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Abstract Direct searches for lepton flavour violation in
decays of the Higgs and Z bosons with the ATLAS detec-
tor at the LHC are presented. The following three decays
are considered: H → eτ , H → μτ , and Z → μτ . The
searches are based on the data sample of proton–proton col-
lisions collected by the ATLAS detector corresponding to an
integrated luminosity of 20.3 fb−1 at a centre-of-mass energy
of

√
s = 8 TeV. No significant excess is observed, and upper

limits on the lepton-flavour-violating branching ratios are
set at the 95% confidence level: Br(H → eτ) < 1.04%,
Br(H → μτ) < 1.43%, and Br(Z → μτ) < 1.69 × 10−5.

1 Introduction

One of the main goals of the Large Hadron Collider (LHC)
physics programme at CERN is to discover physics beyond
the Standard Model (SM). A possible sign would be the
observation of lepton flavour violation (LFV) that could be
realised in decays of the Higgs boson or of the Z boson to
pairs of leptons with different flavours.

Lepton-flavour-violating decays of the Higgs boson can
occur naturally in models with more than one Higgs dou-
blet [1–4], composite Higgs models [5,6], models with
flavour symmetries [7], Randall–Sundrum models [8] and
many others [9–16]. LFV Z boson decays are predicted in
models with heavy neutrinos [17], extended gauge mod-
els [18] and supersymmetry [19].

The most stringent bounds on the LFV decays of the Higgs
and Z bosons other than H → μe are derived from direct
searches [20]. The CMS Collaboration has performed the first
direct search for LFV H → μτ decays [21] and reported a
small excess (2.4 standard deviations) of data over the pre-
dicted background. Their results give a 1.51% upper limit
on Br(H → μτ ) at the 95% confidence level (CL). The
ATLAS Collaboration has also performed a search [22] for
the LFV H → μτ decays in the final state with one muon
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and one hadronically decaying τ -lepton, τhad, and reported a
1.85% upper limit on Br(H → μτ ) at the 95% CL. The most
stringent indirect constraint on H → eμ decays is derived
from the results of searches for μ → eγ decays [23], and a
bound of Br(H → eμ) < O(10−8) is obtained [24,25]. The
bound on μ → eγ decays suggests that the presence of a
H → μτ signal would exclude the presence of a H → eτ
signal, and vice versa, at an experimentally observable level
at the LHC [25]. It is also important to note that a relatively
large Br(H → μτ ) can be achieved without any particular
tuning of the effective couplings, while a large Br(H → eτ )
is possible only at the cost of some fine-tuning of the corre-
sponding couplings [25]. Upper bounds on the LFV Z → eμ,
Z → μτ and Z → eτ decays were set by the LEP experi-
ments [26,27]: Br(Z → eμ) < 1.7 × 10−6, Br(Z → eτ) <

9.8 × 10−6, and Br(Z → μτ) < 1.2 × 10−5 at the 95% CL.
The ATLAS experiment set the most stringent upper bound
on the LFV Z → eμdecays [28]: Br(Z → eμ) < 7.5×10−7

at 95% CL.
This paper describes three new searches for LFV decays

of the Higgs and Z bosons. The first study is a search for
H → eτ decays in the final state with one electron and one
hadronically decaying τ -lepton, τhad. The second analysis is
a simultaneous search for the LFV H → eτ and H → μτ

decays in the final state with a leptonically decaying τ -lepton,
τlep. A combination of results of the earlier ATLAS search
for the LFV H → μτhad decays [22] and the two searches
described in this paper is also presented. The third study con-
stitutes the first ATLAS search for LFV decays of the Z boson
with hadronic τ -lepton decays in the channel Z → μτhad.
The search for LFV decays in the τlep analysis is based on
the novel method introduced in Ref. [29]; the searches in the
τhad analyses are based on the techniques developed for the
SM H → τlepτhad search. All three searches are based on
the data sample of pp collisions collected at a centre-of-mass
energy of

√
s = 8 TeV and corresponding to an integrated

luminosity of 20.3 fb−1. Given the overlap between the anal-
ysis techniques used in the H → eτhad search and in the
Z → μτhad search, from here on they are referred to as the
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τhad channels; the H → �τlep search is referred to as the τlep

channel, where � = e, μ.

2 The ATLAS detector and object reconstruction

The ATLAS detector1 is described in detail in Ref. [30].
ATLAS consists of an inner tracking detector (ID) cov-
ering the range |η| < 2.5, surrounded by a supercon-
ducting solenoid providing a 2 T axial magnetic field, a
high-granularity electromagnetic (|η| < 3.2) calorimeter, a
hadronic calorimeter (|η| < 4.9), and a muon spectrometer
(MS) (|η| < 2.7) with a toroidal magnetic field.

The signatures of LFV searches reported here are char-
acterised by the presence of an energetic lepton originat-
ing directly from the boson decay and carrying roughly half
of its energy, and the hadronic or leptonic decay products
of a τ -lepton. The data in the τhad channels were collected
with single-lepton triggers: a single-muon trigger with the
threshold of pT = 24 GeV and a single-electron trigger
with the threshold ET = 24 GeV. The data in the τlep chan-
nel were collected using asymmetric electron-muon triggers
with (pμ

T , Ee
T) > (18, 8) GeV and (Ee

T, pμ
T ) > (14, 8) GeV

thresholds. The pT and ET requirements on the objects in the
presented analyses are at least 2 GeV higher than the trigger
requirements.

A brief description of the object definitions is provided
below. The primary vertex is chosen as the proton–proton
collision vertex candidate with the highest sum of the squared
transverse momenta of all associated tracks [31].

Muon candidates are reconstructed using an algorithm
that combines information from the ID and the MS [32].
Muon quality criteria such as inner-detector hit requirements
are applied to achieve a precise measurement of the muon
momentum and to reduce the misidentification rate. Muons
are required to have pT > 10 GeV and to be within |η| < 2.5.
The distance between the z-position of the point of clos-
est approach of the muon inner-detector track to the beam-
line and the z-coordinate of the primary vertex is required
to be less than 1 cm. In the τlep channel, there is an addi-
tional cut on the transverse impact parameter significance,
defined as the transverse impact parameter divided by its
uncertainty: |d0|/σd0 < 3. These requirements reduce the
contamination due to cosmic-ray muons and beam-induced

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ as
η = − ln tan(θ/2). The transverse momentum and the transverse energy
are defined as pT = p× sin(θ) and ET = E × sin(θ), respectively. The
distance 
R in η-φ space is defined as 
R = √

(
η)2 + (
φ)2.

Table 1 Summary of isolation requirements applied for the selection
of isolated electrons and muons. The isolation variables are defined in
the text

τlep channels τhad channels

Electrons I (ET, 0.3) < 0.13 I (ET, 0.2) < 0.06

I (pT, 0.3) < 0.07 I (pT, 0.4) < 0.06

Muons I (ET, 0.3) < 0.14 I (ET, 0.2) < 0.06

I (pT, 0.3) < 0.06 I (pT, 0.4) < 0.06

backgrounds. Typical reconstruction and identification effi-
ciencies for muons meeting these selection criteria are above
95% [32].

Electron candidates are reconstructed from energy clus-
ters in the electromagnetic calorimeters matched to tracks
in the ID. They are required to have transverse energy
ET > 15(12) GeV in the τhad (τlep) channel, to be within the
pseudorapidity range |η| < 2.47, and to satisfy the medium
shower shape and track selection criteria defined in Ref. [33].
Candidates found in the transition region between the barrel
and end-cap calorimeters (1.37 < |η| < 1.52) are not con-
sidered in the τhad channel. Typical reconstruction and iden-
tification efficiencies for electrons satisfying these selection
criteria range between 80 and 90%, depending on ET and η.

