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The problem of the determination of the nuclear surface amthee symmetry energy is addressed in the
framework of the Extended Thomas Fermi (ETF) approximatieing Skyrme functionals. We propose an
analytical model for the density profiles with variatioyatletermined diffuseness parameters. For the case
of symmetric nuclei, the resulting ETF functional can beaotiyaintegrated, leading to an analytical formula
expressing the surface energy as a function of the couptihtiee energy functional. The importance of non-
local terms is stressed, which cannot be simply deduced fhenocal part of the functional. In the case of
asymmetric nuclei, we propose an approximate expressiothéodiffuseness and the surface energy. These
guantities are analytically related to the parameters @ftiergy functional. In particular, the influence of the
different equation of state parameters can be explicitigngified. Detailed analyses of the different energy
components (local/non-local, isoscalar/isovector,a@fcurvature and higher order) are also performed. Our
analytical solution of the ETF integral improves over poes models and leads to a precision better than
200 keV per nucleon in the determination of the nuclear lnig@inergy for dripline nuclei.

I. INTRODUCTION Fermi (ETF) approach, which is based on an expansion in
powers offi of the energy functional [9, 12-115]. The advan-

Skyrme functionals have been widely used to describe nui29€ of the ETF approximation is that the non-local terms in
clear structure properties, with different level of sopibis-  the energy density functional are entirely replaced by lloca
tion in the many-body treatment, from the simplest Thomasdradients. As a consequence, the energy functional soely d
Fermi [1] to modern multi-reference calculation$ [2]. The P€Nds on the local particle densities. Thus, the energyyf an
most basic observable accessible to the functional tredtme@rpitrary nuclear configuration can be calculated if the-neu
is given by nuclear mass, allowing the analysis of the differ tron and proton density profilgs, andpp are given through
ent mass components in terms of bulk and surface propertied Parametrized form. These density profiles are those of the
as well as isovector and isoscalar properties. The theateti 9round state, or of any arbitrary excited state. A large nemb
prediction of nuclear mass is not only importantin itselft i of configurations can therefore be explored, and this apyal
is also a fundamental tool to optimize the different funcib ~ Property of ETF has been used to study nuclear configurations
forms and associated parameters, for an increasing piedict I dilute stellar matter contributing to the sub-saturaﬁm_te
power of density functional calculations [3]. Indeed magsp €mperature equation of state [[17-19]. On the other sice, th
dictions from microcopic density functionals nowadayststa Well known limitation of ETF is that only the smooth part of

to equalize the most precise phenomenological mass fosmuldN€ nuclear mass can be addressed, and shell effects hae to b
available in the literature[4-6]. added on top, for instance through the well known Strutinsky

For practical applications in nuclear structure or nucleaintégral theorem[11] g _ _
astrophysics problems, different parametrizations ofearc  In this paper, we will consider an ETF expansion up to the
masses fitted on density functional calculations with Skyrm secondw_z-o_rder, and limit ourselves to the smooth part of the
forces have been proposéd [[7-10]. The limitation of thesénass functional.
works is that the different coefficients are not analyticahl- The plan of the paper is as follows.
culated but they result from the fit to the numerically deter- SectionI) addresses the problem of symmetric nuclei. A
mined nuclear masses. As a consequence, the fit has to bingle density profile is supposed for protons and neutrons,
performed again each time that the functional is improved byand symmetry breaking effects are included by accounting
adding further constraints from the rapidly improving esipe  for the Coulomb modification of the bulk compressibility. In
mental data. Moreover, the absence of an analytical link bethis simplified case, the ETF integrals can be analyticaly i
tween the Skyrme parameters and the coefficients of the magsgrated leading to a very transparent form for the surfade a
formula implies that it is difficult to make an unambiguous curvature terms of the nuclear energy (secfionl Il A) and of
correlation between the different parts of the mass funefio the surface diffuseness (section]i B) . In this same seetien
and the physical properties of the effective interactiowr F also retrive (section ITIC) that in a one-dimensional geaynet
these reasons, it appears interesting to search for arti@ahly the local and non-local terms are related, and the surface te
expression of the mass formula coefficients, directly lthi®@  sion can be consequently be expressed as a function of the
the functional form and parameters of the Skyrme interactio local terms only[[12]. This means that the surface tension
The derivation of such an analytical formula is the purpdse osolely depends on the local components of the energy density
this paper. functional, that is the bulk properties of nuclear matteq a

An especially appealing formalism when seeking for an-it does not depend on the non-local gradient and spin-orbit
alytical expressions is the semi-classical Extended-Tdmm terms. This remarkable property however breaks down in
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spherical symmetry, and any, even slight approximatiohéo t cellent reproduction of the microscopically calculatedvad
exact variational profile, for instance the use of parammetti as experimentally measured magic= Z nuclei over the pe-
densities, increases the difference between local andawa-  riodic table [19] 20].
contributions to the surface energy. As a consequenceg usin The idealized case of a common density profile for protons
parametrized density profiles, the contribution of noraloc and neutrons has the advantage of leading to exact formu-
terms has to be carefully calculated independently of thallo las for the nuclear binding energy, as we explicitly show in
part, and the two separate contributions must be summed uhis section. As we will see, this allows disentangling in a
to obtain the surface energy and the surface tension. non-ambiguous way bulk, surface, curvature as well as highe
The more general problem of isospin asymmetric nuclei isorder terms, and to determine exact relations connectiag th
studied in section 1. We first demonstrate in seclionlihat different energy components to the parameters of the energy
a large part of the isospin dependence can be accounted fdynctional.
if the asymmetry dependence of the saturation density is in- Neglecting spin-gradient terms, the ETF Skyrme energy
troduced in the nuclear bulk. The residual surface symmetrglensity reads,

part is then defined in terms of the isovector density. This en 2 c2

ergy de_nsity term is not analytically integrable, meanhgt Hp]=h(p)+ 5 o+ <cfin — _Szopm*(p)> (Dp)Z.
approximations have to be performed. We propose in sec- m(p) h

tion [l Bltwo different approximations and critically digss (1)

their validity in comparison both to numerical integratioh
the ETF functional, and to complete Hartree-Fock (HF) cal
culations using the same functional (secfionII1B 3). Thstfir
approximation, inspired from Ref._[16], consists in netfec
ing the neutron skin (sectidn IlTB 1). Surprisingly enough,

In this expressionm*(p) is the density dependent effective
‘mass,m/m* = 1+ %’}"Ceffp, the kinetic energy density con-
sists of a zero order Thomas-Fermi termas well as of a
second order local and non-local correctign= t, + 75"

this very crude approximation leads to an overestimation of 3 732\ 23

Hartree-Fock energies of medium-heavy and heavy nuclei of o= — (—) p3 2
no more than 200-400 keV/nucleon even for the most extreme S\ 2

dripline nuclei. Again, such an accuracy can be obtaineg onl 1 (IZIp)2 1

if both local and non-local terms in the energy functional ar 2= 35 0 T §Ap ®)
separately calculated, meaning that the symmetry enermey do 5

not only depend on bulk nuclear matter properties. This migh TSI — 1 DpOf 1 A_f 1 <E> (4)
be at the origin of the well known ambiguities in the extranti 6 f 67 f 120\ f )~

of the symmetry energy from density functional calculagion ,;; _ * ; .

of finite nuclear properties [10, 36,142 43]. A better accyra with = my. The local terms are given by:

for neutron rich nuclei is obtained if isospin fluctuations a 2 To+ Cop? + Capt+2 )

accounted for, and in sectibn 1B 2 the approximationis mad h(p) = 2m(p)
that the surface symmetry energy density is strongly peaked
the nuclear surface.

Finally the complete mass formula is calculated for differ-
ent representative Skyrme functionals in sedtioh IV. Thal-qu
itative behavior of the different energy components, th#heé
surface, curvature and higher order terms decomposed in
isovector and isoscalar parts, and local and non-locakpart
is discussed. The different analytical expressions fonihes To compute Eq.[1), the density profifg(r) is required.

functional are explicitly demonstrated in the appendix eaual L , LR
be readily used with any Skyrme interaction. The paper isThe most common choice in the literature![20] consists in tak

summarized in sectidiV, and conclusions are given ing a Fermi function. In particular, it was shown [19] that a
' ' Fermi function succeeds in well reproducing the density pro

files and the corresponding energy calculated with the $pher
cal HF model. The density profile reads,

and gradient terms arise both from the non-local and the spin
orbit part of the Skyrme functionalCp,Cs, Cef , Cfin, Cso, 0 )

are Skyrme parameters, given in apperidix A. Spin-gradient
terms are not considered in the applications of this paper, b
{Eleir inclusion is straightforward. Full expressions areeg

In appendixX’A. We will also limit ourselves to spherical sym-
metry throughout the paper.

II. SYMMETRIC NUCLEI

-1
| . . - PN =psaF (1) 5 F(r) = (1+€6R/2) 7 (g)
Let us first consider a locally symmetric matter distribu- _ _ _ _ _ _

tion, that is characterized by a single density profile whgch In this equationpsa is the saturation density of symmetric
supposed to be identical for protons and neutrons. This ideiuclear matter, an® is the radius parameter related to the
alized situation is not completely realistic everNn= Z nu-  particle number of the nucleus
clei because of isospin symmetry breaking due to Coulomb. 4 an 2
However, it was shown [19] that a great part of the Coulomb A —TpsaR° |1+ 112 (—) . (7)
) . : . ; 3 R
isospin symmetry breaking effects can be included simply ac
counting for the Coulomb modification of the bulk compress-Let us observe that Eq](7) is a finite expansion and does not
ibility [Egél 27,135]. This single-density model leads to an e require any assumption except thaffé < 1, that isa < R



3

[22]. If, in addition, we assuma < R, we can invert equation the following that it is indeed the case in spherical symgetr
(@) to get at the fourth order ifa/R) In the energy density?’[p] Eqg. (1), we can distinguish the
non-local terms which depend on the density derivatives and
™/ a\? a\* are pure finite-size effects, from the local energy pey)
R=Rus|1- 3 (@) +0 (@) G which only depends on the equation of state and on the density
proflle We then write the surface energyls= EL + ENL,

NL
whereRys = A3rg is the equivalent homogeneous sphereW'th E the local part andg'- the non-local 0”@4]

radius, andrsa = (37 13 is the mean radius per nu-

cleon. o= (5P P Eq = 4"/0 dr {h[p(r)] - %P(r)} r?, (13)
The two other parameters entering Hd. (6) are the diffuse- _ 5 2

nessa of the density profile, which is analytically derived in~ gNL — 4n/ dr { n T2 (Cﬂn _ Cﬁ)pm*) (DP)Z} r2

sectior 1B, and the saturation densfty: which corresponds h?

to the equilibrium density of homogeneous infinite symneetri (14)

matter. ) )
To obtain Eg.[(I4), we have changed the Laplace deriva-

tives into gradients in the kinetic part, see Eds. (A16), in-
tegrating by parts. Making a simple variable change, the
originally 3-dimensional integral can be turned into thensu

f three 1-dimensional integrals (see appendix B). Then a
ery accurate approximation, that is with an error less than
(exp(—5a/3R) — exp(—a/R)), allows to analytically inte-
grate the differences of Fermi functions, such that thelloca

