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Abstract. The consequences of various fleet evolution options on material inventories and flux in fuel cycle and
waste can be analysed by means of transition scenario studies. The COSI code is currently simulating
chronologically scenarios whose parameters are fully defined by the user and is coupled with the CESARdepletion
code. As the interactions among reactors and fuel cycle facilities can be complex, and the ways in which they may
be configured are many, the development of optimization methodology could improve scenario studies. The
optimization problem definition needs to list: (i) criteria (e.g. saving natural resources and minimizing waste
production); (ii) variables (scenario parameters) related to reprocessing, reactor operation, installed power
distribution, etc.; (iii) constraints making scenarios industrially feasible. The large number of scenario
calculations needed to solve an optimization problem can be time-consuming and hardly achievable; therefore, it
requires the shortening of the COSI computation time. Given that CESAR depletion calculations represent about
95% of this computation time, CESAR surrogate models have been developed and coupled with COSI. Different
regression models are compared to estimate CESAR outputs: first- and second-order polynomial regressions,
Gaussian process and artificial neural network. This paper is about a first optimization study of a transition
scenario from the current French nuclear fleet to a Sodium Fast Reactors fleet as defined in the frame of the 2006
French Act for waste management. The present article deals with obtaining the optimal scenarios and validating
the methodology implemented, i.e. the coupling between the simulation software COSI, depletion surrogate
models and a genetic algorithm optimization method.
1 Introduction
1.1 Transition scenario studies

Nuclear systems composed of reactors with varied fuels and
cycle facilities (enrichment, fabrication and reprocessing
plants, interim and waste storages) are complex and in
constant evolution. Transition scenario studies assist
decision makers in listing the strengths and weaknesses
of different strategies for a nuclear fleet evolution. These
studies involve the tracking of the batches of materials and
the evaluation of their depletion in the fuel cycle over a
defined period.

COSI is a code developed by the CEA’s Nuclear Energy
Division and used to simulate the evolution of a nuclear
reactor fleet and the associated fuel cycle facilities [1]. COSI
takes as input parameters fuel cycle facilities and reactors
features, fuel types characteristics and succession of
avid.freynet@cea.fr.
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loadings. Front-end, back-end and waste paths define
relations between these facilities as shown in Figure 1. It
should be noted that reactors are defined by commissioning
and shutdown dates, and reprocessing plants are defined by
these dates, reprocessing capacities and strategy features.
COSI provides outputs about the isotopic masses in the fuel
cycle facilities and reactors over a defined period. Post
processing calculations give access to physical quantities of
interest: activity, radiotoxicity, decay heat, etc.

COSI is coupled with the CESAR depletion code,
developed by the CEA’s Nuclear Energy Division and
AREVA, which performs every depletion (irradiation and
cooling) calculation during the scenario simulation [2].
CESAR is the reference code used at La Hague reprocessing
plant. Using CESAR requires one-group cross-sections
libraries linked to fuel types loaded in the reactors. The
production of these libraries requires neutronic calculations
(APOLLO and ERANOS) and is separated from the
depletion calculations. COSI coupled with the CESAR5.3
version is tracking 109 heavy nuclides (Tl→Cf) and 212
fission products (Zn→Ho).
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.
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Fig. 1. COSI simplified data set operating diagram.
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1.2 Multiobjective optimization

COSI is currently simulating chronologically scenarios
whose parameters are fully defined by the user. The aim of
this paper is to define a methodology for the automatic
search of scenarios which are adapted to a strategic
problem. Indeed the future French nuclear fleet shouldmeet
numerous and often conflicting criteria for different
stakeholders such as saving natural resources and minimiz-
ing nuclear waste production. Such criteria have to be
minimized or maximized according to some scenario
parameters (COSI inputs).

Solving an optimization problem requires a large
number of scenario calculations, which could be time-
consuming and hardly achievable. Indeed this time can vary
from a few minutes to a few hours according to the scenario
assumptions and the number of isotopes tracked. Because
CESAR calculations represent approximately 95% of the
COSI computation time, depletion simplified models have
been introduced to shorten depletion calculations during
the scenario computation. Consequently, CESAR-based
irradiation surrogate models are developed using the
sensitivity and uncertainty platform URANIE developed
by the CEA’s Nuclear Energy Division [3].