Exactly one lepton (electron or muon) satisfying the above
identification requirements is allowed in the τhad channels. In
the τlep channel, only events with exactly one identified muon
and one identified electron are retained. All lepton (electron
or muon) candidates must be matched to the corresponding
trigger objects and satisfy additional isolation criteria, based
on tracking and calorimeter information, in order to suppress
the background from misidentified jets or from semileptonic
decays of charm and bottom hadrons. The calorimeter iso-
lation variable I (ET,
R) is defined as the sum of the total
transverse energy in the calorimeter in a cone of size 
R
around the electron cluster or the muon track, divided by the
ET of the electron cluster or the pT of the muon, respec-
tively. The track-based isolation I (pT,
R) is defined as the
scalar sum of the transverse momenta of tracks within a cone
of size 
R around the electron or muon track, divided by
the ET of the electron cluster or the muon pT, respectively.
The contribution due to the lepton itself is not included in
either sum. The isolation requirements used in the τhad and
τlep channels, optimised to reduce the contamination from
non-prompt leptons, are listed in Table 1.

Hadronically decaying τ -leptons are identified by means
of a multivariate analysis technique [34] based on boosted
decision trees, which exploits information about ID tracks
and clusters in the electromagnetic and hadronic calorime-
ters. The τhad candidates are required to have +1 or −1 net
charge in units of electron charge, and must be 1- or 3-track
(1- or 3-prong) candidates. Events with exactly one τhad can-

123



Eur. Phys. J. C (2017) 77 :70 Page 3 of 31 70

didate satisfying the medium identification criteria [34] with
pT > 20 GeV and |η| < 2.47 are considered in the τhad

channels. In the τlep channel, events with identified τhad

candidates are rejected to avoid overlap between H → �τhad

and H → �τlep. The identification efficiency for τhad candi-
dates satisfying these requirements is (55–60)%. Dedicated
criteria [34] to separate τhad candidates from misidentified
electrons are also applied, with a selection efficiency for true
τhad decays (that pass the τhad identification requirements
described above) of 95%. To reduce the contamination due
to backgrounds where a muon mimics a τhad signature, events
in which an identified muon with pT(μ) > 4 GeV overlaps
with an identified τhad are rejected [35]. The probability to
misidentify a jet with pT > 20 GeV as a τhad candidate is
typically (1–2)% [34].

Jets are reconstructed using the anti-kt jet clustering algo-
rithm [36] with a radius parameter R = 0.4, taking the
deposited energy in clusters of calorimeter cells as inputs.
Fully calibrated jets [37] are required to be reconstructed in
the range |η| < 4.5 and to have pT > 30 GeV. To suppress
jets from multiple proton–proton collisions in the same or
nearby beam bunch crossings, tracking information is used
for central jets with |η| < 2.4 and pT < 50 GeV. In the τlep

channel, these central jets are required to have at least one
track originating from the primary vertex. In the τhad channel,
tracks originating from the primary vertex must contribute
more than half of the jet pT when summing the scalar pT of
all tracks in the jet; jets with no associated tracks are retained.

In the pseudorapidity range |η| < 2.5, jets containing b-
hadrons (b-jets) are selected using a tagging algorithm [38].
These jets are required to have pT > 30 GeV in the τhad

channel, and pT > 20 GeV in the τlep channel. Two different
working points with ∼70 and ∼80% b-tagging efficiencies
for b-jets in simulated t t̄ events are used in the τhad and τlep

channels, respectively. The corresponding light-flavour jet
misidentification probability is (0.1–1)%, depending on the
pT and η of the jet. Only a very small fraction of signal events
have b-jets, therefore events with identified b-jets are vetoed
in the selection of signal events.

Some objects might be reconstructed as more than one
candidate. Overlapping candidates, separeted by 
R < 0.2,
are resolved by discarding one object and selecting the other
one in the following order of priority (from highest to lowest):
muons, electrons, τhad, and jet candidates [35].

The missing transverse momentum (with magnitude
Emiss

T ) is reconstructed using the energy deposits in calorime-
ter cells calibrated according to the reconstructed physics
objects (e, γ , τhad, jets and μ) with which they are associ-
ated [39]. In the τhad channels, the energy from calorimeter
cells not associated with any physics object is included in the
Emiss

T calculation. It is scaled by the scalar sum of pT of tracks
which originate from the primary vertex but are not associ-
ated with any objects divided by the scalar sum of pT of all

tracks in the event which are not associated with objects. The
scaling procedure achieves a more accurate reconstruction of
Emiss

T under high pile-up conditions.

3 Signal and background samples

The LFV signal is estimated from simulation. The major
Higgs boson production processes (gluon fusion ggH ,
vector-boson fusion VBF, and associated production
WH/ZH ) are considered in the reported searches for LFV
H → eτ and H → μτ decays. In the τlep channel, all back-
grounds are estimated from data. In the τhad channels, the
Z/γ ∗ → ττ and multi-jet backgrounds are estimated from
data, while the other remaining backgrounds are estimated
from simulation, as described below.

The largely irreducible Z/γ ∗ → ττ background is mod-
elled by Z/γ ∗ → μμ data events, where the muon tracks and
associated energy deposits in the calorimeters are replaced
by the corresponding simulated signatures of the final-state
particles of the τ -lepton decay. In this approach, essential
features such as the modelling of the kinematics of the pro-
duced boson, the modelling of the hadronic activity of the
event (jets and underlying event) as well as contributions
from pile-up are taken from data. Therefore, the dependence
on the simulation is minimised and only the τ -lepton decays
and the detector response to the τ -lepton decay products are
based on simulation. This hybrid sample is referred to as
embedded data in the following. A detailed description of
the embedding procedure can be found in Ref. [40].

The W+jets, Z/γ ∗ → μμ and Z/γ ∗ → ee backgrounds
are modelled by the ALPGEN [41] event generator interfaced
with PYTHIA8 [42] to provide the parton showering, hadro-
nisation and the modelling of the underlying event. The back-
grounds with top quarks are modelled by the POWHEG [43–
45] (for t t̄ , Wt and s-channel single-top production) and
AcerMC [46] (t-channel single-top production) event gen-
erators interfaced with PYTHIA8. The ALPGEN event gen-
erator interfaced with HERWIG [47] is used to model the
WW process, and HERWIG is used for the Z Z and WZ
processes.

The events with Higgs bosons produced via ggH or
VBF processes are generated at next-to-leading-order (NLO)
accuracy in QCD with the POWHEG [48] event generator
interfaced with PYTHIA8 to provide the parton showering,
hadronisation and the modelling of the underlying event. The
associated production (ZH and WH ) samples are simulated
using PYTHIA8. All events with Higgs bosons are produced
with a mass of mH = 125 GeV assuming the narrow width
approximation and normalised to cross sections calculated at
next-to-next-to-leading order (NNLO) in QCD [49–51]. The
SM H → ττ decays are simulated by PYTHIA8; the other
SM decays of the Higgs boson are negligible. The LFV Higgs
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boson decays are modelled by the EvtGen [52] event genera-
tor according to the phase-space model. In the H → μτ and
H → eτ decays, the τ -lepton decays are treated as unpo-
larised because the left- and right-handed τ -lepton polari-
sation states are produced at equal rates. Finally, the LFV
Z boson decays are simulated with PYTHIA8 assuming an
isotropic decay. The width of the Z boson is set to its mea-
sured value [20].

For all simulated samples, the decays of τ -leptons are
modelled with TAUOLA [53] and the propagation of parti-
cles through the ATLAS detector is simulated with GEANT4
[54,55]. The effect of multiple proton–proton collisions in
the same or nearby beam bunch crossings is accounted for
by overlaying additional minimum-bias events. Simulated
events are weighted so that the distribution of the aver-
age number of interactions per bunch crossing matches that
observed in data.

Background contributions due to non-prompt leptons in
the τlep channel and multi-jet events in the τhad chan-
nel are estimated using data-driven techniques described in
Sects. 4.2 and 5.2.

4 Search for H → eτ decays in the τhad channel

The search for the LFV H → eτ decays in the τhad channel
follows exactly the same analysis strategy and utilises the
same background estimation techniques as those used in the
ATLAS search for the LFV H → μτ decays in the τhad

channel [22]. The only major difference is that a high-ET

electron is required in the final state instead of a muon. A
detailed description of the H → eτhad analysis is provided
in the following sections.