A. Ground state energy

Integrating in space Ed.]J(1) computed with the parametrize
density profile given by Eq[]6), allows obtaining the total e
ergyE of a nucleus of a magsdefined by Eq.[{7):

and non-local terms can be written as a function of the effec-
E= /O drZ[p(r)]. (9 tive interaction parameters as (calculation details arergin
appendi :

Within the nucleus total binding energy, it is interestinglts- PP 1T)
tinguish the bulk, surface, and curvature components €orre %L a(A )Az/s
sponding to different functional dependences on the nuclea UM r st
size m] a(A) 2

The bulk energyE; is the energy of a finite volume of nu- + G <—> NG
clear matter. It corresponds to the energy that the nucleus Fsat
would have without finite-size effects, defined by: N %Ld (@) 3

n
Eb = a%ﬂsatVHS = /\SﬁtAa (10) foat 4
. _ aA)\" 13 .
whereViys = 4/31R}, = A/psat is the equivalent homoge- +0 ((a) A ) ; (15)
neous sphere volume anigy is the energy per particle at sat-
uration:
N1 e alA) yoy3
Asat = ? *Cklnmé psat +Copsat+C3P§aT17 (11) & aZ(A) Esur Is tA
et n 1 oon (a(A))2A1/3

with Ciin = 2R?/(2m)(31%/2)%/ and iy = m*(psar). The 22(A) UV reg
finite-size correction to the bulk enerdy is defined as the 1 a(A) 3
total energy after the bulk is removed, that is + 2(A) Gty ( fon )

Es= /drff[p(r)] — HgaVHs +0 <(@)4A1/3> , (16)

. I'sat
_4n /0 dr{#[p(N] - Asap(n) 1% (12)

where the coefﬁuent%sjrfgurvxmm depend on the sat-

This finite size contributiories will be called the surface en- uration density psgt and on the Skyrme parameters
ergy in the following. Let us notice that if we have properly Co,Cs,Ce¢, 0, Ctin,Cso, and where we have anticipated the
removed the bulk energy part by EQ.{10), the surface energgslight) A-dependence of the diffuseness in the most general
should scale witt with a dependence slower than linear, butcase (see sectign 1l B).

the dependence can be different frééi° because of curva- The coefficientss- andé Nt corresponding to the local and
ture and higher order terms, see also fefi.[21]. We will see imon-local energy components read (see appéndix C 1):



[ m 3
CgsLurf {Ckmpsat é%’mé—t - g5msat} - COPsat+C3Pga?1’7;+2} a7
al
[ ™\ m ™
(churv 6 Ck|nP§a/1t3 Ué?g = | = _’75/35msat "‘CSPgaJtrl r’c(rl«iz -y ) (18)
MGat 6
2712 m ™ 21
(firlﬁd =3 {Cklnpszét3 (né?)g ’75/3) m;— B (3’75/3 772) 5msat:| + gcopsat‘f'CSpgaJtrl (na+2 - —na+2) } a(lg)
ﬁZ 1 1 1|max . (5ms t)l+2 imax ) (5ms t)'
NL _ - | al i a
Gourt = 3{ 2m6 <12 36‘5”‘5at 2 Z) |+3)(i )" Cf'”psa‘””psat 2V miea [ (20)
ﬁ 1 Imax . 5n'15 imax ) (6”‘5 )|
NL oo | at (O) 2 _qyi \OMsat)” (0)
he 1 ]_ |max . 5|'T15 t)I+2 7T2
|nd = {_mé < 1—€ ) OMsat — > Z) ' - ) {’7|+2+’7|+2_§]
4 T O [, o) TP
( + E) CtinPsat + 6VsoPZy ZJ( 1) W&"‘) [’7i+3 +Ni3— 3] : (22)

wheredmsa = (M— mt,,) /My, Vso = —mC%,/R?, and where  and the one in spherical symmetry signs the difference of ge-

we have introduced the Coeﬁ,C,en@) defined by equa- Ometry, and the spherical surface energy is the surface area
tion (B2). Their numerical values are given in the sameMultiplied by the energy per unit area of the infinite tangent
appendix. In order to have an analytical expression, weélane. Let us notice that since the mass cannot be defined in

have made in equGZdE(lZZ) a Taylor expansion of the eﬁecl;he semi-infinite medium, the diffuseness in Eql (24) is acon

tive mass inversé = 5 o(—1)'(dm)'. This expansionis Stant

rapidly convergent: a truncation iatax = 7 produces an error In a three-dimensional geometry, the existence of a surface
~ 1% at the highest possible densiiy = 0.16 fm~3 in the leads to additional finite-size terms, even in the sphdyical
case of the SLy4 interaction. symmetric case, as shown by eds.] (15)] (16). The terms pro-

Equations[{I5) and{16) show that the dominant surface eiQortlonal toAl/3 are the so-called curvature terms which cor-
fectin the symmetric nucleus energetics s, as expecteya t rect the surface energy with respect to the slab tangertt limi
10 A3, As itis well known, this term fully exhausts the finite- is interesting to notice that we also hadéndependent terms,

size effects given by the presence of a nuclear surface in thD \which ar? ratr;ely Iachctount?dlﬁ); n At\hethteral;ure but turntou;
one-dimensional case of a semi-infinite slab geometty [B he gnporém orlig nucfeh ]dEDSAI 1?36‘” gseen in Ed, (8)
Indeed in this case we have, see appeldik B 2, igher order terms are of the or and are systemat-

ically neglected in this work. This Taylor expansion is kmow
T in the literature as the leptodermous expansion [211, 38]. It
Eg'ab:/ dx{ [P (X)] — Asa(X) }- (23) s interesting to observe that both local and non-local @lan
- surface, curvature, and mass independent energy comgonent
arise even if no explicit gradient term is included in thedun
tional. As a consequence, surface properties are detedmine
i by a complex interplay between equation of state properties
factor MRaS' and specific finite nuclei properties like spin-orbit andténi
range. Using the definitions of the energy per particle at-sat
og=gt+oNt ((5 = (fs,\dlr_f) 33 L (24) rationAsat = h/p|,., = dh/dp|,, and the nuclear symmet-
AT S5t ric matter incompressibilitisat = 9p20%(h/p) / 9 p?| psae» WE
can express the local energy efs] (17)] (18) (19) as a func
whereo = lima_, ES'2°/A%/3 is the slab surface tension. The tion of nuclear matter properties only, using the followag
form factor difference between the surface energy of thie slapressions:

The evaluation of the integral Eq._(23) leads to the sé@me
A%/3 term as in the spherical geometry, with a modified form



Ksat + 9Asat — CkinP2. (% + 35msat)

9 [/\sat— ChinPZht (ﬁ - 5msat)]
Asatksat — Cuino2h Koatitl — Gl Asat (471 + 210Msax) — CE 03 iy
Ksat + 9Asat — CkinP2. (% + 35msat)

2/3( m 2
ail 9 [/\sat — CyinPsat (m - 5msat”
C3psat = 2/3 : (27)
Ksat + 9Asat — CiinPst (% + 35msat)

a=—

(25)

3

; (26)

Copsat =

The expression of the coe1‘ficierﬁ§“\'>L greatly simplifies B. Analytical expression for the diffuseness
if we consider a simplistic Zamick-type interaction, with=
1andm=m" The ground state energy of this model for symmetric nu-
9 3 3 clei is given by the minimization of the energy per nucleon
o= <_,7é(/’>3+ _) &~ 2 Asat (28)  O(E/A) = 0 with the constraint of a given mass numiger
5 2 2 We have seen in secti@n 1 A that the only unconstrained pa-
NL 1 h 1 rameter of the model is the diffuseness paramatérhough
surf — ﬂ% + chinpsatn (29)

it does not play any role in the bulk energy, it is an essential
_ _ ingredient for the surface ener@y given by eqs.[(115)[{16).
where we have introduced the Fermi energy per nucleon athe diffuseness parameter can therefore be obtained frem th

saturatioref, = 3CinpZs. variational equation [12]:
We can see that even in this oversimplified model the nu- OE
clear surface properties cannot be simply reduced to EoS pa- 0_; =0. (33)

rameters. We can also gather the local and non-local terms
in order to classify finite-size effects according to thekrah  |n principle, one should also add the surface Coulomb energy
the Taylor expansion. Thus we introduce the surfBges,  into Es, which would change the variational equation. How-
curvatureEeyry andA-independenting energy components:  ever, the resulting correction aris very small [20].
Equation[(3B) turns out to be particularly simple in the one-

Eoor— _%L n 1 NL a(A) A2/3 (30) dimensional case of semi-infinite matter, or equivalendy n
surf | 7surt T g2(A) TSUr ] o ’ glecting curvature and-independent terms when consider-
- 1 a(A) 2 ing nuclei. Indeed, in this case, Ef.{24) leads to an arcallyti
Ecuv = | Couv+ = %c'}}v} ( ) A3, (31)  solution, already obtained in Ref. [12]:
L as(A) I'sat
[ 1 a(A)\?
el NL
Eina = _(fmd + a2(A) (fmd} ( lsat > : (32) (34)

We can see that all terms are multiplied by a power of the hi . h hat the slab diff a5 ined
diffuseness except the non-local curvature part which ts no | IS €quation shows that the slab diffusenessdetermine

The role of the diffuseness on the surface properties thus d&Y the balance between the local terms, which favour low dif-

pends on the rank of the Taylor expansion (surface, curvauseness values corresponding to a hard sphere of matter at

ture, independent,...) and is not the same for the localer thsgturation density; and_non-local terms which f?“’"“f adarg
non-local part. The functional difference between the "ocadlffuseness correspon(_dlng to matter close to un|for_m|ty.
and non-local terms comes from the squared density gradi- The comple_te spher_lcal case leads to the followitigié-
ent appearing in the non-local energy Eg(14). Globally, if9r€€ Polynomial equation:

the diffuseness is high, the local energy dominates over the 4 3

non-local one, see eq§.{30){32). This is easy to undefstan 3 L, (i) + 265 A3 (i) (35)

in the limit of a purely local energy functional, the optimal Fsat rsatz

configuration corresponds to a homogeneous hard sphere at 1 a 1

saturation density, given by = 0. The existence of a finite + ((fslbrfAz/s"‘ rT(gide) (r_) - rTcgs,\l‘,llr_fAZ/s =0.
diffuseness for atomic nuclei is due to the presence of non- sat sl sat

local terms in the functional, because of both explicit ggatl  which has to be solved numerically.

interactions and of quantum effects on the kinetic energy de  Notice that the coefficier\\L, does not contribute to this
sity. Let us notice that both effects are present even in thequation since, as already mentioned, it does not depead on
simplified eqs.[(218)[{29). cf. Eq.[31). The solution of this equation, as well as thé sla



tee a minimal energy. Less expected is the fact that the ener-

0.55 L] L] L] . . . . .
U g|es Calculated W|th the three d|ﬂ:erent Cho|ces for thmdé-
ness are very close, though the value of the diffuseness are
0.50 | quite different. Specifically, implementing the differedif-
- : fusenesses into E4.1(9), the resulting total energy remesiu
g the Hartree-Fock nuclear energies with very similar accyra
= 045 We can then conclude that introducing higher order terms
: in the variational derivation of the diffuseness, as it hasrb
done in equatiori(35), does not significantly improve the pre
dictive power of the model. Therefore we will preferentall
0.40 k. . ) . .
r . . . use the simpler expression of the slab diffuseness given by
' ' | equation[(3¥). This choice is made in all the following fig-
Ref. [20] === - e
ures, unless explicitly specified.
e(q. (34) w=
eq. (35) LLLLL)
-1 HF * C. Decomposition of the surface energy
%
2
<
-
L /] s\
]
-13 . . . 2
40 80 120 160 200 <
A =l
FIG. 1. (Color online) Diffuseness (upper panel) and energy
per nucleon (lower panel) of symmetric nuclei as a functibthe 0 I T T ' "
mass number. Full red lines: calculations using the sldbs#hess
Eq. [34). Dashed blue lines: calculations using the sphledit- 40 60 80 100 120 140 160 180 200
fuseness Eq[(35). Dash-dotted green lines: calculatisitgyithe A
diffuseness fitted from HF density profilés [20]. Star synsbduill ) _ _ )
Hartree-Fock calculations in spherical symmetry. FIG. 2. (Color online) Numerical (black circles) and anast