Because of the large numbers of scenario parameters
and criteria available to define an optimization problem, we
opt to use metaheuristics as optimization methods. The
URANIE’s genetic algorithm (GA) is considered for the
present optimization studies. Therefore, URANIE is used
both for the surrogate models development and the
optimization studies.

The methodology for performing multiobjective opti-
mization using COSI is represented in Figure 2.

The development of CESAR surrogate models is
discussed in Section 2. Then the COSI sped up version
using these simplified models is validated by comparing its
results to COSI, this study is also presented in Section 2.
Finally, an application of this methodology for the
optimization of a transition scenario from the current
Pressurized Water Reactors (PWR) French nuclear fleet to
a fleet of Sodium Fast Reactors (SFR) is presented in
Section 3.
Other works address similar optimization problems
using different simulation software such as VISION and
CAFCA codes [4,5].
2 Irradiation surrogate models
2.1 Methodology

As seen previously, multiobjective optimization studies
require the shortening of the COSI computation time and so
the CESAR one. A way to gain time at cost to a satisfactory
estimation error is developing CESAR surrogate models.
These models can replace CESAR for irradiation calcu-
lations throughout the COSI computation and so have the
same inputs and outputs as CESAR.

CESAR input parameters define the fuel assembly
composition and irradiation features:
–
 the fresh fuel assembly isotopic composition defines the
isotope (denoted i) mass fractions in the fuel noted
yi ¼ mi=mfuel

P
i yi ¼ 1

� �
;

–
 the burnup to achieve noted BU in MWd/tHM;

–
 the irradiation time noted Dt in days.

Thereafter, let x ¼ ∀i yi;BU ;Dtf g be the N-terms
vector of CESAR input parameters.

CESAR outputs are the results of depletion calculation,
i.e. the spent fuel isotopic composition. These outputs are
calculated as final concentrations noted Cj(x) where j
denotes spent fuel isotopes in atoms/ton.

The development of irradiation surrogate models (see
Fig. 3) consists first in defining designs of experiments of the
CESAR input parameters and associated outputs. These
designs are defined using Latin hypercube sampling method
(LHS) because of its high space-filling performance. The
number of x vectors defined for each design is set to 500.
Then a regression model is applied to produce a surrogate
model. Surrogate models are noted Ĉ j as the functions
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Fig. 3. Surrogate models development methodology.

D. Freynet et al.: EPJ Nuclear Sci. Technol. 2, 9 (2016) 3
estimating the Cj CESAR results. Finally, quality indica-
tors are performed on each surrogate model to ensure that
the prediction power is satisfactory.

We make one surrogate model per tracked isotope per
fuel type considered in the application scenario. For each
fuel type, we make two designs of CESAR calculations:
one for the regression step (named the training set) and
another one for the validation step (named the testing
set). All these operations are carried outwith theURANIE
platform.

The use of CESAR surrogate models coupled with the
COSI code has already been introduced for uncertainty
propagation studies in nuclear transition scenarios [6,7].
2.2 Regression models

CESAR surrogate models are developed using a regression
method on the training set. The following methods are
compared:
–
 first- (LR) and second-order (PR) polynomial regressions;

–
 Gaussian process (GP);

–
 artificial neural network (ANN).

Polynomial regression is a well-known approach to
adjust a set of points by a function. Applied to CESAR
calculations training set, the estimator is defined by
equation (1) (LR) or equation (2) (PR):

∀x Ĉ j xð Þ ¼ a0 þ
XN
n¼1

anxn; ð1Þ
∀x Ĉ j xð Þ ¼ a0 þ
XN
n¼1

anxn þ
XN
p¼1

XN
q¼1

apqxpxq: ð2Þ

Polynomial regression consists in finding the a
parameters giving the best model adjustment on the
training set. CESAR surrogate models development with
polynomial regression is detailed in a past work [6].
Gaussian process is a non-parametric regression method
using a deterministic function and a correlation function
involving parameters determined by maximum-likelihood
estimation [8].