4.1 Event selection and categorisation

Signal H → eτ events in the eτhad final state are char-
acterised by the presence of exactly one energetic electron
and one τhad of opposite-sign (OS) charge as well as moder-
ate Emiss

T , which tends to be aligned with the τhad direction.
Same-sign (SS) charge events are used to control the rates
of background contributions. Events with identified muons
are rejected. Backgrounds for this signature can be broadly
classified into two major categories:

• Events with true electron and τhad signatures. These are
dominated by the irreducible Z/γ ∗ → ττ production
with some contributions from the VV → eτ + X (where
V = W, Z ), t t̄ , single-top and SM H → ττ production
processes. These events exhibit a very strong charge anti-
correlation between the electron and the τhad. Therefore,
the expected number of OS events (NOS) is much larger
than the number of SS events (NSS).

• Events with a misidentified τhad signature. These are
dominated byW+jets events with some contribution from
multi-jet (many of which have genuine electrons from
semileptonic decays of heavy-flavour hadrons), diboson
(VV ), t t̄ and single-top events with NOS > NSS. Addi-
tional contributions to this category arise from Z(→
ee)+jets events, where a τhad signature can be mimicked
by either a jet (no charge correlation) or an electron
(strong charge anti-correlation).

Events with a misidentified τhad tend to have a much
softer pT(τhad) spectrum and a larger angular separation
between the τhad and Emiss

T directions. These properties are
exploited to suppress backgrounds and define signal and con-
trol regions. Events with exactly one electron and exactly
one τhad with ET(e) > 26 GeV, pT(τhad) > 45 GeV and
|η(e) − η(τhad)| < 2 form a baseline sample as it repre-
sents a common selection for both the signal and control
regions. The |η(e)−η(τhad)| cut has ∼99% efficiency for sig-
nal and rejects a considerable fraction of multi-jet andW+jets
events. Similarly as done in Ref. [22], two signal regions are
defined using the transverse mass2, mT, of the e-Emiss

T and

τhad-Emiss
T systems: OS events with m

e,Emiss
T

T > 40 GeV and

m
τhad,Emiss

T
T < 30 GeV form the signal region-1 (SR1), while

OS events withm
e,Emiss

T
T < 40 GeV andm

τhad,Emiss
T

T < 60 GeV
form the signal region-2 (SR2). Both regions have simi-
lar sensitivity to the signal (see Sect. 4.4). The dominant
background in SR1 is W+jets, while the Z/γ ∗ → ττ and
Z → ee+jets backgrounds dominate in SR2. The modelling
of the W+jets background is checked in a dedicated control

region (WCR) formed by events withm
e,Emiss

T
T > 60 GeV and

m
τhad,Emiss

T
T > 40 GeV. As discussed in detail in Sect. 4.2, the

modelling of the Z/γ ∗ → ττ and Z → ee+jets backgrounds
is checked in SR2. The choice of mT cuts to define SR1, SR2

and WCR is motivated by correlations between m
e,Emiss

T
T and

m
τhad,Emiss

T
T in H → eτ signal and major background (W+jets

and Z/γ ∗ → ττ ) events, as illustrated in Fig. 1. No events
with identified b-jets are allowed in SR1, SR2 and WCR. The
modelling of the t t̄ and single-top backgrounds is checked in
a dedicated control region (TCR), formed by events that sat-
isfy the baseline selection and have at least two jets, with at
least one being b-tagged. Table 2 provides a summary of the
event selection criteria used to define the signal and control
regions.

The LFV signal is searched for by performing a fit to
the mass distribution in data, mMMC

eτ , reconstructed from

2 m
�,Emiss

T
T =

√
2p�

TE
miss
T (1 − cos 
φ), where � = e, τhad and 
φ is

the azimuthal separation between the directions of the lepton (e or τhad)
and Emiss

T vectors.
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Fig. 1 Two-dimensional distributions of the transverse mass of the e-

Emiss
T system, m

e,Emiss
T

T , and that of the τhad-Emiss
T system, m

τhad,Emiss
T

T , in
simulated Z/γ ∗ → ττ (top left plot), W+jets (top right plot), H → eτ
signal (bottom left plot) and data (bottom right plot) events. Magenta,

red and yellow boxes on the bottom right plot illustrate SR1, SR2, and
WCR, respectively. All events used for these distributions are required
to have a well-identified electron and τhad (as described in text) of oppo-
site charge with pT(τhad) > 20 GeV and ET(e) > 26 GeV

Table 2 Summary of the event
selection criteria used to define
the signal and control regions
(see text)

Criterion SR1 SR2 WCR TCR

ET(e) >26 GeV >26 GeV >26 GeV >26 GeV

pT(τhad) >45 GeV >45 GeV >45 GeV >45 GeV

|η(e) − η(τhad)| <2 <2 <2 <2

m
e,Emiss

T
T >40 GeV <40 GeV >60 GeV –

m
τhad,Emiss

T
T <30 GeV <60 GeV >40 GeV –

Njet – – – ≥2

Nb-jet 0 0 0 ≥1

the observed electron, τhad and Emiss
T objects by means of

the Missing Mass Calculator [56] (MMC). Conceptually, the
MMC is a more sophisticated version of the collinear approx-
imation [57]. The main improvement comes from requiring
that the relative orientations of the neutrino and other τ -
lepton decay products are consistent with the mass and kine-
matics of a τ -lepton decay. This is achieved by maximising a
probability defined in the kinematically allowed phase-space
region. The MMC used in the H → ττ analysis [35] is mod-
ified to take into account that there is only one neutrino from
a hadronic τ -lepton decay in LFV H → eτ events. For a
Higgs boson with mH = 125 GeV, the reconstructed mMMC

eτ

distribution has a roughly Gaussian shape with a full width
at half maximum of ∼19 GeV. The analysis is performed
“blinded” in the 110 GeV< mMMC

eτ <150 GeV regions of
SR1 and SR2, which contain 93.5 and 95% of the expected
signal events in SR1 and SR2, respectively. The event selec-
tion and the analysis strategy are defined without looking at
the data in these blinded regions.

4.2 Background estimation

The background estimation method takes into account
the background properties and composition discussed in
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Sect. 4.1. It also relies on the observation that the shape of the
mMMC

eτ distribution for the multi-jet background is the same
for OS and SS events. This observation was made using a
dedicated control region, MJCR, with an enhanced contri-
bution from the multi-jet background. Events in this control
region are required to meet all criteria for SR1 and SR2 with
the exception of the requirement on |η(e) − η(τhad)|, which
is reversed: |η(e) − η(τhad)| > 2. Therefore, the total num-
ber of OS background events, N bkg

OS in each bin of the mMMC
eτ

(or any other) distribution in SR1 and SR2 can be obtained
according to the following formula:

N bkg
OS = rQCD · N data

SS +
∑

bkg-i

N bkg-i
OS−SS, (1)

where the individual terms are described below. N data
SS is the

number of SS data events, which contains significant contri-
butions fromW+jets events, multi-jet and other backgrounds.
The fractions of multi-jet background in SS data events inside
the 110 GeV< mMMC

eτ <150 GeV mass window are ∼27
and ∼64% in SR1 and SR2, respectively. The contributions
N bkg-i

OS−SS = N bkg-i
OS − rQCD · N bkg-i

SS are add-on terms for the
different background components (where bkg-i indicates the
i th background source: Z → ττ , Z → ee, W+jets, VV ,
H → ττ and events with t-quarks), which also account
for components of these backgrounds already included in SS
data events.3 The factor rQCD = Nmulti-jet

OS /Nmulti-jet
SS accounts

for potential differences in flavour composition (and, as a
consequence, in jet → τhad misidentification rates) of final-
state jets introduced by the same-sign or opposite-sign charge
requirements. The value of rQCD = 1.0 ± 0.13 is obtained
from a multi-jet enriched control region in data using a
method discussed in Ref. [58]. This sample is obtained by

selecting events with Emiss
T < 15 GeV, m

e,Emiss
T

T < 30 GeV,
removing the isolation criteria of the electron candidate and
using the loose identification criteria for the τhad candi-
date [34]. The systematic uncertainty on rQCD is estimated
by varying the selection cuts described above. The obtained
value of rQCD is also verified in the MJCR region, which
has a smaller number of events but where the electron and
τhad candidates pass the same identification requirements as
events in SR1 and SR2.