(full red line) surface energy per nucleon (see text), asdrialytical
decomposition into plane surfac&l(A%/3, dashed-dotted blue line),
curvature (0 AL/3 dotted green line), and mass independent (double
approximation Eq.[(34), are shown in the case of the SLy4otted black line) components (eds]1(30%.1(3L1 (32)) of syt
interaction in the upper panel of Figure 1. We can see thatuclei, as a function of the mass number.
the mass dependence of the diffuseness pararaeteithe
general case is very small. This agrees with the findings of |n this section, we study the functional behavior of the an-
Ref. [20] (green dash-dotted lines), where the diffusepass  alytical formulas of sectiofi IIB. For these applications w
rameter was extracted from a fit of Hartree-Fock density prokeep on focussing on a specific Skyrme interaction, namely
files. Considering only the surface term we get 0.45 fm, SlLy4 [Zk],
while we can observe that taking into account terms beyond In order to verify the accuracy of the analytical expression
surface (curvature and mass independent), the diffuseésessfor the surface energs, we compare in Figurlg 2 the sum of
shifted to lower values of the order af~ 0.4 fm. Thisrela-  eqgs. [3D){(3R) with the numerical integration of Hql(12), a
tively large effect is due to the fact that the non-local @irv  a function of the nucleus mass. We can see that the analytical
ture term does not contribute to the diffuseness (see E}). (31 expressions (full red line) very well reproduce the nunaric
Therefore the effect of the curvature energy is to increlase t values ofEs (black circles). An error smaller than 50 keV per
local component, which tends to favor a low diffuseness.  nucleon is obtained for the lightest considered nucleicihi
The energy per nucleon is shown in the lower panel ofrapidly vanishes with increasing mass. The deviation fghtli
Fig.[, for the three models considered in the upper panehuclei comes from the approximation in the relation between
and in comparison to HF calculations. We can see from thighe radiusR and the mas4. Indeed, the expansion of the ra-
figure that the variational approach systematically preduc dius parameter EQ(8) leads to an expansion ugtd(a/rsar)
more binding than the use of a fitted value for the diffusenesdor Es. The missing terms] A*1/3(a/rsat)4 rapidly vanish
as we could have anticipated. Indeed the value of Ref. [20jvith A, explaining the excellent reproduction of the exact nu-
was obtained from a fit of the density, which does not guaranmerical integral.
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Figure[2 also shows the plane surface, curvature andf state) are needed to predict the surface properties oé fini
A-independent energy per nucleon components defined inuclei.
egs. [(30),[(31) and(B2). Comparing the total surface energy In this paper, we do not solve the Euler-Lagrange equation
Es (full red line) with Egyrt (dashed-dotted blue line), we can since we impose a given density profile, but we do use a varia-
see that the\?/2 dependence dominates over the whole mas&onal approach in minimising the energy to obtain the diéu
table. However, the curvature part (dotted green line)ctvhi ness parameter. Therefore, it is easy to show that our model
represents the energetic cost of a 5pherica| geometryptannveriﬁes the pI'EViOUS theorem in the one-dimensional case. |
be neglected even for heavy nuclei, impacting the total endeed, using the slab diffuseness Eql (34), equdiidn (2d}rea
ergy of = 300 keV per nucleon for the heaviest nuclei. For 1 gslab 1
lighter nuclei @ < 100), the curvature contribution to the to- ot=oV = |imZ=_ = —— [ CL Ny (37)
tal finite-size effects is of the order 6f 20%. Though thé\- Ao 2 A23 ATy
independent energy (black dotted line) can be neglected fro at first sight this result might look surprising since we hase
A Z 100 for whichEing/A 5 50 keV, it should be taken into - qyced the full variational problem to the variation of a ing
account for light nuclei if high accuracy is requested. Etle  yariable, which represents a very poor variational apgroac
for A= 40, theA-independent term contributes 5% of the  gquality [37) simply means that verifying the Euler-Lagyan

total surface energy. first moment is equivalent to minimising the energy with re-
spect to a single free parameter. That s, the density daxva
8 —_— —_— —_— is well described by the same parameter, here the diffusenes
a, as the density itself.

(@ (b)

Unfortunately, this elegant theorem cannot be extended to
the case of a spherical geometry. Indeed, it is easy to show
that the integrated Euler-Lagrange first moment leads {p [25

"00 or /
ESL—ESNL:4/o dr/oo dr’gNLr—Er). (38)

EJ/A (MeV)

The addition of this non-zero integral to the local energjus
to the gradient part{ 1/r) of the spherical Laplacien, which
comes from the difference between the plane and the spheri-
N e N cal geometry, that is the spatial curvature. Eq] (38) shbas t
40 80 120160 40 80 120 160 40 80 120 160 in a three-dimensional geometry the equality between the lo
A A A cal and non-local terms is violated for all components of the
surface energy, including the teftA2/3,
FIG. 3. (Color online) Surface energy per nucleon of symimetr  The left panel of Figurel3 displays the decomposition of the
nuclei using different choices for the diffusivity parames. Panel ~ Surface energy between local (dashed-dotted blue line) and
a): variational diffuseness including finite size effectsni Eq.[35); non-local (dotted green line) components, when the diffuse
panel b): variational diffuseness neglecting curvaturensefrom  ness of the density profile is consistently obtained from the
Eq.[33); panel c): diffuseness fitted from HF calculationRef.[20]  numerical solution of the variational equation Eiq.(35). We
a=054 fm. Red lines: total surface energy per nucleon. Bluecan see that the two terms are indeed different. This differ-
(green) lines: local (non-local) part multiplied by two. ence is however small, and the non-local energy only skght
dominates over the local one. This difference is amplified if
We now turn to the decomposition of the surface energyhe ansatz for the density profile deviates from the vantio
into a local and a non-local component. It was shown inpne. As an example, the central panel in Figdre 3 shows the
Ref. [12] that the local and non-local terms are expected t@urface energy obtained if the simpler expression[Eq. @4) f
be exactly equal in the case of symmetric matter in a semithe diffuseness is employed. The diffuseness extracted fro
infinite slab geometry. This result comes from the fact thata numerical fit of Hartree-Fock density profiles is employed
the one-dimensional Euler-Lagrange variational equaten  following [20] in the right panel. We can see that the dif-
be solved by quadrature [24]. As a consequence, it is easiérence between local and non-local terms is increased as we
to show that if the density profile is the exact solution of theconsider density profiles increasingly deviating from thaat
Euler-Lagrange variational equation, the first moment ef th varjational result.
Euler-Lagrange equation implies that the contributionh& t ~ As we have already remarked, a higher diffusivity (from a)
local term in the surface energy density is at each point ofo ¢)) trivially leads to a globally higher surface energyond
space equal to the contribution of the non-local term, leadinteresting, the increased deviation from the exact viariat
ing to the global equality between the local and non-lo@i sl result from a) to c) leads to a considerable increase of th lo
surface tensions: energy over the non-local one. This is a direct consequehce o
ot = oMt (36) EOS- BOER). L
From Eq. [(38), it is clear that the degree of violation of
Extended to finite nuclei, this result would imply that only equality [36) will depend on the functional, as well as on
the local properties of the interaction (that is: the ecprati the variational model. This point is illustrated in Figlie 4




8 _ _ _ _ I1l. ASYMMETRIC NUCLEI
a) b)
71 ] We now turn to examine the general problem of an ETF
analytical mass model for asymmetric nuclei, which reaiire
S 6t l the introduction of the proton and neutron density profiles a
é’ % ) e ° . o two independent degrees of freedom. In this general case, th
~ o neo ETF energy integral cannot be evaluated analytically. The
« 5 X x i ° B x x ° < X e .
;m ) - * @ X % ® usual approach in the literature consists in calculatirg th
4t ] ul m " - *% integral numerically, with density profiles which are eithe
m - H parametrized [9, 15, 20], or determined with a variatioré! c
3t culation [13,/25-28]. The limitation of such approaches is
that the decomposition of the total binding energy into its

40 60 80 100 60 80 100 different components (isoscalar, isovector, surfaceature,
A A etc.) out of a numerical calculation is not unambiguous nor
unique [19]. Moreover, a numerical calculation makes ithar
FIG. 4. (Color online) Hartree-Fock calculations. Surfaze to discriminate the specific inﬂuenpg of the different p.hysi
ergy per nucleon (red stars) and its local (blue circles)romglocal ~ Cal parameters (EOS properties, finite range, spin ortuj, et
(green squares) components multiplied by 2, for symmetritai, as 0N quantities like the surface symmetry energy or the neutro
a function of the mass number. Left (right) panel: Coulombrgy  skin.
excluded (included). As a consequence, correlations between observables and
physical parameters requires a statistical analysis baised
large set of very different models. In this way, one may hope
that the obtained correlation is not spuriously inducedhey t
specific form of the effective interactioh [29]. The correla
which shows again the decomposition of the surface energifon may also depend on several physical parameters and the
Esinto local (blue circles) and non-local parts (green sgsjare Statistical analysis becomes quite complex [30].
calculated numerically from spherical Hartree-Fock cleu  Earlier approaches in the literature have introduced ap-
tions. In the calculations presented in the left panel theProximations in order to keep an analytical evaluation pos-
Coulomb energy, which breaks the equaity= EN- evenin ~ sible [16]. These approximations however typically neglec
one-dimensional matter [25], is artificially switched offte  the presence of a neutron skin, and more generally of inho-
can see that the Euler-Lagrange result in the slab geometfjiogeneities in the isospin distributidn [9]. As a consegeen
Eq. (38) is reasonably well verified within 10%, especiatly f ~ the results are simple and transparent, but their validityod
medium-heavy nucleh > 90. This shows that the approxi- the stability valley should be questioned.
mate equality between local and non-local terms is notdichit ~ One of the main applications of the present work concerns
to the ETF variational principle, but it is also verified byeth the production of reliable mass tables for an extensive mise i
Hartree-Fock variational solution. However, if the Coutom astrophysical applications [31]. For this reason, we aim at
interaction is included (right panel), the self-consistaodi- ~ expressions which stay valid approaching the driplines. In
fication of the Hartree-Fock density profile due to Coulomb isthe specific application to the neutron star inner crustneve
sufficient to lead to a strong violation of the equality betwe more exotic nuclei far beyond the driplines are known to be
local and non-local terms, going up to 50%. populated [[32[ 33]. We will not consider this situation in
the present paper, because a correct treatment of nuclei be-