Artificial neural network is used in its single-layer
perceptron form, i.e. there are no cycles and loops in the
network and only one output neuron. Applied to CESAR
calculations training set, the estimator is defined as:

∀x Ĉ j xð Þ ¼ a0 þ
XH
h¼1

ahS a0h þ
XN
n¼1

anhxn

 !
; ð3Þ

where S xð Þ ¼ 1
1þexp �xð Þð Þ

�
is the sigmoid function and h

denotes the hidden neuron. A backpropagation algorithm is
applied to calculate the a weights by minimizing the
estimation root mean square error. CESAR surrogate
models development with ANN is also presented in another
work [7].
2.3 Validation results

Surrogate models have been defined according to their use
in optimization studies. Indeed the set of scenarios
considered in this paper is extracted from the 2006 French
Act for waste management which involves estimating PWR
UOX, PWR MOX, PWR ERU and SFR MOX fuel types
depletion. The validation step has to be applied to all of the
surrogate models. Only the results of the ĈPu239 and ĈCm244

estimators for a PWRMOX irradiation are presented here,
because of the importance of their accurate estimation and
their non-linear evolution. Results shown in this part
consider that GP deterministic function is linear, GP
correlation function is Matérn 3/2 and the ANN number of
hidden layers is 6.

Validating surrogate model rests upon the evaluation of
indicators quantifying the quality of the regression and
above all the estimator capacity to reckon the CESAR
outputs. These indicators have to be representative of
different estimation errors and are calculated using the
testing set. Generally the predictivity coefficient q2 acts as
the main indicator for validating surrogate models [8]. Yet
irradiation surrogate models are coupled with COSI which
is repeatedly run during the optimization process. Thus,
estimation error needs to be known to check that its impact
is negligible on COSI outputs. For each testing x vector and
surrogate model, let Dj(x) be the absolute estimation error
divided by the mean of Cj(x) on the testing vectors:

Dj xð Þ ¼ jĈ j xð Þ � Cj xð Þj=Cj: ð4Þ

Calculating the mean and maximal values of this
indicator on the testing set enables estimating the surrogate
model quality. Replacing the denominator of equation (4)
by Cj(x), i.e. calculating the relative error, leads to high
errors for low values of output concentrations. These cases
are not significant for scenario studies because they are
unnecessary to get a good estimation of the spent fuel



Table 1. Indicators of validation for PWR MOX 239Pu and 244Cm concentration estimations by surrogate models.

Regression
method

j= 239Pu j= 244Cm

MeanxDj (%) MaxxDj (%) MeanxDj (%) MaxxDj (%)

LR 1.3 6.3 4.4 20
PR 0.093 0.69 0.71 3.1
GP 0.22 2.5 0.85 5.6
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composition. Consequently, the definition given here is
preferred. Error results are shown in Table 1.

This comparison study implies to consider ANN for all
the CESAR surrogate models development.
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Fig. 4. Application scenario nuclear power distribution for
validating surrogate models.
2.4 Toward a COSI sped up version

Cooling calculation can be sped up using cooling surrogate
models, but the analytic solutions of the Bateman equation
with no flux can be calculated. Therefore, simplified cooling
analytic solutions are implemented under COSI in addition
to the irradiation surrogate models.

Besides, the list of isotopes tracked (321 isotopes with
CESAR5.3) can be reduced in the COSI sped up version in
order to further shorten the COSI calculation time. Both for
irradiation and cooling calculations, output isotopes j are
chosen among whommostly contribute to the fuel mass and
post-processing results. The following isotopes constitute
more than 99.999% of the spent fuel actinide mass after
irradiation and thus are estimated:
–
 234U, 235U, 236U, 238U;

–
 237Np, 239Np;

–
 238Pu, 239Pu, 240Pu, 241Pu, 242Pu;

–
 241Am, 242mAm, 243Am;

–

Table 2. Maximal relative errors for the actinide mass
estimations with COSI sped up version for the application
scenario simulation.

Element In cycle (%)
(waste excluded)

In waste (%)

Pu 0.51 3.1
Np 1.5 2.5
Am 0.95 2.8
Cm 0.68 2.0
242Cm, 243Cm, 244Cm, 245Cm, 246Cm.

Several fission products such as 90Sr, 90Y, 137Cs and
137mBa complete the list to make possible estimating decay
heat and radiotoxicity under long cooling period in waste. It
is noteworthy that the choice of isotopes j depends on the
COSI outputs taken into account for optimization studies.

COSI sped up version is validated for a scenario of SFR
deployment studied in this frame [9,10]. The nuclear power
distribution of this scenario is represented in Figure 4.