The data and simulation samples used for the modelling of
background processes are described in Sect. 3. A discussion
of each background source is provided below.

The largely irreducible Z/γ ∗ → ττ background is mod-
elled by the embedded data sample described in Sect. 3.
The Z/γ ∗ → ττ normalisation is a free parameter in the

3 The rQCD · N bkg-i
SS correction in the add-on term is needed because

same-sign data events include multi-jet as well as electroweak events
(Z → ττ , Z → ee, W+jets, VV , H → ττ and events with t-quarks)
and their contributions cannot be separated.

final fit to data and it is mainly constrained by events with
60 GeV<mMMC

eτ <90 GeV in SR2.
Events due to the W+jets background are mostly selected

when the τhad signature is mimicked by jets. This background
is estimated from simulation, and the WCR region is used to
check the modelling of the W+jets kinematics and to obtain
separate normalisations for OS and SS W+jets events. The
difference in these two normalisations happens to be statisti-
cally significant. An additional overall normalisation factor
for the NW+jets

OS−SS term in Eq. (1) is introduced as a free param-
eter in the final fit in SR1. By studying WCR events and
SR1 events with mMMC

eτ > 150 GeV (dominated by W+jets
background), it is also found that an mMMC

eτ shape correc-
tion, which depends on the number of jets, pT(τhad) and
|η(e) − η(τhad)|, needs to be applied in SR1. This correc-
tion is derived from SR1 events with mMMC

eτ > 150 GeV and
it is applied to events with any value of mMMC

eτ . The corre-
sponding modelling uncertainty is set to be 50% of the differ-
ence of the mMMC

eτ shapes obtained after applying the SR1-
based and WCR-based shape corrections. The size of this
uncertainty depends on mMMC

eτ and it is as large as ±10% for
W+jets events with mMMC

eτ < 150 GeV. In the case of SR2,
good modelling of the Njet, pT(τhad) and |η(e) − η(τhad)|
distributions suggests that such a correction is not needed.
However, a modelling uncertainty in the mMMC

eτ shape of the
W+jets background in SR2 is set to be 50% of the difference
between the mMMC

eτ shape obtained without any correction
and the one obtained after applying the correction derived
for SR1 events. The size of this uncertainty is below 10%
in the 110 GeV< mMMC

eτ <150 GeV region, which contains
most of the signal events. It was also checked that applying
the same correction in SR2 as in SR1 would affect the final
result by less than 4% (see Sect. 6). The modelling of jet frag-
mentation and the underlying event has a significant effect
on the estimate of the jet → τhad misidentification rate in dif-
ferent regions of the phase space and has to be accounted for
with a corresponding systematic uncertainty. To estimate this
effect, the analysis was repeated using a sample of W+jets
events modelled by ALPGEN interfaced with the HERWIG
event generator. Differences in theW+jets predictions in SR1
and SR2 are found to be ±12 and ±15%, respectively, and
are taken as corresponding systematic uncertainties.

In the case of the Z → ee background, there are two
components: events in which an electron mimics a τhad

(e → τmisid
had ) and events in which a jet mimics a τhad

(jet→ τmisid
had ). In the first case, the shape of the Z → ee

background is obtained from simulation. Corrections from
data, derived from dedicated tag-and-probe studies [59], are
also applied to account for the variation in the e → τmisid

had
misidentification rate as a function of η. The normalisation
of this background component is a free parameter in the
final fit to data and it is mainly constrained by events with
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Fig. 2 Distributions of the mass reconstructed by the Missing Mass
Calculator, mMMC

eτ , in SR1 (left) and SR2 (right). The background dis-
tributions are determined in a global fit (described in Sect. 4.4). The
signal distribution corresponds to Br(H → eτ ) = 25%. The bottom
panel of each sub-figure shows the ratio of the observed data to the
estimated background. Very small backgrounds due to single top, t t̄ ,

VV , Z → ee(jet → τmisid
had ) and H → ττ events are combined in a

single background component labelled as “Other Backgrounds”. The
grey band for the ratio illustrates post-fit systematic uncertainties in the
background prediction. The statistical uncertainties in the background
predictions and data are added in quadrature for the ratios. The last bin
in each distribution contains events with mMMC

eτ > 250 GeV

90 GeV<mMMC
eτ <110 GeV in SR2. For the Z → ee back-

ground where a jet is misidentified as a τhad candidate and
one of the electrons does not pass the electron identifica-
tion criteria described in Sect. 2, the normalisation factor
and shape corrections, which depend on the number of jets,
pT(τhad) and |η(e) − η(τhad)|, are derived using events with
two identified OS electrons with an invariant mass, mee, in
the range of 80–100 GeV. Since this background does not
have an OS–SS charge asymmetry, a single correction factor
is derived for OS and SS events. Half the difference between
the mMMC

eτ shape with and without this correction is taken as
the corresponding systematic uncertainty.

The TCR is used to check the modelling and to obtain
normalisations for OS and SS events with top quarks. The
normalisation factors obtained in the TCR are extrapolated
into SR1 and SR2, where t t̄ and single-top events may have
different properties. To estimate the uncertainty associated
with such an extrapolation, the analysis is repeated using the
MC@NLO [60] event generator instead of POWHEG for t t̄
production.4 This uncertainty is found to be ±8% (±14%)
for backgrounds with top quarks in SR1 (SR2).

The background due to diboson (WW , Z Z and WZ )
production is estimated from simulation, normalised to the
cross sections calculated at NLO in QCD [61]. Finally, the
SM H → ττ events also represent a small background in
this search. This background is estimated from simulation

4 The same extrapolation uncertainty is assumed for t t̄ and single-top
backgrounds.

and normalised to the cross sections calculated at NNLO in
QCD [49–51]. All other SM Higgs boson decays constitute
negligible backgrounds for the LFV signature.

Figure 2 shows the mMMC
eτ distributions for data and

the predicted backgrounds in each of the signal regions.
The backgrounds are estimated using the method described
above and their normalisations are obtained in a global fit
described in Sect. 4.4. The signal acceptance times efficien-
cies for passing the SR1 or SR2 selection requirements are
1.8 and 1.4%, respectively, and the combined efficiency is
3.2%. The numbers of observed events in the data as well
as the signal and background predictions in the mass region
110 GeV< mMMC

eτ <150 GeV can be found in Table 3.

4.3 Systematic uncertainties

The numbers of signal and background events and the shapes
of correspondingmMMC

eτ distributions are affected by system-
atic uncertainties. They are discussed below and changes in
event yields are provided for major sources of uncertain-
ties. For all uncertainties, the effects on both the total signal
and background predictions and on the shape of the mMMC

eτ
distribution are evaluated. Unless otherwise mentioned, all
sources of experimental uncertainties are treated as fully cor-
related across signal and control regions in the final fit which
is discussed in Sect. 4.4.