This discussion shows that the exact shape of the densityond the dripline imposes considering the presence of both
profile, and in particular the exact value of the diffuseress  Pound and unbound states which modify the density pro-
rameter, are not important for the determination of the glob files and leads to the emergence of a nucleon gas. Opti-
surface energy, but are crucial for a correct separationaafil  Mal parametrized density profiles have been proposed for thi
and non-local components. In practice itis very difficulete  Problem [18/.20, 24], but the developement of systematic ap-
tract precisely the diffusivity coefficient from theory oqeeri- ~ Proximations to analytically integrate the ETF functioial
ment: as we have seen in Fig. 1, the diffuseness extracted frothe presence of a gas is a delicate issue, which will be ad-
the Hartree-Fock variational density profile is very digiet ~ dressed in a forthcoming paper[[25].
from the ETF value, though the energies are close. Moreover
the equality theorem is violated both because of curvatiire e
fects and of isospin symmetry breaking terms which cannot be A.  Decomposition of the nuclear energy
neglected even in symmetric nuclei because of the Coulomb
interaction. For all these reasons, we conclude that the con The presence of two separate good particle quantum num-
tribution from non-local terms cannot be estimated from thebers, N and Z, implies that we have to work with a 2-
local part making use of EJ_(B6). As a consequence, nucleatimensional problem, and introduce, in addition to theltota
surface properties cannot be understood without mastdring  density profile Eq.[{6), an additional degree of freedom.-Con
gradient and spin-orbit terms of the energy functional. cerning the energy functional, it is customary to split tbian
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isoscalar and an isovector component: As a consequence, the radius paramitemtering Eq.[(6) also

depends on the nucleus bulk asymmetryndeed, in Eq.[(8),
_ oIS _ v
AP, ps] = AP, ps = 0]+ [p, o3 (39  the equivalent homogeneous sphere radius now rBggs-

with: AY3re4(5), where the mean radius per nucleordg(d) =
IS A? a2 (%Hpsat(5))7l/3.
AP, ps) = ?nH-CeffPTJr (Co+Csp")p The proton density profile is parametrized as an indepen-
+ Crin(Op)2+Csod - Op, (40) dent Fermi function [20]:

1
AN [p,p3) = #'5[p, pa] — #'%[p, ps = 0] Po(r) = PsapFp(r) 5 Fp(r) = (1+eFel/ae) = (a4)
D Do+ D3p%)p3

* e”p3T3J;( 0+Dsp)p3 In equation [(4K), the proton radius parameRyris deter-
+ Dtin(0p3)~ + DsoJ3 - Ops, (41)  mined, similarly to Eq.[{B), by proton number conservation

where we have introduced the local isoscalar and isovectd?S:
particle densities, kinetic densities and spin-orbit dgnsc- 2/ an \2 an \*4
tors. Isoscalar densities are given by the sum of the corre- Rp=Rysp [1_ 3 (_p) +0 <<R—p> )] , (45)
sponding neutron and proton densities, while isovector den Rusp HSp
sities (noted with the subscript "3”) are given by their diff . .
ence. As for symmetric matter, the semi-classical WignerWIth Risp(0) = Zl/3rsatp(5) the equivalent hor?c;geneous
Kirkwood development i allows expressing all these den- proton sphere radiusfsap(d) = (%npsatp(é))* / , and
sities in terms of the local isoscalar= pn + pp and isovector  where we assumea, < Ry .
ps = pn — pp density profiles, as well as their gradients. In  The diffusenessea and a, will be calculated in sec-
equation[(4D), the isoscalar energy density also depengds on tion[[lTBlby a minimization of the surface energy, as it has
because of the presence of the kinetic densities 1, + Tp been done for symmetric nuclei in sectlon]I B whege= a.
which cannot be written as a function@fnly. Therefore,to  We can anticipate that the isoscalar diffusersessll be mod-
truly obtain the isoscalar part in Ef.{39), we have to coarsid ified with respect to the result of symmetric nuclei Egs] (34)
H'S[p, ps = 0]. The iso-vector energy density Ef.141) con- and [35).
tains therefore terms which explicitly depend on the istmec In order to have the correct bulk limit of infinite asym-
densities, but also an isovector contribution of the stedal metric matter, the parametefsa: and psarp introduced in
isoscalar componen#’'S. Detailed expressions, and defini- Eqs. [6) and[(44) respectively represent the saturatiosiden
tion of parameters are given in apperdix A. ties of baryon and proton of asymmetric matter. These densi-
ties are related to the properties of the Skyrme functiondl a
to the bulk asymmetry = 1 — 2psat p/ Psat by Eq. [42).
1. Isospin inhomogeneities The bulk asymmetry differs from the global asymmetry
| =1—2Z/Abecause of the competing effect of the Coulomb
Concerning the density profiles, we choose to work with theinteraction and symmetry energy, which act in opposite di-
total densityp(r) and with the proton density profiley(r). rections in determining the difference between the protah a
Alternatively, we could as well have uséd, pn) or (pp,pn)  Neutron radiil[26, 27, 35]:
as independent variables, and we have checked that these

: : 3ac 72
different representations lead to the same level of reprodu 5— I+ 8Q AS/3 (46)
tion of full Hartree-Fock calculations. The total density i 1+ 931%1%'
A

parametrized by Eq{6), where now the saturation density pa
rameterpsat corresponds to the equilibrium density reachedin this equationJsym= #symPsat|/ Psat iS the symmetry en-
in asymmetric mattef [20]. This density depends on the asymergy per nucleon at the saturation density of symmetricenatt
metryd which represents the nucleus bulk asymmetry, defined is the surface stiffness coefficient, aads the Coulomb pa-

below: rameter. Because of the complex interplay between Coulomb
3Leyd2 and skin effects, the bulk asymmetdyof a globally sym-
Psat(0) = Psat(0) (1— ﬁ) : (42)  metricl = 0 nucleus is not zero, though small for nuclei in
sat + Koymd the nuclear chart. We have shown in R&f/[19] that account-
In this expression, Ksat = 902:0%(/p)/0p? s  INg for thed dependent saturation density gives a reasonably
is the nuclear (symmetric) matter incompressibil-good approximation of the isospin symmetry breaking effect
ity, and Lsym = 3psaid(#ym/P)/0P|psy @Nd Ksym =  in 1 =0 nuclei. A complete discussion on this point can be

9p2,02(Haym/D)/9p?|pes @re the slope and curvature of found in Ref. [35].

the symmetry energy at (symmetric) saturation, where we AS aconsequence, the interval®dfs slightly smaller than

have introduced the usual definition of the symmetry energyhe interval ofl over the periodic table. The relation between

density : the global asymmetry and the asymmetry in the nuclear bulk is
shown in Fig[b. From this figure we can see thas a slowly

) (43) increasing function of the global asymmetryThis value in-

op3 03=0 creases te-0.1 < 6 < 0.3 if we consider the ensemble of the
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2. Bulk energy: limit of asymmetric nuclear matter

0.3
. Following the same procedure as for the symmetric case,
0.2} 1 we can define the bulk energy in asymmetric matter as:
Ep(8) = Hzat(0)Vhs(8) = Asa(0)A, (47)
o 0.1 ] Haat(0) = Asat(0)Psat(0), (48)
whereVys(d) = 4/3nR%4(8) = A/psat(d) is the equivalent
0 homogeneous sphere volume ahgi(d) corresponds to the
chemical potential of asymmetric nuclear matter:
-
-0.1 L= . ; ; o A
-0.1 0 0.1 0.2 0.3 Ty =Asa(d) = — - (49)
P liosa(8).psats(0)] P Tiosa().psara()]

I

FIG.5. (Color online) Bulk asymmetry Eq.(¥42) as a functidnhe ;S;en’%s;t’éq_ég) Zpsaip, and the total energy density” is
global asymmetry for nuclei within the theoretical driplines eval- ' '
uated from the SLy4 energy functional. The different coloosre-
spond to different intervals in mass number: 4@ < 100 in red, »
100< A < 150 in blue, 150< A < 200 in greenA > 200 in grey. 3. Decomposition of the surface energy
The functiony = x is also plotted (black).
The surface energhis(d) corresponds to finite-size effects

and can be decomposed, as in the symmetric case in settion I,

heavy and medium-heavy nuclei within the driplines [65]. Itinto the plane surface, the curvature, and the higher order
is also observed from Fi@] 5 that as the mAsscreasesp  terms. It is defined as the difference between the total and

becomes closer th as expected from the analytical expres-the bulkEp(5) energy,

sion [46).
5) = [ drlp.pal — Ha(8)is()
120 e 2
—4n [ o {#p.ps) ~Asal®@p}r% (50)
100 . . .
Because of the isospin asymmetry, the Skyrme functigtfal
now depends on the two densitiggindps = p — 2p, and on
80 | the two gradient§lp andOps = Op — 20pp.
N Making again the decomposition of the energy density into
60 an isoscalar (only depending on the total density) and an
isovector component (depending prand p3), we get from
40 | Egs. (40) and (41):
20} Es=ES+EY, (51)
20 40 60 80 100 120 140 160 180 with
N
. . , 47T '8P, p3 =0 — A Plpsat psans =0 r2
FIG. 6. (Color online)3-stable nuclei (green), unstable nuclei syn- Psat(0)
thetized in the laboratory [B7] (red), theoretical neuteoml proton %[psat Psat3 = O]
driplines evaluated from the SLy4 energy functional (blagkares) = 47T dr {%ﬂ p,P3= ’ 5t’ p} r2,
and some is@ lines (blue dots) are plotted in ti Z plane. Psat(d) (52)
oV
Figure[§ shows in theN, Z) plane the heavy and medium- gV — 471 {ﬁﬂ'V 0,p3] — Mp} r2
heavy measured nuclei, the theoretical neutron and proton Psat(0)
driplines evaluated from the SLy4 energy functional, and S [Psat, Psat3) 2 S
some isod lines. We can see that #lI< 40-isotopes ever syn- = 4”/ dry Z[p,ps] - E) poro-Es.
thesized in the laboratory lay betwe@&nr= 0 andd ~ 0.2. Fur- (53)

thermore, the theoretical neutron dripline well matchethwi

the isod line d =~ 0.3, which roughly corresponds tox 0.4. It is interesting to remark that Ed._{50) is not the only pos-
This means that in the following, we will be interested in sible definition of the surface energy in a multi-component

approximations producing reliable formulae updte- 0.3. system. Indeed in a two-component system, there are two
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possible definitions of the surface energy which depend on 0.65
the definition of the bulk energy in the cluster[38-40]: the )
first one is given by Eq[{30) and corresponds to identify- 0.60 +
ing the bulk energy of a system &f neutrons and pro- Ref. [20]
tons to the energy of an equivalent piece of nuclear matter . 055 b
The second definitioks = E — unN — ppZ + pV corresponds  ~
to the grandcanonical thermodynamical Gibbs definition, an «i 0.50
gives the quantity to be minimized in the variational calcu- =

lation conserving proton and neutron number. Though this 0.45
second definition has been often employed in the ETF liter- R
ature [28] 38-40], the first one EQ_{50) is the most natural ~ 0.40 ps :

eq. (34)

definition in the present context. Indeed, using the decainpo 035 eq. (35)
tion Eq. [39) between isoscalar and isovector energy dessit . ! * * * *
only this definition allows recovering for the isoscalar &yye 0 005 01 015 02 025 03

the results of sectionlll concerning symmetric matter. More 5
over, we have shown in Ref. [19] that the best reproduction O];:IG . Col line) Diff functi f the is
full Hartree-Fock calculations is achieved considerirag the - 7. (Color online) Difiuseness as a function of the is0sp

. . . asymmetry, for four isobaric chainé & 400: full lines, A = 200:
bulk energy in a finite nucleus scales with the bulk asymmetry, &4 lines A — 100: dashed-dotted lines, — 50: dashed lines).