First, all the actinide masses in cycle are compared from
2010 to 2140. The results for the actinide elements are
shown in Table 2.

Isotope estimation errors in cycle (waste excluded) are
on the whole lower than 1.5% except 2.5% for 243Cm
estimation (present in low quantity). There is no
transmutation in the application scenario so waste
estimation errors are larger than cycle estimation errors:
errors are lower than 3% except 4.5% for 239Np (present in
low quantity), 238Pu and 240Pu. Decay heat and radio-
toxicity by ingestion for waste are calculated under long
cooling period (from 1 to 104 years after 2140), estimation
errors are no larger than 4%. Finally, the number of High
Level Waste (HLW) packages cumulated at the end of the
scenario is estimated with an error of 1.2%. These results
are considered satisfactory enough to use COSI sped up
version for optimization studies.

There are two types of COSI computation:
–
 standard: main depletion calculations at each date of
interest (loading and unloading fuel dates, etc.);
–
 advanced: standard simulation plus additional depletion
calculations; the advanced simulation considers the
calculation of all the inventories in cycle for each year.

Computation time saving using COSI sped up version
for the application scenario simulation is shown in Table 3.
It should be mentioned that COSI sped up version
calculations are multi-threaded.



Table 3. COSI computation time decomposition for the
application scenario simulation.

COSI version Standard Advanced

COSI/CESAR5.3 4622 s 46,791 s
Sped up 38 s 65 s
Speedup �122 �720
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An optimization calculation is then feasible using COSI
sped up version because of the good surrogate models
precision and the resulting time savings.
0 
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N

N1
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Fig. 5. Nuclear power distribution of the base scenario with the
variables in purple (scenario noted {7,27}).
3.1 Optimization problem definition

Determining the best set of scenario parameters for a given
problem requires that we define criteria, constraints and a
base scenario with variables. In order to define this base
scenario, it is necessary to make assumptions about the
nuclear fleet evolution.

In the frame of a first application of the methodology, it
is supposed that:
–
 SFR deployment is possible from 2040;

–
 all the reactors deployed from 2020 have a life span of
60 years;
–
 the nuclear fleet power equals to 60 GWe from 2010 to
2140 to maintain a constant nuclear energy production;
–
 the current fleet phases out from 2020 to 2050 at the pace
of –2 GWe/year;
–
 there is no MOX fuel loaded in EPRTM from 2020, which
is a simplification for the current study.

These assumptions have as consequences:
–
 the nuclear power distribution of the base scenario cannot
be changed from 2010 to 2040; the current PWR fleet
(UOX and MOX fuels) is partially renewed with EPRTM

(only UOX fuel) from 2020 to 2040;

–
 the paces of reactors deployment and shutdown are
respectively set to 2 and –2 GWe/year;
–

Table 4. Base scenario reactors assumptions.

Reactors EPRTM SFR

Electrical power 1.5 GWe 1.5 GWe
Net yield 34.4% 40.3%
Load factor 81.8% 81.8%
Core management 4� 367 EFPD 5� 388 EFPD
Average burnup 55 GWd/tHM 116 GWd/tHM
Fuel type UOX 17� 17 MOX CFV-v1 [11]
there are two phases where reactors can be deployed from
2040: from 2040 to 2050 noted phase 1 and from 2080 to
2110 noted phase 2.

We also consider that EPRTM are deployed before SFR
in a same phase of reactors deployment. An example of this
base scenario is shown in Figure 5 with respectively 7 and 27
SFR deployed during the phases 1 and 2.

Two types of reactors can be deployed: EPRTM (UOX
fuel) and SFR with their characteristics listed in Table 4.
During the phase 1, 14 reactors need to be deployed to keep
a nuclear power of 60 GWe. During the phase 2, 40 reactors
have to be deployed to renew the nuclear fleet. Let
N1∈ [0,14] (resp. N2∈ [0,40]) be the number of SFR
deployed during the phase 1 (resp. 2). The optimization
study presented below only considers N1 and N2 as
variables. Consequently, the scenarios are defined according
to thenotation{N1,N2}.The scenario represented inFigure 4
corresponds to the case {14,40}.