The largest systematic uncertainties arise from the nor-
malisation (±12% uncertainty) and modelling of the W+jets
background. The uncertainties on the W+jets normalisa-
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Table 3 Data yields, signal and post-fit OS–SS background predictions
(see Eq. (1)) for the 110 GeV< mMMC

eτ <150 GeV region. The signal
predictions are given for Br(H → eτ ) = 1.0%. The background pre-
dictions are obtained from the combined fit to SR1, SR2, WCR and
TCR. The post-fit values of systematic uncertainties are provided for

the background predictions. For the total background, all correlations
between various sources of systematic uncertainties and backgrounds
are taken into account. The quoted uncertainties represent the statistical
(first) and systematic (second) uncertainties, respectively

SR1 SR2

LFV signal (Br(H → eτ ) = 1.0%) 75 ±1 ±8 59 ±1 ±8

W+jets 740 ±80 ±110 370 ±60 ±70

Same-Sign events 390 ±20 ±60 570 ±30 ±80

Z → ττ 116 ±8 ±11 245 ±11 ±20

VV and Z → ee( jet → τmisid
had ) 71 ±31 ±30 60 ±20 ±40

Z → ee(e → τmisid
had ) 69 ±17 ±11 320 ±40 ±40

t t̄ and single top 18 ±5 ±4 10.2 ±2.6 ±2.2

H → ττ 4.6 ±0.2 ±0.7 10.5 ±0.3 ±1.5

Total background 1410 ±90 ±70 1590 ±80 ± 70

Data 1397 1501

tion and mMMC
eτ shape corrections are treated as uncorre-

lated between SR1 and SR2. The uncertainties in rQCD

(±13%) and in the normalisation (±13%) and modelling
of Z → ττ also play an important role. The normalisa-
tion uncertainty (±7%) for the Z → ee (with e → τmisid

had )
background has a limited impact on the sensitivity because
of a good separation of the signal and Z → ee peaks in the
mMMC

eτ distribution. The other major sources of experimen-
tal uncertainty, affecting both the shape and normalisation
of signal and backgrounds, are the uncertainty in the τhad

energy scale [34], which is measured with ±(2–4)% preci-
sion (depending on pT and decay mode of the τhad candidate),
and uncertainties in the embedding method used to model
the Z → ττ background [35]. Less significant sources of
experimental uncertainty, affecting the shape and normalisa-
tion of signal and backgrounds, are the uncertainty in the jet
energy scale [37,62] and resolution [63]. The uncertainties
in the τhad energy resolution, the energy scale and resolu-
tion of electrons, and the scale uncertainty in Emiss

T due to
the energy in calorimeter cells not associated with physics
objects are taken into account; however, they are found to
be only ±(1–2%). The following experimental uncertainties
primarily affect the normalisation of signal and backgrounds:
the ±2.8% uncertainty in the integrated luminosity [64], the
uncertainty in the τhad identification efficiency [34], which
is measured to be ±(2–3)% for 1-prong and ±(3–5)% for 3-
prong decays(where the range reflects the dependence on pT

of the τhad candidate), the ±2.1% uncertainty for triggering,
reconstructing and identifying electrons [33], and the ±2%
uncertainty in the b-jet tagging efficiency [38].

Theoretical uncertainties are estimated for the Higgs
boson production and for the VV background, which are
modelled with the simulation and are not normalised to data
in dedicated control regions. Uncertainties due to missing

higher-order QCD corrections in the production cross sec-
tions are found to be [65] ±10.1% (±7.8%) for the Higgs
boson production via ggH in SR1 (SR2), ±1% for the
Z → ee background and for VBF and V H Higgs boson pro-
duction, and ±5% for the VV background. The systematic
uncertainties due to the choice of parton distribution func-
tions used in the simulation are evaluated based on the pre-
scription described in Ref. [65] and the following values are
used in this analysis: ±7.5% for the Higgs boson production
via ggH , ±2.8% for the VBF and V H Higgs boson pro-
duction, and ±4% for the VV background. Finally, an addi-
tional ±5.7% systematic uncertainty [65] on Br(H → ττ )
is applied to the SM H → ττ background.

4.4 Results of the search for LFV H → eτ decays in the
τhad channel

A simultaneous binned maximum-likelihood fit is performed
on the mMMC

eτ distributions in SR1 and SR2 and on event
yields in WCR and TCR to extract the LFV branching ratio
Br(H → eτ ). The fit exploits the control regions and the
distinct shapes of the W+jets, Z → ττ and Z → ee back-
grounds in the signal regions to constrain some of the system-
atic uncertainties. This increases the sensitivity of the anal-
ysis. The post-fit mMMC

eτ distributions in SR1 and SR2 are
shown in Fig. 2, and the combined mMMC

eτ distribution for
both signal regions is presented in Fig. 3. Figure 2 illustrates
the level of agreement between data and background expec-
tations in SR1 and SR2. No statistically significant deviations
of the data from the predicted background are observed. An
upper limit on the LFV branching ratio Br(H → eτ ) for
a Higgs boson with mH = 125 GeV is set using the CLs

modified frequentist formalism [66] with the test statistic
based on the profile likelihood ratio [67]. The observed and
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Fig. 3 Post-fit combined mMMC
eτ distribution obtained by adding indi-

vidual distributions in SR1 and SR2. In the lower part of the figure, the
data are shown after subtraction of the estimated backgrounds. The grey
band in the bottom panel illustrates the post-fit systematic uncertainties
in the background prediction. The statistical uncertainties for data and
background predictions are added in quadrature in the bottom part of
the figure. The signal is shown assuming Br(H → eτ) = 1.0%. Very
small backgrounds due to single top, t t̄ , VV , Z → ee( jet → τmisid

had )

and H → ττ events are combined in a single background compo-
nent labelled as “Other Backgrounds”. The last bin of the distribution
contains events with mMMC

eτ >250 GeV

the median expected 95% CL upper limits are 1.81% and
2.07+0.82

−0.58%, respectively. Table 6 provides a summary of all
results, including the results of the ATLAS search for the
LFV H → μτ decays [22].

5 Search for H → eτ/μτ decays in the τlep channel

In the τlep channel the background estimate is based on
the data-driven method developed in Ref. [29]. This method
is sensitive only to the difference between Br(H → μτ )
and Br(H → eτ ), and it is based on the premise that the
kinematic properties of the SM background are to a good
approximation symmetric under the exchange e ↔ μ.

5.1 Event selection and signal region definition

Events selected in the τlep channel must contain exactly two
opposite-sign leptons, one an electron and the other a muon.
The lepton with the higher pT is indicated by �1 and the other
by �2. Additional kinematic criteria, based on the pT differ-
ence between the two leptons and on the angular separations
between the leptons and the missing transverse momentum,
are applied to suppress the SM background events, which

Table 4 Summary of the selection criteria used to define the signal
regions in the τlep channel (see text)

SRnoJets SRwithJets

Light leptons e±μ∓ e±μ∓

τhad leptons veto veto

Central jets 0 ≥1

b-jets 0 0

p�1
T ≥35 GeV ≥35 GeV

p�2
T ≥12 GeV ≥12 GeV

|ηe| ≤2.4 ≤2.4

|ημ| ≤2.4 ≤2.4


φ(�2, Emiss
T ) ≤0.7 ≤0.5


φ(�1, �2) ≥2.3 ≥1.0


φ(�1, Emiss
T ) ≥2.5 ≥1.0


pT(�1, �2) ≥7 GeV ≥1 GeV

are mainly due to the production of Z/γ ∗ → ττ and of
diboson (VV ) events. Two mutually exclusive signal regions
are defined: one with no central (|η| < 2.4) light-flavour
jets, SRnoJets, and the other with one or more central light-
flavoured jets, SRwithJets. The kinematic criteria defining each
signal region, summarised in Table 4, are optimised follow-
ing two guidelines. The first one is to maximise the signal-to-
background ratio. The second one is to have, in each signal
region, enough events to perform the data-driven background
estimation described in Sect. 5.2.

The final discriminant used in the τlep channel is the
collinear mass mcoll defined as:

mcoll =
√

2p�1
T (p�2

T + Emiss
T )(cosh 
η − cos 
φ). (2)

This quantity is the invariant mass of two massless parti-
cles, τ and �1, computed with the approximation that the
decay products of the τ lepton, �2 and neutrinos, are collinear
to the τ , and that the Emiss

T originates from the ν. In the
H → μτ (H → eτ ) decay, �1 is the muon (electron) and
�2 is the electron (muon). The differences in rapidity and
azimuthal angle between �1 and �2 are indicated by 
η and

φ. More sophisticated kinematic variables, such as MMC,
do not significantly improve the sensitivity of the τlep chan-
nel.