,5‘?‘5 'n, Eq'EED)’ rgther tha_n.v_wth the total asymme{rgs it Red lines: calculations using the slab diffuseness Ed.. (Blie
is implied by the Gibbs definition. lines: calculations using the spherical diffuseness EB). (Z&reen

Let us first concentrate on the isoscalar surface energy. Thgyes: calculations using the quadratic diffuseness,diftem HF
dependence of the surface energy on the bulk asymndetry density profiles in Ref[[20].
implies that its decomposition into an isoscalar and angsev
tor part is not straightforward. Indeed, although the istesc
energyE;® does not depend on the isospin asymmetry Profilé;tionally evaluate the isoscalar diffusenessolving equa-
p3(r), itdoes depend on the bulk isospin asymmaéttigrough tion (38), or using equatio.(B4) which amounts to neglect-
the isospin dependence of the saturation dersifyd) ap- ing term,s varying slower thaA%3. Though we have con-
pearing in the density profile Eq. (8). Moreover, in EqL(52) sidered only isoscalar terms, the diffusenastoes depend
the isoscalar bulk term which is removed depends directly o) the isospin asymmetrg b’ecause of the dependence
(Stoo,.bec%use of the equwale.ntvc_)ll_Mp%:A/psat(é). The _of the saturation density. These results, as well as the fit
quantityE¢> has therefore an implicit dependence on ISOSPINt o m HE density profiled [20], where mass independence and
asymmetryo. uadratic behaviour i is assumed (that is = C; + C;8?),

The isoscalar surface energy can be calculated exactly f re shown in Figll7. Concerning the mass-dependence of
any nucleus of any asymmetry, with the expressions devetq_ [35) (blue lines labelled "EG(B5)"), we observe a digh
oped in sectiof]l. In particular we can distinguish a planespread for masses fro— 50 toA — 400, corroborating both
surface, a curvature, and a mass independent term: the mass independence assumption in the HE fit [20] and the

a(A5))* previous conclusions in sectibn Tl B: to obtain the diffusss
. ) A1/3> (54)  we can neglect the mass dependence and limit to terAs3
rsai(0) (red line, labelled "Eq.[(34)"). However, one can see that th

with an identical result as in Eq§{30L131X(32), namely: dependence fqu_nd from the_variational equation i_s opposite
to the one exhibited by the fit to HF results: the diffuseness

e

gls _ch 1 N | a(A9) A2/3 55 decreases witld instead of increasing. It is difficult to be-
surf = | Csurf T a2(A,8) S| rea(d) ’ (55)  Jieve that such a huge and qualitative difference might come
_ 1 A5\ 2 from the difference between ETF and HF. The discrepancy
ES —|g- 4+~ N a(A.9) AL/3 (56) rather suggests that the variational procedure shoulddiecl
curv curv 2 A 5) curv r (5) 9 . . .
L a“(A, sat the isovector energy to obtain the correct behaviour of the d
s [ 1 wL] [ a(A o) 3 fuseness with the isospin asymmetry. Indeed, we will see in
Eind = | Gina + 2(A3) ind:| (rsat( 5)) (57)  sectior[II[B that adding the isovector part reverses thectre

This discussion shows that, in the case of asymmetric nu-
The local ¢+ and non—IocaI(fiN'- functions are given by clei, Eq. [3%) which only takes into account the isoscalar
Eqgs. [19) and(22), where the saturation density now dependsrms, is not a good approximation to find the diffuseness.
on asymmetnpsa: = Psar(0) through Eq.[(4R). The other dif- This statement is confirmed by Fig. 8, where the isoscalar sur
ference with respect to the case of symmetric nuclei Eg$, (30face energy per nucleon is plotted for different isobariginh
(1), [32), is that now the diffuseness depends on the asynand for different prescriptions for the diffuseness. Thi fu
metry d. red and the dashed-dotted lines stand for the diffuseness gi
Since the analytical expressions of the isoscalar surfiace eby Eq. [34) and Eq[(35) respectively. There is almost no
ergyELS are the same as in symmetric nuclei, the same accudifference in the isoscalar surface energy for these twe pre
racy and conclusions as in sectidh Il are dressed: we can varscriptions. In addition, the observed dependence is ex-
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FIG. 8. (Color online) Isoscalar surface energy per nuclasma

function of the isospin asymmetry, for four isobaric chaiRsll red

lines: calculations using the slab diffuseness Eql (34)shBdotted
blue lines: calculations using the spherical diffusenegs (B3).

Dashed green lines: calculations using the quadraticgdiffass, fit-
ted from HF density profiles in Ref, [20].
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1. No skin approximation

As a first approximation, we neglect all inhomogeneities
in the isospin distribution in the same spirit as Réf.| [16].
This simplification consists in replacing the isospin asym-
metry profileps(r)/p(r) in Eq. (53) by its mean valué).
Within this approximation, the local isovector energy oty
pends on the total baryonic density profiledefined Eq.[(B),
and the non-local isovector part, involving gradieniss, is
identically zero. In other words, this approximation amtsun
neglecting the non-local contribution to the isovectorface
energy.

Integrating in space the equality(r) = (8)p(r) we imme-
diately obtain that the mean value of the isospin distrdouti
is given by the global asymmetry of the nucleus:

& N-Z_

A I
In particular, in this approximation, the bulk isospin asym

metry 6 is equal to the global asymmetiy at variance

with the more elaborated relation betwe&mand! given by

Eqg. (46). In neglecting isospin inhomogeneities, we indeed

neglect both neutron skin and Coulomb effects which are re-

sponsible for the difference betweé&mandl. Consequently in

(58)

tremely weak. The isoscalar surface energy evaluated witkhjs section, the saturation densiiy; of asymmetric matter is
the quadratic diffuseness [20] is represented in dashezhgre gtijj| given by Eq. [4R), but replacing by I. This no-skin ap-

line. A qualitative and quantitative difference is obserwath

proximation therefore modifies the bulk energy EqJ (47), and

respect to the two other curves. This indicates again tieat ththe isoscalar energy Eq.{12).
isoscalar and isovector component of the surface energy can The choice of instead of5 to compute the saturation den-

not be treated separately, and the cordedependence of the
isoscalar surface energy, as well as of the isoscalar difus
ness, requires to consider the total surface energy in tte-va
tional principle.

Itis also interesting to analyse tdedependence of the sur-

sity only slightly worsens the predictive power of the total
ETF energy with respect to Hartree-Fock calculations, theit t
relative weight between bulk and surface energies is drasti
cally modified. In particular, this change of variable s\wis
the sign of the symmetry surface energy [19].

face symmetry energy based on the fitted quadratic diffuse- 1€ obvious advantage is that analytical results can be ob-
ness: its sign is positive, which contrasts with studiestias @ined without further approximations than the ones devel-

on
@l
the surface in a two component system, as discussed at len

in Ref. [19].

B. Approximationsfor theisovector energy

In this section, we focus on the residual isovector surface
partEl defined by Eq.[{83), which cannot be written as inte-
grals of Fermi functions as in the previous sections. Indeed

the isovector densitgs appearing in the energy density is not

a Fermi function, meaning that it cannot be analytically in-

tegrated to evaluatglY. Approximations are needed to de-

liquid-drop parametrizations of the nuclear masd [8, 10
L4B]. This behavior is due to our choice of definition of

oped in sectioh ITA, as we now detail.

Replacing p3(r) by Ip(r) and psa3(6) by Ipsa(l) in

. (53), allows to express the energy density as a function
of p(r) only. Thus we can follow the same procedure as for
symmetric nucleiin sectidn ITA, and analytically integgralhe
energy density. Making a quadratic expansioh far the ki-
netic densitiegs gives the following expressions:

a(Al) 1232
rsat(')A !
a(Al)

2 )
AL/3)2
rsat('))

)3,2

EY = 6l (psar)). X3y

+ (gcltjlrv (psat(l )a XIsY(y) (

+ %L\é (psat(l )vxlsvky) <?5(:£||))

(2~

a(Al)

rsat(l) (59)

velop an analytic expression for this part of the energy, and

we will consider in the following two different approaches.
At the end, we will verify the accuracy of our final formulae,
in comparing the analytical expressions with HF calcutzgio

whereX'Ska_ {Cet1,a,Dett} stands for the effective interac-

tion parameters appearing in the isovector local terms. The
coefficientss]V are given by:
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(5 m o
‘fs!}frf =39 C«in _’75(%, 5 +AMgat3 | — Mat +AMsat3 | | — DoPsat+ D3pga:rln¢(yolz ) (60)
13 Mgy 3
(5 ™ m ) ™
v (1) 0) Msat 1 1)
Ceurv = {Ckin _é <’75/3 - E) <3m§at +Amsat,3) - né/g < 3 +Amsat,3)] + D3PgaT ('75,+2 - E) } ) (61)
(5 212 m 2 oms
v _ (2) (0) 1) at
(gmd - 3{Ck|n _§ (rl5/3 - ?’75/3) (srn;at +Amsat3) - § (3’75/3 - 7-[2) (T +Amsat3)]
2 o2
+ ?Dopsat‘f‘ DSPSaJtrl (’7512422 - Tnéﬂz) } ) (62)
I
wherem/mgy = (m/m;am + m/méat,p)/z’ OMat = (5msatn + 0.7

OMsatp)/2, AMsaz = (m/m;at,n - m/nﬁat,p)/(ZI) =
(0Msatn — OMsarp)/(21), and where the coefficientq,(,k)
are defined by equation (B2).

As for the isoscalar energy, Eq._{59) shows that the dom-
inant finite-size effect is a surface teri A%/3). Additional g
finite-size terms, which would be absent in a slab configu-“i
ration, are found in spherical nuclei. As we have only con- 05
sidered the local part of the isovector energy, we recower th
same diffuseness dependence as in the local isoscalar terms

Eqgs. [I5) and (16).

Ref. [20]

We have seen in sectign 11 B that the diffusenass=n be 04 F , , ,
obtained by minimization of the energy per nucleon with re- 0 0.05 01 015 02 025 03 035 04
spect to its free parameters. In this no-skin approximattoa I

only non-constrained parameter of the model is again the dif
fuseness parametay as for symmetric nuclei. Therefore, we i, 9. (Color online) Diffuseness as a function of the glatsym-

can apply Eq.[(33) in order to obtain the ground state energynetry, for four isobaric chains(= 400: full lines,A = 200: dotted
If we neglect the curvature and mass independent terms, wies, A = 100: dashed-dotted lineg, = 50: dashed lines). Red

obtain an expression similar to Ef.134): lines: calculations using the slab diffuseness Eql (63ueBines:
calculations using the spherical diffuseness Eq] (64). eGime:
@NL 0 calculations using the quadratic diffuseness fitted fromdeRsity
surf : L . K .
a= T 7 5 (63) profiles [20]. Grey line: calculations using the diffusen&s. [66),
Court(1) +Csurs ()] based or([16].

where the coefficient],, depend on the saturation density
psat(l). This expression corresponds to the diffuseness of one-

dimensional semi-infinite asy_mmetric matter. Consi(_jeeirhg metric nuclei, we observe again that the mass dependence of
the terms of Eq.[(89), the diffuseness corresponding to theye giffuseness calculated in the spherical case is nbigigi

compllete variat.ional problem is given by the solution of the(omy a slight spread of the blue curves, no spread in the red
following equation: curves).