The optimization problem aims to analyse the best SFR
deployment scenarios. SFR deployment requires enough
plutonium to ensure its fuel loadings are possible during its
life span. Therefore, the lack of plutonium noted mPu–
defined as the need of additional plutonium tomake possible
the scenario application needs to be zero. The reprocessing
strategy is thus defined to ensure that all the spent fuels
available can be reprocessed. In a first reprocessing strategy
called Rep1, it is chosen that the SFR MOX fuel assemblies
are reprocessed first when available, then the PWR (current
fleet andEPRTMdeployedbefore 2040) fuel assemblies.Rep1
aims to make the most of plutonium multirecycling in SFR
fuels.A second strategy calledRep2 reverses the reprocessing
order between PWR and SFR fuels. Rep2 aims to diminish
the spent fuels accumulated. The annual reprocessing
capacity is not limited in this study and is only regulated
by fresh fuel fabrication needs. The two reprocessing
strategies considered thereafter are reminded in Table 5.
It is noteworthy that these assumptions on reprocessing are
not representative of an industrial reality but avoid
additional constraints on results for simplification purpose.

We consider two criteria in the optimization problem:
–
 the natural uraniummass consumption from 2010 to 2140
noted mnatU should be minimized; this criterion refers to
safeguard natural resources;



Table 5. Base scenario possible reprocessing strategies.

Strategy Reprocessing order of priority

Rep1 SFR MOX → PWR MOX → UOX → ERU
Rep2 PWR MOX → UOX → ERU → SFR MOX
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–

Fig. 6. Lack of plutonium for all {N1,N2} (Rep1).
the number of HLW vitrified packages produced from
2010 to 2140 noted NHLW should be minimized; this
criterion refers to the reduction of nuclear waste
production.

The production of HLW vitrified packages is deter-
mined according to the waste inventory so as to respect two
conditions:
–
 the mass of fission products and actinides per package
should be smaller than 70 kg;
–

N
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m
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1

the alpha radiation cumulated number over 10,000 years
per gram of glass is limited to 2� 1019.

The HLW packages are produced after element
separation during the spent fuel reprocessing. The
reprocessing only occurs when SFR fresh fuel fabrication
is required.

Thus the optimization problem is defined as follows:

minmnatU N1;N2ð Þ and NHLW N1;N2ð Þ
with N1 ¼ 0; 1; . . . ; 14 and N2 ¼ 0; 1; . . . ; 40
such as mPu� N1;N2ð Þ ¼ 0 t:

ð5Þ

The optimal scenarios for the combinatorial problem
defined by equation (5) can be listed without using an
optimization method as all the combinations can be
simulated over a sensible time. It is necessary to compare
the different scenarios to get the objective (resp. variable)
trade-off surface named the Pareto front (resp. set), i.e. all
the optimal scenarios in the objective (resp. variable) space.
Optimal scenarios are defined as scenarios that cannot be
improved in any of the criteria without degrading at least
one of the other criteria. By definition, a scenario is said to
dominate another one if all the criteria are improved or kept
constant; at least one criterion has to be improved. A
scenario which is not dominated by another one is optimal.
Hence, we classify the scenarios into different designations:
0

0.6

–
 unfeasible scenarios (with mPu–> 0 t);
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–
 feasible scenarios (with mPu–= 0 t);
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The results for the current problem are presented below.
N2

N
1

0 5 10 15 20 25 30 35 40
0

5

10

14

N
H

LW
 [1

05
]

0.2

0.4

0.6

0.8

1

Fig. 7. Objective functions for all {N1,N2} (Rep1).
3.2 Results for the optimization problem using the first
reprocessing strategy (Rep1)

In this part, the objective functions and the Pareto set
determined by comparing all the scenarios are analysed for
the Rep1 strategy.

First we estimate mPu– in order to define feasible
scenarios for all the combinations {N1,N2} (see Fig. 6).
Unfeasible scenarios are those with a high number of
deployed SFR due to the increased need of plutonium to
supply SFR. It is noteworthy that the application scenario
{14,40} does not respect the constraint because it is a
simplified version of those studied in past works [9,10].

