excess for

the interval 7.5–10 GeV. As anticipated, the fewz prediction with fixed-order perturbation

theory shows divergent behavior in the low pZ
T bins (pZ

T . 20 GeV). A self-consistent test

of fewz generation is fulfilled by cross section comparison of the low, high, and full pZ
T

region of the measurement. The ratio of the sum of 0–20 and 20–600 GeV to 0–600 GeV

– 14 –
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Figure 4. Normalized differential cross sections for charge independent W boson production at

the lepton pre-FSR level as a function of pWT for electron (upper) and muon (lower) decay channels.

The right panels show the ratios of theory predictions to the data. The bands include (i) the statis-

tical uncertainties, uncertainties from scales, and PDF uncertainties for FEWZ; (ii) the statistical

uncertainties and PDF uncertainties for POWHEG; (iii) the uncertainty from scales for ResBos-P;

and (iv) the sum of the statistical and systematic uncertainties in quadrature for data.

is unity within 10% uncertainty. The ratio of the expectation to data at 0–20 GeV is

1.02± 2.6%(fewz)± 1.1% (data).

8.2 Ratios of the cross sections

The ratios of the measured cross sections provide a powerful test of the accuracy of different

theoretical predictions because of full or partial cancellation of theoretical uncertainties.

The ratio of the normalized spectra corresponding to W− → µ−ν and W+ → µ+ν decays

is shown in figure 6. The statistical uncertainties in different pV
T bins are considered to

be uncorrelated. The systematic uncertainties are calculated by the method described in
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Figure 5. Comparison of the normalized dimuon differential transverse momentum distribution

from data (solid symbols) with different theoretical predictions. The right panels show the ratios

of theory predictions to the data. The ResBos-CP version with scale and PDF variation is used

for comparison.

section 7 taking into account all correlations between charge-dependent W boson cross

sections. The ratios with the total uncertainty are listed in table 5. The results are

compared to powheg, ResBos, and fewz predictions. The predictions describe the data

reasonably well within experimental uncertainties.

The ratio of differential production cross sections for Z to those for W in the muon

channel is shown in figure 7 where the total uncertainties of the measurements are consid-

ered to be uncorrelated. The ratios with the total uncertainty are listed in table 5. The

powheg calculation shows good agreement with the data in the low- and high-pV
T regions,

but overestimates the ratio by up to 10% in the transition region at around pV
T = 10 GeV.

The ResBos expectation also shows behavior similar to powheg, but it has larger than

expected uncertainties because it employs different strategies in terms of the scale and PDF

variations for the W and Z boson generation, which technically results in no cancellation

for their ratio. fewz predictions describe the data well for pV
T > 20 GeV.

In figure 8 the ratio of differential cross sections for the Z boson production measured

at two different centre-of-mass energies, 7 and 8 TeV [18], are shown for the muon channel,

separately for low- and high-pZ
T regions. The theoretical predictions describe the data well

within the experimental uncertainties.

9 Summary

The production cross sections of the weak vector bosons, W and Z, as a function of trans-

verse momentum, are measured by the CMS experiment using a sample of proton-proton

collisions during a special low luminosity running of the LHC at
√
s = 8 TeV that corre-

sponds to an integrated luminosity of 18.4 pb−1. The production of W bosons is analyzed
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Figure 6. The normalized pT differential cross section ratio of W− to W+ for muon channel

compared with theoretical predictions. Data points include the sum of the statistical and systematic

uncertainties in quadrature. More details are given in the figure 4 caption.

Figure 7. The normalized pT differential cross section ratio of Z to W for muon channel compared

with theoretical predictions. The right panels show the ratios of theory predictions to the data.

The larger than expected uncertainties for ResBos arise from the different strategies in terms of

the scale and PDF variations between ResBos-P and ResBos-CP version. More details are given

in the figure 4 and 5 caption.

in both electron and muon decay modes, while the production of Z bosons is analyzed using

only the dimuon decay channel.

The measured normalized cross sections are compared to various theoretical predic-

tions. All the predictions provide reasonable descriptions of the data, but powheg at NLO

overestimates the yield by up to 12% around pW
T = 25 GeV. powheg shows 27% lower

expectation in the pZ
T range 0–2.5 GeV and 18% excess for the pZ

T interval 7.5–10 GeV.
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Bin ( GeV) W−/W+ Z/W

0–7.5 0.961 ± 0.019 0.962 ± 0.025

7.5–12.5 0.994 ± 0.024 0.890 ± 0.038

12.5–17.5 1.017 ± 0.028 0.982 ± 0.052

17.5–30 1.028 ± 0.041 1.081 ± 0.041

30–40 1.056 ± 0.043 1.101 ± 0.064

40–50 1.069 ± 0.041 1.149 ± 0.085

50–70 1.065 ± 0.050 1.216 ± 0.085

70–110 1.064 ± 0.052 1.206 ± 0.115

110–150 1.061 ± 0.093 1.274 ± 0.232

150–190 1.106 ± 0.204 1.820 ± 0.479

190–250 1.002 ± 0.247 0.641 ± 0.454

250–600 0.912 ± 0.379 3.865 ± 1.881

Table 5. Estimated ratios of pre-FSR level normalized differential cross sections within the muon

fiducial volume. The uncertainty is the sum of statistical and systematic uncertainties in quadrature.
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Figure 8. Comparison of the shapes of the differential pZT distributions in the muon channel at

centre-of-mass energies of 7 and 8 TeV compared with the predictions from powheg for pZT < 20 GeV

and fewz for pZT > 20 GeV.

fewz at NNLO shows 10% discrepancy around pW
T = 60 GeV and divergent behavior in

the low pZ
T region where bin widths are finer than those of the W boson study. ResBos-P

systematically overestimates the cross section by approximately 20% above pW
T = 110 GeV,

but the CP version demonstrates good agreement with data in the accessible region of pZ
T.

The ratios of W− to W+, Z to W boson differential cross sections, as well as the ratio

of Z boson production cross sections at centre-of-mass energies 7 to 8 TeV are calculated

to allow for more precise comparisons with data. Overall, the different theoretical models

describe the ratios well.
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Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding

Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the

Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics,

the Institute for the Promotion of Teaching Science and Technology of Thailand, Special

Task Force for Activating Research and the National Science and Technology Development

– 19 –



J
H
E
P
0
2
(
2
0
1
7
)
0
9
6

Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish

Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund

for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.;

the US Department of Energy, and the US National Science Foundation.

Individuals have received support from the Marie-Curie programme and the Euro-

pean Research Council and EPLANET (European Union); the Leventis Foundation; the

A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal

Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et
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Université Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, C. Beluffi3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, L. Ceard, S. De

Visscher, C. Delaere, M. Delcourt, D. Favart, L. Forthomme, A. Giammanco, A. Jafari,

P. Jez, M. Komm, V. Lemaitre, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski,

L. Quertenmont, M. Selvaggi, M. Vidal Marono
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Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia

Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,

A. Psallidas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece

I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,

E. Paradas, J. Strologas
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