4 3
a a -
3 (i + Cngl?) <r_) +2(Chn+ Cound 2 AR <_) The analytical total surface ener§y = ELS +E! per nu-

sat ! I'sat cleon, given by Eqs[{15)_(16) ard {59), is plotted on Eig. 10
1 a \2 for different isobaric chains. The results using the sldb di
+ ((‘fs"urf + Gl 2) AR 4 T%ﬁﬁé) <—) (64) fuseness (full red curves) are very close to the ones olataine
Fsat Fsat by solving Eq.[(64) (dash-dotted blue curves), and to thesone
_ icgsl\lljhAZB -0 using the numerical fit to HF calculations of Réf.[[20] (dashe
rat green curves), even if the corresponding values foratpa-
) ) _rameter are very different. The conclusions are thus theesam
Figure[9 displays the results of Eqs.(63) and (64). At vari-a in sectiofiTIB: although curvature (and mass indepeddent
ance with Figl where we only took into account the isoscalaferms are important to reproduce the energetics, they dre no
energy, we can clearly see that adding the isovector energy {equired to determine the diffuseness. Therefore thisrlatin

the variational procedure leads to the expected behaviar of e \vell determined by the simplest expression, Eg. (63).
diffuseness increasing with asymmetry.

This behavior shows the importance of the isovector partto For completeness, we also compare our results to the ap-
correctly determine the isoscalar diffusenassAs for sym-  proximation for the surface energy proposed in Refl. [164 an
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isovector surface energy. In particular, as in sedfion ] hv&
will distinguish the bulk asymmet§ Eq. (46) from the global
onel, which allows considering skin and Coulomb effects.
This approximation is therefore expected to be more réalist
than the no-skin procedure developed in sediion Tl B 1.

0.04 |
0.03 |
0.02 |
0.01 |
0.00

EJ/A (MeV)

0 005 01 015 02 025 03 035 04
I

0.15 |

[0,03] (MeV/fm™)

0.10 |

1V
s

H

FIG. 10. (Color online) Total surface energy per nucleon asa-
tion of the global asymmetry, for four isobaric chains. Fall lines:
calculations using the slab diffuseness Eql (63). Dasteddtlue 0.00
lines: calculations using the spherical diffuseness [E4). (Bashed —_—

green lines: calculations using the quadratic diffuseffig®sl from 02 4 6 8 0 2 4 6 8 10
HF density profiles[[20]. Dotted grey lines: calculationsngsthe r (fm) r (fm)
diffuseness Eq[{86), based onl[16].

0.05 |

FIG. 11. (Color online) Numerical isovector energy dengitgfile
(red full lines) and Gaussian approximation Hq.(68) (bldakhed-

i i = . dotted lines) for two masses= 50 (left curves of each panel) and
represented by grey curves in Fig. 9 10: A = 200 (right curves of each panel). &)= 0.1; b) d = 0.2; c)

Es=ES(1=0) 5=0.3;d)3=04.

ES(1 = 0) Lsym a("sym_ T) 2/3;2 SinceEY is the surface isovector energy, the corresponding
42l A~ 27 A%312 (65) :
A28 Kgat rsat(l =0) energy density
oIV
In Ref. [16], no expression for the diffuseness was proposed AN p,pa) = "V [p, p3] — Mp (67)
For consistency, we have determined &h@arameter entering Psat(S)
Eq. (63) by minimizing the surface energy given by the samgg negjigible at the nucleus center, where psz.. This is

equation, leading to: shown in Fig[TlL, which displays this quantity for several nu
clei in a representative calculation using the diffuseesas

2Lsym . . .
(I =0) (1+ witlz) ) anda,, from Ref. [20], and with the interaction SLy4. More-
a= ZL 1—0 2om2) _ o Ksym 2\-66) over, as it is a surface energy, the maximum is expected to be
surf(l = )(1+ Ql ) - (Lsym_ 12 ) I close to the surface radib that is the inflection point where

To obtain Eq.[(8b) , the authors of Ref, [16] did the same ap-g(R) - Psai(0) /2. Thus we approxmate the isovecior energy
N ensity by a Gaussian peaked at R:

proximationps(r) = I p(r) as we made, neglected the curva-

ture and constant terms, and assumed the equilfity EN- " (r —R)?

for the isovector part in order to evaluate the non-localése Hs (1) = %Got(r) = /(A 0) eXp<—m) , (68)

tor energy. As we have shown in section]I C, this property ’

fails in a three-dimensional system. As a consequence, th@here is the maximum amplitude of the Gaussian arfd

diffuseness which is determined by the balance betweeh loci@s variance aR:

and non-local parts, is overestimated (see [Hig. 9) and yinall

leads to a largely underestimated energy, as seen ifiHig. 10. o (A,8) = 4" [p(R), p3(R)], (69)
To check the accuracy of our analytical no-skin expression 22V 1
given by Eqgs.[(B4)[(39) anf (b3), we will quantitatively com 0%(A,8) = —o/ (A, ) (TZS) . (70)
pare our analytical results with Hartree-Fock calculation ' r=R
sectior 1ITB3. Fig.[1d shows the quality of this Gaussian approximation on

the energy density profile for several nuclei. Each panekeor
) o sponds to a different representative valu@od = 0.1 (upper
2. Gaussian approximation left) corresponds to most stable nuclei (see Eig. 6); medium
heavy neutron rich nuclei synthesized in modern radioactiv
To take into account isospin inhomogeneities, we develogpon facilities lay aroundd = 0.2 (upper right); the (largely
in this section an alternative gaussian approximation & thunexplored) neutron drip-line closely corresponds$te 0.3
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(lower left); the higher valu& = 0.4 (lower right) is only we need to evaluate the symmetry energy at two different
obtained beyond the dripline, that is for nuclei which are indensities: apsa(d) and at the surface radius wheréR) =
equilibrium with a neutron gas in the inner crust of neutronpsa(d)/2. For this reason, we will apply E4._{73) to two dif-
stars. ferent densitiep,. = psai(0) and p, = psat(0)/2. At p, =

We can see that for all these very different asymmetries, thesa(0), the coefficient{J;,,L.,K,) are the usual symmetry
exact energy density (full red lines) is indeed peaked at thenergy coefficient§Jsym Lsym Ksym). Their values for the
equivalent hard sphere radiRs However, we can notice that Skyrme interaction SLy4 ad&ym= 32 MeV, Lsym= 46 MeV,
the profiles have small negative components. We thus expeand Ksym = —119.8 MeV. At one half of the saturation of
the Gaussian approximation will overestimate the isovectosymmetric nuclear mattep,. = psai(0)/2 we label the corre-
energy part. sponding coefficient§; />, L1 /2, K1/2) which, for the Skyrme

As Gaussian functions and their moments are analyticallynteraction SLy4, arg;, = 2213 MeV, Ly, = 38.6 MeV,
integrable, this approximation allows obtaining an anefyt  andKy, = —74 MeV.

expression for the isovector enerfl ~ 4 /rzg rdr. Using the expansion aroumd = psat(0) /2 for the first term
P I SOV 5/ & for(r) of Eqg. [72) and aroung. = psa(0) for the second one, we

Indeed, neglecting the termse*RZ/Q"z), we obtain (see ap- obtain, at second order it
pendiX C3): )
(A0)  Ji2 ( AR(a)
EISV = 2(27T)3/2 U(Av 6’ a, ap)d(A’ 57 a, ap)rgat(é) psat(O) - ? (a(A, 5) )
N oZ(AZ, saap) 2m (a(A, 5))2 @) Jyo [ AR@) 1 ( AR(a) )2 5

rat(0) 3 \rsat(0) 2 |a(Ad) 2\alAjd)
where we have highlighted the dependence on the nuclear Ji/2 Jsym AR(a)
mass numbeA, bulk asymmetnpd, and diffusenessegA, d) + > < - E) T aA o)
andap(A, ) when they explicitly appear. The neglected terms / ’
are of the ordefa/rsqx)*A~%/3. We can notice that the curva- 1 Lsynk12) / AR(@) \2
ture term (0 AY/3) is missing. This is due to our approxima- T4 (1 J1/2Ksat> <a(A, 5)> 5t74)

tion. Indeed, we have assumed that the isovector energy is

symmetric with respect to the inflection point for which the Notice that thélsymparameter does not appear in this equation

curvature is zero, such that the curvature is disregarded byecause of the truncation at second orde¥.iin Eq.[73), the

construction. isospin asymmetry inhomogeneities clearly appear through
Though equation{71) is an analytical expression, the exthe quantityAR(a) = R(a) — Rp(a) which represents the neu-

plicit derivation of the amplitudes (A, ) and of the variance tron skin thickness:

(A, 0) leads to formulae far from being transparent. In par- 2 a2

ticular, it is not clear how the different physical ingredli of AR(a) = ARys <1+ — 7> , (75)

the energy functional (compressibility, effective masans 3 RusRusp

metry energy) and of.the nucleus properties (n.eutron sldiﬂ, d whereARus(A,Z) = AR(a = 0,A,Z) = Rus(A) — Rusp(Z) is

fuseness) affect the isovector surface properties. Feréai- e neytron skin thickness of nuclei theoretically desadiby

son, we turn to develop a further approximation for the iseve 5.4 spheres. Moreover, we have considered the diffuseness

tor energy parEl in terms of the nuclear matter coefficients differencea — a, as a second order correction with respect

J, L andK, and of the neutron skin thickness. Moreover, thes§, the neutron skin, and have assuraed a, in Eq. [73). We

approximations will allow to find a simple analytical expres o aiso used the following expansiomiR(a) /ato evaluate

sion for the diffuseness. p3(R):

Making the usual quadratic assumption for the symme- '
try energy 5" [p,ps] = Héynlp](p3/p)?, the amplitude 2pp(R) = psatp(9) [1 - AR(a)/(2a)] (76)
</ (A, 0) Eq. (69) reads +O((AR(@)/a)®).