Then we calculate the objective functions associated to
all the combinations {N1,N2} (see Fig. 7). The natural
uranium consumption increases while the number of SFR
deployed N=N1 +N2 decreases as only EPRTM fuel holds
natural uranium. The number of HLW vitrified packages
increases while the number of SFR deployed increases as
only SFR fuel fabrication needs to reprocess spent fuels.
The isometric lines of the number of HLW packages do not
follow N mainly because of the reprocessing strategy.
Indeed the quantity of reprocessed fuels depends on the fuel
type. Besides it is noteworthy that mnatU and NHLW
functions do not take into consideration the period after
2140 where phase 2 EPRTM and SFR are shutdown.

Figure 8 represents the reprocessing flow distribution
according to the spent fuel types and the HLW packages
annual production for the scenario {14,34}.We can observe
that the choice of reprocessing fuel type order greatly
influences the HLW packages production as fuel types hold
different plutonium content (see Tab. 6). Noteworthy that
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Figure 8 suggests a significant fluctuation in reprocessing
flow and thus costs implications. Indeed reprocessing
capacity is one of the cost drivers for any closed fuel cycle.
Stabilising the reprocessing capacity over long periods is
not considered for the current optimization study but
should be taken into consideration in further studies.

From all the 615 combinations, Figure 9 represents the
unfeasible (34 combinations), feasible and optimal (66
combinations) scenarios for the optimization problem. The
Pareto set (green coloured) shows that the optimal SFR
deployment roughly consists in partly renewing during the
phase 2 the SFR fleet deployed during the phase 1. If
N1 = 14, the scenarios with 10�N2� 34 are optimal.

Figure 10 represents the scenarios in the objective space,
with the Pareto front green coloured. It shows that
increasing mnatU leads to decrease NHLW at the pace of
about –1 HLW package for an additional consumption of
natural uranium of 5 tons for the optimal scenarios. The
choice of one optimal scenario among the Pareto set will
depend on the preference on the criteria formulated by the
decision maker.
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Fig. 11. HLWpackages production objective function for all {N1,
N2} (Rep2).
3.3 Results for the optimization problem using
the second reprocessing strategy (Rep2)

Now we consider the Rep2 strategy where the PWR fuels
are reprocessed before the SFR fuels. The HLW packages
production objective function (see Fig. 11) and optimal
scenarios (see Figs. 12 and 13) for the optimization problem
are represented below. The natural uranium consumption
Table 6. Number of HLW packages per ton of Pu extract
{14,34} (Rep1).

Fuel type Reprocessing year

PWR MOX 2041
PWR UOX 2045
SFR MOX 2055
remains unchanged and the lack of plutonium is not
significantly modified.

The change in reprocessing strategy results in a high
modification of the number of HLW packages objective
function. In fact, this strategy leads to a high HLW
packages production while the first SFR are deployed then
ed according to the fuel type reprocessed for the scenario

Pu content (%) HLW packages/ton of Pu

5.0 55
1.0 69
15 10
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a lower production for the next ones (see Fig. 14). The HLW
packages production slightly decreases from aboutN2 = 25.
Indeed increasing N2 leads to an increase in the quantity of
SFR fuels available for reprocessing and to a decrease in the
quantity of PWR fuels. Table 6 shows that reprocessed
PWR fuels to obtain a given amount of fissile materials
leads to a higher number of HLW packages than SFR fuels.

The change in the number of HLW packages objective
function leads to a different Pareto set (see Fig. 12). The
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produced for the scenario {14,34} (Rep2).
Pareto set follows N2 = 0 then N1 = 14 until the scenario
{14,9} plus additional optimal scenarios for N� 8 plus the
scenario{14,35}.There is nooptimal scenario for24�N� 48.

The Pareto front represented in Figure 13 is also greatly
different, with a global deterioration (see Fig. 15) compared
to the Pareto front with the Rep1 strategy.

This degradation results on the higher number of HLW
packages produced with the Rep2 strategy. Besides some
optimal scenarios have a slightly lower value on a criterion
at the expense of a greatly higher value on the other one
criterion. For example, the optimal scenarios {8 to 14,0}
have a gain much less pronounced on the number of HLW
packages by increasing the natural uranium consumption
than the other optimal scenarios with N� 23.