5.2 Background estimation

For simplicity, the symmetry method is illustrated here
assuming a H → μτ signal. The same procedure, but with
e and μ exchanged, is valid under the H → eτ assump-
tion. The symmetry method is based on the following two
premises:
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1. SM processes result in data that are symmetric under
the exchange of prompt electrons with prompt muons
to a good approximation. In other words, the kinematic
distributions of prompt electrons and prompt muons are
approximately the same;5

2. flavour-violating decays of the Higgs boson break this
symmetry.

Dilepton events in the dataset are divided into two mutually
exclusive samples:

• μe sample: �1 is the muon and �2 is the electron (pT
μ ≥

pT
e)

• eμ sample: �1 is the electron and �2 is the muon (pT
e >

pT
μ)

With these assumptions, the SM background is split
equally between the two samples. The H → μτ signal,
however, is present only in the μe sample because the pT

spectrum of electrons from H → μτ decays is softer then
the muon pT spectrum. The number of H → μτ events in the
eμ sample is negligible with the selection criteria described
in Sect. 5.1.

For SM events the distributions of kinematic variables
in the two samples are the same with good approximation.
In particular, the collinear mass distribution differs between
the two samples only for the narrow signal peak. The peak,
present only in the distribution of the μe sample, is on top of
the SM background, which, to a good approximation, can be
modelled from the eμ collinear mass distribution.

5.2.1 Asymmetries in the SM background

Although the eμ-μe symmetry hypothesis is a good starting
assumption, there are effects that can invalidate it and that
need to be accounted for. The first effect is due to events
containing misidentified and non-prompt leptons, together
referred to as non-prompt in the following. These leptons
originate from misidentified jets or from hadronic decays
within jets. They contribute differently to the μe and eμ sam-
ples because the origin of the non-prompt lepton is different
for electrons and for muons. The second effect originates
from the different dependencies on pT and |η| that the trig-
ger efficiency and reconstruction efficiency can have for elec-
trons and muons. The non-prompt effect is accounted for by
estimating the non-prompt background separately from the
other backgrounds. The efficiency effect is accounted for by
scaling the mcoll distribution of the eμ sample with a scale
factor parameterised as a function of the sub-leading lep-
ton pT, p�2

T . As shown in Sect. 5.5, the eμ-μe symmetry

5 The effect of the mass difference between electrons and muons is
negligible for the processes involved.

is restored when these two effects are taken into account.
Smaller effects, which might depend on other parameters
such as η or p�1

T , are found to be negligible.

Events containing non-prompt leptons The background con-
tribution due to non-prompt leptons is estimated with the
matrix method described in Refs. [68,69], which relies on
the difference in identification efficiency between prompt
and non-prompt leptons. Two lepton categories are defined:
tight leptons, which must satisfy all the lepton identification
criteria described in Sect. 2, and loose leptons, which are
not required to satisfy the primary vertex and isolation cri-
teria. By measuring separately for prompt and non-prompt
leptons the tight-to-loose lepton efficiencies, defined as the
fraction of loose leptons that are also tight, one can determine
the non-prompt background contribution from the number of
data events that have two leptons that are either loose or tight.
The efficiencies for prompt and non-prompt leptons, param-
eterised as a function of pT and η, are derived from data with
the tag-and-probe method. Prompt efficiencies are derived
from an opposite-sign sample enriched in Z → e±e∓ and
Z → μ±μ∓. Non-prompt efficiencies are derived from a
same-sign sample (μ±e± or μ±μ±) where the muon is the
tag lepton.

Asymmetry induced by the different trigger and reconstruc-
tion efficiency of electrons and muons The efficiency to trig-
ger on and reconstruct an eμ event, εeμ, is different from
the one of a μe event, εμe. These two efficiencies can be
expressed as a function of the pT of the two leptons:

εμe = ε
μe
trig.

(
p�2=e

T

)
× εμ

reco.

(
p�1=μ

T

)
× εereco.

(
p�2=e

T

)

εeμ = ε
eμ
trig.

(
p�2=μ

T

)
× εereco.

(
p�1=e

T

)
× εμ

reco.

(
p�2=μ

T

)
.

In this search, the leading lepton is required to have p�1
T >

35 GeV, which is on the plateau region of the trigger and
reconstruction efficiencies. Hence the ratio of the efficiencies
can be approximated as:

εμe

εeμ
=

ε
μe
trig.

(
p�2

T

)
ε
μ
reco.

(
p�1

T

)
εereco.

(
p�2

T

)

ε
eμ
trig.

(
p�2

T

)
εereco.

(
p�1

T

)
ε
μ
reco.

(
p�2

T

)

=
ε
μe
trig.

(
p�2

T

)
εereco.

(
p�2

T

)

ε
eμ
trig.

(
p�2

T

)
ε
μ
reco.

(
p�2

T

) ×
ε
μ
reco.

(
p�1

T

)

εereco.

(
p�1

T

)

= f
(
p�2

T

)
× Const.

Therefore, the ratio of the eμ and μe event reconstruc-
tion efficiencies can be parameterised as a function of the

sub-leading lepton pT, f
(
p�2

T

)
. Using the fit described in
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Sect. 5.4, the parameter f
(
p�2

T

)
is determined in three p�2

T

bins, 12–20, 20–30, and > 30 GeV.

5.3 Systematic uncertainties

Using the eμ asymmetry technique, the only systematic
uncertainty associated with the background prediction is due
to the non-prompt background modelling. This uncertainty
has two components: the first one is the limited number of tag-
and-probe events used to extract the prompt and non-prompt
efficiencies; the second one is the difference in kinemat-
ics, and therefore in sources of non-prompt leptons, between
the events used to extract the non-prompt efficiency and the
events in the signal regions. This second component is eval-
uated by measuring the non-prompt efficiencies in subsets of
the nominal tag-and-probe sample. The subsets are obtained
by applying, one at a time, the kinematic requirements of the
signal regions. The ensuing uncertainties in the estimated
number of non-prompt events can be as large as 10–50% for
the non-prompt efficiency and 3% for the prompt efficiency,
depending on the signal region.

Uncertainties related to the signal prediction are the same
ones described in Sect. 4.3 with one minor difference in the
uncertainty in the signal cross section due to higher-order
QCD corrections. This uncertainty is split into two anticorre-
lated components: ±12% in SRwithJets and ±20% in SRnoJets.

5.4 The statistical model

Assuming that the SM background is completely symmetric
when exchanging e ↔ μ , the likelihood function for the
collinear mass distribution of the eμ and μe samples can be
written as:

L(bi , μ) =
Nmcoll∏

i

Pois(ni | bi ) × Pois(mi | bi + μsi ), (3)

where ni (mi ) is the number of eμ (μe) events in the i-th of
the Nmcoll mcoll bins. The number of background events in the
i-th mcoll bin is indicated by bi , and si is the number of H →
μτ events in the i-th mass bin. The number of signal events∑

i si is normalised to a branching ratio Br(H → μτ) = 1%,
multiplied by a signal strength μ. The likelihood for themcoll

distributions with a H → eτ signal can be defined in a similar
way. The contributions due to non-prompt leptons add to the
eμ and μe terms and they are denoted by N np

i and Mnp
i ,

along with their uncertainties, σNnp
i

and σMnp
i

. The numbers

of non-prompt events in each bin, N np
i and Mnp

i , are treated
as Gaussian nuisance parameters.

The f
(
p�2

T

)
correction, described in Sect. 5.2, is imple-

mented by performing the fit separately in N
p

�2
T

= 3 p�2
T

bins, labelled with the index j . The corrective scale factor

A j , corresponding to the f
(
p�2

T

)
value in the mcoll bin i and

p�2
T bin j , multiplies the eμ yield bi j . These scale factors

are treated in the statistical model as unconstrained nuisance
parameters.