2
A (A, 8) = Hynlp(R)] <p3(R)) — Hymlpsar(3)] P(R) 52. Eq.m)givesarelatively si_mple and transparent expoegsi
P(R) Psat(d) the isovector energy density at the nuclear surface, asa fun
(72) tion of the E0S parameters. The situation is more complicate
In order to have a simpler explicit expression, we make a de fprthevariancer(A, 6-) W.hiCh also enters the isoveptor energy
sitv expansion of thesp mmeFt)r enelro or nhcle@n{ | = g. (71). This quantity involves the second spatial deirreat
y exp dad ym y h r?yp pI= of the energy density Eq_(I70), therefore its explicit expre
Heynip]/p around a densitp,, such that: sion is not transparent, even with the previous simplifarai
L, K, ) Extra approximations are in order.
Hymp] =P [J* *35 (p—ps)+ 1802 (P—p)7|,(73) From Fig[I1, we can observe that the width of the numer-
: * ical gaussians, that is the valuesaf(A, ), is almost inde-
where J. = J%&yn(p«]/ps, Ls = 3p.0(Hym/p«)/9pP|p, @and  pendent of the bulk isospid. This numerical evidence can
Ki = 9p302(%§ym/p*)/0p2|p*. As we can see in Eq(V2), be understood from the fact that the width gives a measure of
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the nucleus surface, which is mostly determined by isoscalave do not take into account terms beyond surface in the vari-
properties. It is therefore not surprising that the dominanational approach discussed in secfionlll B. This approxémat
isospin dependence is given by the amplitudewhich rep-  mass independence of the variance can be verified i Hig. 11:
resents the isovector energy density at the surface. For ththe width of the two gaussians correspondingite- 50 and
reason, we evaluate the variancéat 0: A =200 are very close. Neglecting the isovector component
atd = 0, the diffuseness is then given by the expression (34)

> valid for symmetric matter:
0(A0)~0(A)= | ——x—ao= 0Oo. (77)
11y 80 = /0¥ (8= 0)/€%,((6 = 0). (78)

Inserting Eqgs.[(74) and(¥7) intg_(71), the surface isovecto
In this equationgg stands for the diffuseness@t= 0. We re-  energy can be expressed as a function of the symmetry energy
call that this quantity does not depend on the nucleus mass doefficients(Jsym Lsym, Ksym):

m psat(0)  ag

1— 1';352 Psat(0) I'sat(d)

EY =3

Ji)2

() o ) 2292 ) (439
Sl 1_ 2K1/2 (rs::?é))z_ ? (?i:&g)))z : (79)

18,

In principle the surface coefficient3, »,L1/2,K1/2) canbe  the limit & = 0,AR# 0, giving:
expressed as a function of the bulk orf@&sm, Lsym, Ksym) by

using polynomial expansion in the density. However, we can EIV.0=0 _ 3 m J AR (ag) A2/3 (81)
see from Eq/[{79) that the surface isovector en&yis pro- surf 4411 1*;1]/2 1/2 aorsat(0) '
portional to the symmetry energy{,, evaluated at the sur- 1/2

faceR. It is quite natural that the surface energy componen_tl.his expression shows that an isovector surface energyean b

is mainly determined by the surface properties of_the nuCIe'induced in asymmetric nuclei even if no asymmetry is present
and therefore, the surface symmetry energy is mainly propor.

tional to the isovector parametdy,. For this reason, express- in the bulk. Of course in realistic situations the bulk asyeam
. ctorp /2 " » €XP try and the difference between neutron and proton radiiare n
ing Eq. [79) only in terms of bulk quantitigSsym Lsym Ksym)

independent variables; in particular the skin is neglide#b
would make Eq.[{79) less t.ranspar.ent. d = 0 as we have already assumed in order to obtain[Ed. (78)
For completely symmetric nuclei, thatMR=0andd =0, gpove.
the isovector energy is identically zero as it should. Hasvev Eq. [79) shows than even in our rather crude approxima-
siderAR = 0 butd # 0, a non-zero isovector surface energy is gependence on the physical quantities that measure isospin
obtained, given by inhomogeneity, namely the bulk asymmetfyand the neu-
tron skin thicknes#\R. In particular we find thaElY (A, 6)
T 0 is not quadratic withd but has non-negligible linear compo-
1 Ki/2 gz::(( 5)) rs:?(;) (31/2—szm) & A3, nents (see also FiEllB below). We have also quant_itatively
T 18y, tested that both linear and quadratic termAkare required
(80) to correctly reproduce the surface isovector energy. Ihis i
teresting to notice that the linear components diandAR.
Indeed, as we can see in EJs.](80) dnd (81), putting to zero
This expression is proportional to the energy density diffe one of those variables, which both measure the isospin inho-
ence between bulk and surfa¢d , — Jsym), that is to the  mogeneities, leads to a quadratic behavior with respetteto t
Lsymparameter. In this approximation, the diffusen@@s )  other variable (cf. eq§{B0) and {81)).
does not appear, which means that the isovector surface en-similar to the previous section, the diffuseness is the only
ergy contributes to the determination of the diffusenedg on ynconstrained parameter of the model. It can therefore be de
if we consider the neutron skin. termined in a variational approach by minimizing the total
From a mathematical point of view we can also consider(isoscalar and isovector) surface energy. In sedfion 118, w

IV, AR=0
Esurf =3
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which minimises the energy (blue curves).

0.65
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055 | a, Ref. [20] 6
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FIG. 12. (Color online) Diffuseness as a function of the batispin 5
asymmetry. Red lines: Ed.(B2) from the minimization of tleig
sian approximation . Blue lines: minimizatiqn of the exautmari- FIG. 13. (Color online) Lower panel: surface energy per eanl
cally calculated ETF surface energy. Green lines: fit fromdefsity 45 4 function of the bulk isospin asymmetry for four isobaricleus
profiles, taken from{[20]. chains. Full red lines: gaussian approximation using tHes#iness

Eq. (82). Dash-dotted blue lines: exact numerically calted ETF
] 23 ) surface energy using the optimal diffusenegsé¥", aj"") (see text).
have shown that only the domindnA~* terms are important  pashed green lines: exact numerically calculated ETF seigaergy

to evaluate the diffuseness. For this reason, we negleat agausing the diffusenesses from [20].
terms beyond plane surface, and we approximate the neutron

skin thicknessAR by the hard sphere approximatidrys. As we can see, these diffusenesses significantly differ from
Neglect|.ng the quadratic terms in the expansiod\Rys/a, each other, but their consequence on the energy is small as we
we obtain can observe in Fig. 13 which displays the corresponding sur-
a(A,d) = ais(9) face energyEs = ELS+ ELY per nucleon, for different isobaric

) chains. In this figure, the blue curves correspond to a numer-

M Psa(0) 3312(0-8 )aOARHS(A 5), ical integration of the ETF energy density, using the digfus

1';% psat(0)  €L,.¢(0) 77 nesses which minimize the total surface energy. Thesetsesul
1/2 can thus be considered as "exact” ETF results. The use of

(82) the very differentanday, values fitted from HF (green lines)

. . . . . leads to only slightly different energies, except for thghtest

where a.s(é_) is the dl_ffuseness obtained in S‘_eCt'ml isobar chain. The analytical approximation given by the sum

by neglecting the isovector component :as(d) = ¢ Eq. (53) and Eq[{79), is also plotted (red curves), where
G0 (8)/CL,(8). We found in sectiof TITATL thatys  the diffuseness is given by the analytical formula Eq] (82).

slightly decreases with the isospin asymmetry (see[Fig 7)/We can see that our analytical approximation closely fadlow

which does not appear consistent with the behavior observelfie "exact” ETF results.

in full HF calculations. Now considering in the variational ~ All the curves show a positive surface symmetry energy,

principle the isovector term in addition to the isoscalae,on Which contrasts with Fig10. As it has been discussed in [19]

the diffusenesa given by Eq.[[8R) acquires an additional term this change of sign is due to the choice between the bulk asym-

which modifies its globab dependence. The complete result metryd or the global asymmetry in the definition of the bulk

Eq. (82) is displayed in Figufel2. We can see that the adenergy. This choice obviously affects the residual parhef t

ditional term due to the isovector energy contribution ises  €nergyEs, since the sum of the two gives the same ETF func-

the trend found sectidnIIl[Al1, as expected. More specificall tional. This residual partis, to first order, given by theface

though it does not clearly appear in EG.(82), the analyticasymmetry energy as discussed in Ref] [19].

diffuseness is seen to quadratically increase Witeorrobo- In order to further validate the analytical results of théss

rating the assumption found in Ref. [20]. tion, quantitative comparisons with Hartree-Fock caltiates
Although we only considered ternis A%3, as in a slab are shown in the next sectibn 1B 3.

geometry, the results slightly depend on the nucleus mass as

shown by the slight dispersion of the different red curves in

Figure[I2. This is due to the neutron skin sidd@4s(A, 5) 3. Comparison to Hartree-Fock calculations
increases with decreasing mass number=or comparison,
the diffusenessesanday, # a obtained by a fit of HF density In this section, we explore the level of accuracy of both

profiles in Ref.|[2D] are also represented in Fidurk 12 (greetthe no-skin approximation and the gaussian approximation,
curves), as well as the numerically calculated gafit",al'")  respectively developed in sectidns ITB 1 4nd TITB 2.



18

As previously discussed, the two different approximationsesults than the no-skin model. This observation highsigte
lead to two different bulk energetics. Neglecting isospin i importance of taking into account the isospin asymmetry in-
homogeneities implies that the bulk asymmaeiig equalized homogeneities, considering the neutron skin and at the same
to the average asymmetry Thus the bulk quantitiessqt and  time differentiating the bulk asymmetr§ from the global
E, defined by Eqs[{42) anf{47) depend lorand the total onel, as it has been discussed in Réf. [19]. Quantitatively,
energy of a nucleu@A, | ) within the no-skin approximationis for medium-heavy nuclei, the accuracy of Hg.](84) is better
given by than~ 200 keV/A, which is similar to the predictive power of

spherical Hartree-Fock calculations for this effectiveerac-
Enosiir(A 1) = En(A 1) + ES(A 1) + B (A1), (83) tign, with respect to experimental data.

whereES(A1) is given by Eq.[(B4) (withl instead ofd), To conclude, the gaussian approximation developed in sec-
EN (A1) by Eq. [59), and the diffuseness is given by Eq] (63).tion provides a reliable analytical formula, espdigia

On the other hand, the gaussian approximation allow$or the surface symmetry energy. For this reason we will only
defining two independent density profiles. Therefore, tHke bu use the gaussian approximation to further study the diftere
energy depends on the bulk asymmedA, 1) defined by components of the nuclei energetics, as we turn to do in the
Eqg. (46) and the total energy of a nuclei#s|) within this  next section.
approximation is given by

EcausdA1) = Ep(A,0) + ES(A,8) +ELY (A 5), (84)

whereE!S(A, 5) is given by Eq.[GH)ELY (A, 6) by Eq. [79),
and the isoscalar diffuseness is given by Eql (82).