These results point out the need to consider reprocessing
features as optimization variables (ongoing studies). These
variables are related to the reprocessing order considering
potential different spent fuel types mixing strategies.
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3.4 Results using a genetic algorithm method

Different stochastic optimization methods can be used to
solve an optimization problem. A genetic algorithm (GA)
method available on the URANIE platform is chosen. The
GA method considers parameters which define the balance
between scenarios exploration (filling the space not to
converge towards local optimal solutions) and exploitation
(reducing the search space to converge towards optimal
solutions). The aim of this example is to illustrate and test
the functioning of the methodology for an easy problem.
Otherwise using an optimization method is unnecessary to
solve the considered problem because all the combinations
can be estimated over a sensible time.

We define the depth notedD of a feasible scenario as the
number of scenarios which dominate this scenario. Figure 16
shows that the scenarios close to the Pareto set have a low
depth and may be dominated by only one optimal scenario.
Therefore, all the optimal scenarios should be reached to
avoid the low-depth scenarios being considered as optimal
by the method. These figures also confirm that the
optimization method needs to have a good balance between
exploring the variable space to reach the dark blue coloured
subspace and exploiting this subspace to reach the green
coloured Pareto set.

The population size is one of the GA parameters which
has an impact on the number of evaluated scenarios during
the optimization process. Figures 17 and 18 show the
solutions evaluated by the GA method for different
population sizes with the two reprocessing strategies.
These figures show that the GA method leads to the Pareto
set but needs to evaluate a high number of different
scenarios.

The advantage of using an optimization method such as
the GA method is yet to be tested in further more realistic
optimization studies (addition of variables and objectives)
where all the feasible solutions cannot be simulated.
Ongoing studies consider continuous optimization problem
with a much higher number of variables and then might
require changing the GA parameters to converge on a good
quality Pareto continuous set.
4 Conclusions

The consequences of strategic choices on material invento-
ries and flux in the fuel cycle can be analysed with COSI.
Indeed COSI enables to compare various fleet evolution
options (e.g. new reactor systems deployment) and
different nuclear material managements (e.g. plutonium
multi-recycling). COSI is coupled with the CESAR
depletion code.

In this paper, a methodology for the nuclear fleet
evolution scenarios optimization using COSI is introduced.
A large number of scenario calculations is needed to solve an
optimization problem, which makes infeasible an optimi-
zation calculation using COSI. Given that CESAR
calculations represent about 95% of the COSI computation
time, CESAR irradiation surrogate models carrying out
with ANN regression method and cooling analytic models
have been coupled with COSI. The outputs of interest
estimated by the COSI sped up version using these
simplified models have an estimation error of about 1%
for the cycle (waste excluded) actinide masses, 3% for the
waste and 1.2% for the number of HLWpackages produced.
These results are considered satisfactory for optimization
studies. The time saving using the COSI sped up version
can vary from about 120 to 720 according to the COSI
calculation type. This time saving makes feasible an
optimization calculation over a sensible time.

An example of optimization study is presented using a
base scenario inspired by the studies done in the frame of
the 2006 French Act for waste management. The
optimization problem involves two discrete variables
related to the number of deployed SFR to renew the
French PWR fleet and two criteria: minimizing the natural
uranium consumption and the number of produced HLW
vitrified packages. The Pareto set of this combinatorial
problem can be exactly calculated to validate the
optimization results using a genetic algorithm method.
The main conclusion is that further studies need consider-
ing reprocessing features (order of priority and quantity of
reprocessed fuel type) as optimization variables to make the
problem more realistic. The advantage of using an
optimization method such as the GA method is yet to be
tested in further continuous studies where all the feasible
solutions cannot be simulated. Besides the list of criteria
should be completed by economic and safety consider-
ations. It is noteworthy that obtaining a single optimal
scenario from the Pareto set requires formulating prefer-
ences on the criteria, which depends on the decision maker.
Nomenclature
ANN
 Artificial Neural Network

CESAR
 depletion code

COSI
 scenarios simulation code

EFPD
 Effective Full-Power Day

EPRTM
 European Pressurized Reactor (EPR is a trademark of

the AREVA group)

ERU
 re-Enriched Reprocessed Uranium

GA
 Genetic Algorithm

GP
 Gaussian Process

HLW
 High Level Waste

LHS
 Latin Hypercube Sampling

LR
 Linear Regression

MOX
 Mixed OXide

PR
 second-order Polynomial Regression

PWR
 Pressurized Water Reactor

SFR
 Sodium-cooled Fast Reactor

tHM
 ton of Heavy Metal

UOX
 Uranium OXide
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