Adding up the symmetric contribution (bi j ), the non-

prompt contributions (N np
i j and Mnp

i j ), the f
(
p�2

T

)
correc-

tion, and the signal contribution (si j ), the likelihood is written
as:

L(μ, bi j , n
np
i j ,m

np
i j ) =

Nmcoll∏

i

N
p
�2
T∏

j

Pois(ni j | A jbi j + nnp
i j )

×Pois(mi j | bi j + mnp
i j + μsi j )

×Gaus(nnp
i j |N np

i j , σNnp
i j

)

×Gaus(mnp
i j |Mnp

i j , σMnp
i j

). (4)

5.5 Background model validation

The symmetry-based method is validated with simulation
and with data. The validation with simulated samples is per-
formed by comparing the signal strength measured in the
SR with background samples, and with signal samples cor-
responding to several non-zero LFV branching ratios. The
validation with data is performed in a validation region (VR)
defined as SRnoJets, but with at least one angular requirement
reversed, 
φ(�1, �2) or 
φ(�1, Emiss

T ).
The validation procedure consists of comparing the data,

or the sum of the simulated background samples, to the total
background estimated from the statistical model. The com-
parison is done for the eμ sample and the μe one. With the
simulated samples, it is also verified that the symmetric back-

ground and the f
(
p�2

T

)
do not depend on the presence of an

LFV signal.
Generated pseudo-experiments are used to confirm that

the statistical model is unbiased. No significant discrepancy
was found between the injected signal strength and its fitted
value up to LFV branching ratios of 10%.

5.6 Results of the search for LFV H → eτ/μτ decays in
the τlep channel

Figure 4 compares the observed data to the yields expected
from the symmetry-based statistical model. The compari-
son, combining the different p�2

T bins, shows the symmetric
component of the background (bi j ) as a dashed line, and the
total background estimation including the contribution from
events containing misidentified and non-prompt leptons as a
full line. As can be seen, the background estimation is in good
agreement with the data over the full mass range. Table 5 sum-
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Fig. 4 Collinear mass distributions in the τlep channel: background
estimate compared to the events observed in the data in the SRnoJets (top)
and SRwithJets (bottom). Left eμ channel. Right μe channel. In these

plots, events from the three f
(
p�2

T

)
bins are combined, although the fit

parameters are different in each f
(
p�2

T

)
bin. The signal expected for a

Br(H → μτ) = 1% is shown in the μe channel

marises the fit results in the data in SRnoJets and SRwithJets:

the fitted f
(
p�2

T

)
scale factors, the symmetric background

component (
∑Nmcoll

i bi j ) in each p�2
T bin, and the non-prompt

estimate in the μe and the eμ channels. The excellent level
of agreement between the fitted number of events and the

observed number is due to the many unconstrained parame-
ters in the fit.

The expected and observed 95% CL upper limits on
branching ratios as well as their best fit values are calculated
using the statistical model described in Sect. 5.4. Table 6
presents a summary of results for the individual categories
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Table 5 A summary of the fit results in the τlep channel. The values of

the fit parameters f
(
p�2

T

)
, which account for the ratio of the eμ and

μe event reconstruction efficiencies described in Sect. 5.2, are obtained
from a background-only fit, and reported for each signal region and
for each p�2

T bin. The expected and observed yields correspond to the
number of events used in the fit, representing the 0–300 GeV mcoll

range shown in Fig. 4. The quoted uncertainties in the expected yields
represent the statistical (first) and systematic (second) uncertainties,
respectively. The post-fit values of systematic uncertainties are pro-
vided for the background predictions. The signal predictions are given
for Br(H → eτ) = 1% in the eμ sample and for Br(H → μτ) = 1%
in the μe sample

p�2
T bin (GeV) f

(
p�2

T

)
LFV Signal, Br = 1% Total backg. Observed

SRnoJets

12–20 1.11 ± 0.06 eμ 14.9 ± 0.4 ± 2.7 1219 ± 24 ± 27 1212

μe 10.7 ± 0.4 ± 2.3 1033 ± 25 ± 20 1035

20–30 1.07 ± 0.08 eμ 15.1 ± 0.4 ± 2.7 998 ± 22 ± 25 995

μe 12.4 ± 0.4 ± 2.2 950 ± 23 ± 21 950

≥30 1.01 ± 0.07 eμ 12.5 ± 0.4 ± 2.2 455 ± 17 ± 16 452

μe 11.4 ± 0.4 ± 2.0 458 ± 16 ± 14 457

SRwithJets

12–20 1.07 ± 0.10 eμ 5.9 ± 0.3 ± 1.1 222 ± 10 ± 11 220

μe 3.9 ± 0.2 ± 0.9 181 ± 10 ± 9 182

20–30 1.24 ± 0.16 eμ 5.4 ± 0.2 ± 1.1 187 ± 9 ± 11 187

μe 4.5 ± 0.2 ± 0.9 161 ± 9 ± 9 161

≥30 1.13 ± 0.10 eμ 5.5 ± 0.2 ± 1.0 251 ± 11 ± 12 250

μe 4.9 ± 0.2 ± 0.9 229 ± 11 ± 11 229

and their combination can be found in Table 6 for both the
H → eτ and H → μτ hypotheses.

6 Combined results of the search for LFV H → eτ/μτ

decays

The results of the individual searches for the LFV H → eτ
and H → μτ decays in the τhad (including the result from
Ref. [22]) and τlep channels presented in Sects. 4.4 and 5.6
are statistically combined. The two channels use different
background estimation techniques, leading to uncorrelated
systematic uncertainties in the background predictions. The
systematic uncertainties for the LFV signal are treated as
100% correlated between the two channels. Table 6 presents
a summary of results for the expected and observed 95% CL
upper limits and the best fit values for the branching ratios
for the individual categories and their combination. There is
no indication of a signal in the search for the LFV H → eτ
decays. The combined observed, and the median expected,
95% CL upper limits on Br(H → eτ ) for a Higgs boson with
mH = 125 GeV are 1.04% and 1.21+0.49

−0.34%, respectively. A
small ∼1σ excess of data over the predicted background is
observed in the search for the LFV H → μτ decays. It
is mostly driven by a 1.3σ excess in the earlier search in
the μτhad channel [22]. This corresponds to a best fit value
for the branching ratio of Br(H → μτ ) = (0.53 ± 0.51)%.
In the absence of any significant signal, an upper limit on

the LFV branching ratio Br(H → μτ ) for a Higgs boson
with mH = 125 GeV is set. The corresponding observed,
and the median expected, 95% CL upper limits are 1.43%
and 1.01+0.40

−0.29%, respectively. The upper limits on the LFV
decays of the Higgs boson are summarised in Fig. 5.

7 Search for Z → μτ using the τhad channel

The search for Z → μτ events is based on μτhad final state
and utilises the same strategy as the H → μτ analysis doc-
umented in Ref. [22], and applied to the H → eτhad search
described above. The final state is characterised by the pres-
ence of an energetic muon and a τhad of opposite charge and
the presence of moderate Emiss

T , aligned with the τhad direc-
tion. The typical transverse momenta of the muon and of the
τhad are somewhat softer than those expected in Higgs boson
LFV decay, due to the lower mass of the Z boson. The main
backgrounds are the same as those observed in H → μτhad

analyses, namely: Z → ττ , W+jets, multi-jet, H → ττ ,
diboson and top backgrounds. The mMMC

μτ variable is used to
extract the signal using the same fit procedure and estimation
of systematic uncertainties as for the H → μτhad search. The
corresponding Higgs boson LFV contribution is assumed to
be negligible.

The Z → μτ analysis differs from the H → μτhad one
as follows:
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Table 6 Results of the search
for the LFV H → eτ and
H → μτ decays. The limits are
computed under the assumption
that either Br(H → μτ) = 0 or
Br(H → eτ) = 0. The expected
and observed 95% confidence
level (CL) upper limits and the
best fit values for the branching
ratios for the individual
categories and their
combination. The μτhad channel
is from Ref. [22]

Channel Category Expected limit (%) Observed limit (%) Best fit Br (%)

SR1 2.81+1.06
−0.79 3.0 0.33+1.48

−1.59

H → eτhad SR2 2.95+1.16
−0.82 2.24 −1.33+1.56

−1.80

Combined 2.07+0.82
−0.58 1.81 −0.47+1.08

−1.18

SRnoJets 1.66+0.72
−0.46 1.45 −0.45+0.89

−0.97

H → eτlep SRwithJets 3.33+1.60
−0.93 3.99 0.74+1.59

−1.62

Combined 1.48+0.60
−0.42 1.36 −0.26+0.79

−0.82

H → eτ Combined 1.21+0.49
−0.34 1.04 −0.34+0.64

−0.66

SR1 1.60+0.64
−0.45 1.55 −0.07+0.81

−0.86

H → μτhad SR2 1.75+0.71
−0.49 3.51 1.94+0.92

−0.89

Combined 1.24+0.50
−0.35 1.85 0.77+0.62

−0.62

SRnoJets 2.03+0.93
−0.57 2.38 0.31+1.06

−0.99

H → μτlep SRwithJets 3.57+1.74
−1.00 2.85 −1.03+1.66

−1.82

Combined 1.73+0.74
−0.49 1.79 0.03+0.88

−0.86

H → μτ Combined 1.01+0.40
−0.29 1.43 0.53+0.51

−0.51
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Fig. 5 Upper limits on LFV decays of the Higgs boson in the H → eτ hypothesis (left) and H → μτ hypothesis (right). The limits are computed
under the assumption that either Br(H → μτ) = 0 or Br(H → eτ) = 0. The μτhad channel is from Ref. [22]

Table 7 Summary of the
Z → μτhad event selection
criteria used to define the signal
and control regions (see text)

Cut SR1 SR2 WCR TCR

pT(μ) >30 GeV >30 GeV >30 GeV >30 GeV

pT(τhad) >30 GeV >30 GeV >30 GeV >30 GeV

|η(μ) − η(τhad)| <2 <2 <2 <2

m
μ,Emiss

T
T >30 and <75 GeV <30 GeV >60 GeV –

m
τhad,Emiss

T
T <20 GeV <45 GeV >40 GeV –

Njet – – – >1

Nb−jet 0 0 0 >0
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Table 8 Data yields, signal and post-fit OS–SS background predictions
(see Eq. (1)) for the Z → μτhad 80 GeV< mMMC

μτ <115 GeV region.

The signal predictions are given assuming Br(Z → μτ ) = 10−5. The
background predictions are obtained from the combined fit to SR1,
SR2, WCR and TCR. To calculate these quantities for SR1 and SR2,
the signal strengths are decorrelated in the signal regions and set to zero
in the control regions. The post-fit values of systematic uncertainties
are provided for the background predictions. For the total background,
all correlations between various sources of systematic uncertainties and
backgrounds are taken into account. The quoted uncertainties represent
the statistical (first) and systematic (second) uncertainties, respectively

SR1 SR2

Signal 86 ±2 ±22 56 ±2 ±18

Z → ττ 3260 ±30 ±60 7060 ±40 ±150

W+jets 1350 ±70 ±110 590 ±50 ±70

Same-Sign events 1110 ±40 ±100 930 ±30 ±90

VV + Z → μμ 410 ±60 ±50 240 ±60 ±60

H → ττ 25.1 ± 0.5 ±3.0 41 ± 1 ±5

Top 22 ±4 ±4 15 ±4 ±4

Total background 6170 ±100 ±100 8880 ±100 ±140

Data 6134 8982

• The signal and control regions are defined in the same
way as in the H → μτhad analysis, but the cut values
are lowered to match the kinematics of Z boson decay
products. The exact definition is given in Table 7.

• The LFV H → μτhad signal sample is replaced with a
LFV Z → μτ signal sample.

• The shape correction for W+jets in SR1 is obtained from
the mMMC

μτ > 110 GeV sideband in SR1.
• Due to larger W+jets contribution in SR1 and SR2, the

shape corrections for the W+jets samples are calculated
using a three-dimensional binning scheme in pT(τhad),
|η(μ) − η(τhad)| and Njet.

• TheW+jets extrapolation uncertainty, which accounts for
the difference between the W+jets ALPGEN PYTHIA
and HERWIG samples, is also included as a shape uncer-
tainty.

The numbers of observed events and background in each
of the regions are given in Table 8. The efficiencies for sim-
ulated Z → μτ signal events to pass the SR1 and SR2
selections are 1.2 and 0.8%, respectively. Figure 6 shows
the mMMC

μτ distribution for data and predicted background
in each of the signal regions. The discrepancy observed in
the mMMC

μτ range 80–100 GeV of SR1 was studied carefully.
All the other SR1 distributions, including lepton momenta,
transverse masses, and missing transverse momentum, are
in excellent agreement with the predictions, and the back-
ground shapes are constrained in the control regions as well
as in SR2. This discrepancy is hence attributed to a statistical
fluctuation.

No excess of data is observed and the CLs limit-setting
technique is used to calculate the observed and expected lim-
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Fig. 6 Distributions of the mass reconstructed by the Missing Mass
Calculator, mMMC

μτ , in Z → μτ SR1 (left) and SR2 (right). The back-
ground distributions are determined in a global fit. The signal distribu-
tions are scaled to a branching ratio of Br(Z → μτ ) = 10−3 to make
them visible. The bottom panel of each subfigure shows the ratio of the

observed data to the estimated background. The hatched band for the
ratio illustrates post-fit systematic uncertainties in the background pre-
diction. The statistical uncertainties for data and background predictions
are added in quadrature for the ratios. The last bin of the distribution
contains events with mMMC

μτ > 200 GeV
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Table 9 The expected and observed 95% CL exclusion limits as well
as the best fit values for the branching ratio of Br(Z → μτ)[10−5] are
shown for SR1, SR2 and the combined fit. To calculate these quantities
for SR1 and SR2, the signal strengths are decorrelated in the signal
regions and set to zero in the control regions

Br(Z → μτ) (10−5) SR1 SR2 Combined

Expected limit 2.6+1.1
−0.7 6.4−1.8

+2.8 2.6+1.1
−0.7

Observed limit 1.5 7.9 1.7

Best fit −2.1+1.2
−1.3 2.6+2.9

−2.6 −1.6+1.3
−1.4

its on the branching ratio for Z → μτ decays. The observed
95 % CL limit on Br(Z → μτ ) is 1.7×10−5, which is lower
than the expected upper limit of Br(Z → μτ) = 2.6×10−5,
but still within the 2σ band. This corresponds to a best fit
value for the branching ratio Br(Z → μτ) = −1.6+1.3

−1.4 ×
10−5. The results for the different signal regions are sum-
marised in Table 9.

8 Summary

Searches for lepton-flavour-violating decays of the Z and
Higgs bosons are performed using a data sample of proton–
proton collisions recorded by the ATLAS detector at the LHC
corresponding to an integrated luminosity of 20.3 fb−1 at√
s = 8 TeV. Three LFV decays are considered: H →

eτ , H → μτ , and Z → μτ . The search for the Higgs
boson decays is performed in the final states where the τ -
lepton decays either to hadrons or to leptons (electron or
muon). The search for the Z boson decays is performed
in the final state with the τ -lepton decaying into hadrons.
No significant excess is observed, and upper limits on
the LFV branching ratios are set. The observed and the
median expected 95% CL upper limits on Br(H → eτ )
are 1.04% and 1.21+0.49

−0.34%, respectively. This direct search
for the H → eτ decays places significantly more strin-
gent constraints on Br(H → eτ ) than earlier indirect
estimates. In the search for the H → μτ decays, the
observed and the median expected 95% CL upper limits on
Br(H → μτ ) are 1.43% and 1.01+0.40

−0.29%, respectively. A
small deficit of data compared to the predicted background
is observed in the search for the LFV Z → μτ decays. The
observed and the median expected 95% CL upper limits on
Br(Z → μτ ) are 1.69 × 10−5 and 2.58 × 10−5, respec-
tively.
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