IV. STUDY OF THE DIFFERENT ENERGY TERMS

In this section, we use the analytical formulae based on the
gaussian approximation detailed in secfion ITlB 2, to sttindy

* b) different components of nuclear energetics. As we haveaprev
-9 1 ously discussed throughout this paper, we can decompose the
“10 | nucleus total energl into bulk E, and surfacds parts. Both

HF % |

-11 | eq. (83) 4
eq. (84) —

can be written as sums of isoscalgP, that is the part inde-
pendent ops(r), and isovectoE!V terms. The surface energy
can be further split into plane surfaBe,s 0 A%3, curvature
Ecurv 0 A2 and mass independeBf,q terms. Finally, we
can distinguish the IoceE[i'S"L and the non—locaEi'S’N" com-
ponents of the surface isoscalar part only, since we did not
discriminate them in the gaussian approximation used #r th
isovector energy. In summary, the energy gfal ) nucleus

E/A (MeV)

-13 : : : : : : can be written as
0O 01 02 03 0 01 02 03 o04
_FEIS \%
FIG. 14. (Color online) Total energf = E,, + Es per nucleon as Es(A,0) =Es°(A0) +E5' (A9), (86)
a function of the nucleus asymmeitry= 1— 2Z/A calculated within EVN (A, 3) = EN (A, 8) +ENS (A, 3), (87)
the no-skin approximation, EJ._(83) (blue dotted lines) auitthin IS i IS IS
the gaussian approximation, Ef.§84) (red full lines), careg to Es°(A,0) = Esirt(A, 0) + Eqyru(A, 6) + Eing (A, 0), (88)
- . : — : — IS _ IsL ISNL
gggl;e(;rAH:agBe(f Fock energy (stars).Aar 50; b) A= 100; c)A ET;”(A7 5) = ET;’J(A’ 5)+ ET;EL(A’ 5), (89)
Ecurv(A, 8) = Eciy(A, 8) + Ecgrv (A, 0), (90)

In Figure[14, we compare the analytical expressién$ (83) o ) _
and [8%) with Hartree-Fock energy calculations, for differ ~ Where the bijective relation (for a given mass) betweand
isobaric chains. To compare the same quantities, we used tieis given by Eq.[(46). The different isoscalar terEﬂ§’J are
same interaction (SLy4), and we have removed the CoulomBefined by Eqs[(84) t¢_(57), with the diffusenegé, 5) de-
energy from the total HF energetics. termined within the gaussian approximation, Hql (82). The

We can see from the figure that the no-skin and the gaussidsovector componenV are introduced in Eq[{79), where
approximations predict close values for the total energy. F the curvature term, in this gaussian approximation, istien
low asymmetried < 0.2 where the two models are almost cally zero by construction.
undistinguishable: they reproduce the microscopic calcul In the following, we will study each of these terms, and
tions with a very good accuracy, especially for medium-lgeav specifically their dependence with the asymmeiryFor this
nuclei A > 100. However, for higher asymmetriés> 0.2 ~ comparison, we have chosen a representative isobaric chain
where the symmetry energy becomes important, a systematie = 100 for which the ETF approximation was successfully
difference between the two models appears and increases apmpared to HF results in Fi.114, for the SLy4 interaction.
to ~ 400 keV/Afor the highest asymmetriés- 0.4: the gaus-  For this choice of mass) ~ 0 corresponds to the proton
sian approximation is systematically closer to the micopsc ~ dripline andd ~ 0.3 the neutron dripline (see Fig. 6).
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Due to our limited experimental knowledge of the isovector
properties of the effective interaction, the behavior &f dif-
ferent energy terms with asymmetry is to some extent model
dependent. In order to sort out general trends we have consid
ered different Skyrme functionals which approximatelyrspa
the current uncertainties on the density dependence of the
symmetry energy.

The corresponding bulk parameters are reported in Ta-
ble [I. In this table, the calculated surface coefficients
(J1/2,L1/2,Kq/2) entering Eq.[(79) and(82) are also given. As
it is well known [55], the different interactions are verpse
at half saturation density, reflecting the fact that all $kgpa-
rameters have been fitted on ground state properties of finite
nuclei, which correspond to an average density of the order
of psai/2. Nevertheless, a considerable spread is already seen
at saturation density, showing that the extrapolation@fes-
tor properties to unexplored density domains is still noll we
controlled [55].

Concerning the LNS interaction, the parametrization pro-
posed in Ref.[[62] corresponds to a too high saturation den-
sity which is not realistic. This induces a trivial deviatio 40 F
with respect to the other interactions in both the bulk arre su : \‘,«\“'
face isovector components. For this reason, only the isovec “‘\‘m\“"
properties of this functional are of interest for this study 3.5 r,.,.‘...\..-\-\-“"

A more complete study of the effective interactions param- ' ' ' ' '
eter space would be necessary to reach sound conclusions on 0 005 01 015 02 025 03
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the quantitative model dependence, but from the representa o)
tive chosen interactions, we can already dress some duagita
Interpretations. FIG. 15.  (Color online) Bulk (upper panel) and surface (lowe

The bulk energy per nucleon is shown in the upper panel opanel) energy per nucleon as a function of the bulk asymme&try
Fig.[183. At low asymmetries, the curves are indistinguistab for isobaric nucleiA = 100, predicted by EqL(84). Different Skyrme
reflecting the good present knowledge of symmetric nucleainteractions are considered: SLy41[23] (full red), SKI3][édashed
matter properties. The only exception is given by LNS, whichgreen), SGI[61] (dotted blue), LN5 [62] (dashed-dotteck)a
presents a global shift with respect to the other functienas
already remarked, this is due to the irrealistically higtusz
tion density of this parametrization (téb. I). However, veec ergy, they however differ from 500 keV per nucleon on the
see that the behavior with isospin is comparable to the one cfurface energies. We will come back to this surprising tesul
the other functionals, reflecting a compatible bulk symsnetr later in this section.
energy. For the highest asymmetri@s> 0.25, we can see Fig.[I8 shows the energy decomposition of Efs] (86) and
that all the parametrizations differ, which reflects theyéar  (87). As expected, ai = 0, though not identically zero (see
uncertainties for asymmetric matter. Eq. (81)), the isovector energy (lower panel) is completely

The lower panel of Figure_15 displays the surface correcnegligible. This a-posteriorijustifies the assumptigh (0) =
tions. We can see that the qualitative behaviour of thediffe 0 we made in order to obtaiay in Eq. (7). However, for
ent models is the samé&s/A increases with the asymmetry, asymmetric systems, though smaller than the isoscalaggner
leading to a positive sign of the corresponding symmetry enfupper panel), the isovector energy cannot be neglected. In
ergy. As it has been already discussed in Ref. [19], this somedeed, its dependence withis much stronger, meaning that
from the consideration of the bulk asymmedrynstead of the  the isovector term is the most important term determinireg th
global ond in the definition of the nuclear bulk. surface symmetry energy . Concerning the mass independent

The increase rate with isospin is not the same in the differterm, we can see that it is negligible compared to the other
ent models, reflecting the different surface symmetry éesrg components, as expected for the medium-heavy nucleus con-
of the functionals. In particular, the steep behaviour jmted  cerned by this picture. Finally, we can observe that thedsev
by the SkiI3 parametrization is due to the stiff isovectompro tor energy is not quadratic with, thus confirming that the

erties of this effective interaction (segymandKsymin tab[l), linear terms of Eq[(79) cannot be neglected.
which lay close to the higher border of the presently acakpte Fig.[I7 shows the predictions of the different functionals
values for these parametérd[55]. concerning the parameters associated to the density grofile

Moreover, the four considered interactions predict vefy di namely the diffuseness (upper panel), the neutron skin-(mid
ferent values oEs. In particular, ad = 0 for which the SLy4, dle panel) and their ratio (lower panel). We can see that for
SkI3 and SGI models are in perfect agreement on the bulk ergiven asymmetry, the spread of the diffuseness values given
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TABLE I. Bulk and surface nuclear properties for the differ&kyrme interactions examined in this paper.

Psat(0) m*/m Ksat Jsym Lsym Ksym Jij2 L1 Ky/2
Interaction (fm—3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
SLY4 [23] 0.1595 0.595 230.0 32.00 46.0 -119.8 22.13 38.6 -74.0
SkiI3 [60] 0.1577 0.577 258.2 34.83 100.5 73.0 18.85 46.7 -25.2
SGI [61] 0.1544 0.608 261.8 28.33 63.9 -52.0 16.75 38.4 -29.7
LNS [62] 0.1746 0.826 210.8 33.43 61.5 -127.4 21.10 44.6 -56.8
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FIG. 16. (Color online) Isoscalar (upper panel) and isawegower FIG. 17. (Color online) Diffuseness (upper panel), neutron skin

panel) surface energy per nucleon as a function of the bylkae-  thicknessAR (middle panel) and the ratidR/a (lower panel) as a

try o for isobaric nucleiA = 100, predicted by Eq[(84). Different function of the bulk asymmetrg for the isobaric chairA = 100,

Skyrme interactions are considered: SLy4 [23] (full recl3364] predicted within the gaussian approximation (see text)ffe@Ent

(dashed green), SGI[61] (dotted blue), LNS|[62] (dashetiedo ~ Skyrme interactions are considered: SLy4 [23] (full red}|3560]

black). (dashed green), SGI [61] (dotted blue), LNS|[62] (dashettiedo
black).

by Eq. [82) is very important, reflecting the poor knowledgepenyeerR= R— Rp ands. Itis clear from this behavior that
of this quantity. These large uncertainties can be undeasto qyadratic terms in the neutron thickness cannot be neglecte
conS|de_r|ng that the Qn‘fuseness doe_s not seem to affect thg correctly estimate the symmetry energy (see [EG. (79). It
energy in a systematic way. In particular, though Ski3 andpteresting to observe that the SGI and LNS models give very
SGI models surprisingly give the same diffuseness, theeorr ¢jose results for this quantity, and the same was true for the
sponding surface properties systematically differ. MO0 isoyector part of the surface energy in Figliré 16 above.
this similarity of the diffuseness cannot be straightfartiy This comes from the fact, already observed in the literature
linked to any specific interaction property or parametee (se [55], thatAR is mainly determined by the slope of the sym-
_tab.[l). This reflects again the fact that the diﬁqsenessjisla metry energyLsym [55] which are close in the SGI and LNS
icate balance of all energy components, and is determined by,qqels. Our work confirms that the neutron thickness can be
very subtle competing and opposite effects. viewed as a measurement of th@arameter. Indeed\R can

The middle part of the Figure shows the obvious correlatiorbe well approximated using the equivalent hard spheres radi
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Rus(0), Rusp(9), see Eq.[(A5). This means thaR can be  then safely conclude that the non-local curvature compbnen

seen as a function of the saturation dengify(8). In turn,  ESN can be neglected for medium-heavy nuéiéi 100, but

the saturation density is given by EG.142) which at first or-the local curvature energy has to be taken into account since
der is quadratic i5? with the coefficientLsym/Ksa. Since it represents for these nuclei 10% to 25% of the total surface
Ksat is relatively well constrained, we then understand whylocal energy, depending on the interaction choice and on the
AR is mainly determined bysym In particular, the neutron asymmetryd.

skin thickness is predicted to be the same in the two Specific concerning theS dependence of the isoscalar surface ener-
interactions SGI and LNS. Since the surface isovector 8Nerdgies in Fig[IB, we can notice that the local and non-locakpar
Eq. (79) at a given bulk asymmetry mainly depends on the\aye opposite behaviors, leading to the rather flat curves ob

neutron skin, this also explains why we obtain the same enekgpyed in FiglD6, upper panel. In sectionlll C &adIIA 3, we
gies for the two models in Fig_16. ’ L _ gISNC :

. . . have shown that th t I = Eq.
This essential role iR to determine the symmetry energy ave SHOWn mhat the Sxact equany, ¢ surr ~ (B0.(30)

. ' ; . is obtained only if both curvature and isovector terms are ne
IS conf_lrmed ot_yser\(mg from F'EILG. and 17. th"’.‘t Skyrmg mOd'glected in the determination of the diffuseness. However, t
els which predict thicker neutron skin, that is highgym, give

. ) neglect of isovector terms leads to a wrong dependencedwith
systematically larger values of the isovector surfacegner as shown in Fid.17. Thus, isovector terms cannot be avoided.
The lower part of Figure17 shows the rafiR/a as a func-

tion of . Though it is the quantity which mainly governs the The results of Figure 18 clearly show that, once these terms

behavior of Eq[{79), it does not constrain the surface ismre '€ consistenltSIyL addef(sj'\ilrz the variational procedure (E2))(8
energyE" . Indeed, samAR/afrom the functionals Ski3and e equalityEg s = Eqj¢ is completely violated for asym-
SGl lead to different energies (FIgJ16, lower panel), cooro ~ MEtric systems. Therefore the isoscalar energy strongly de
rating the above discussion: only theparameter, or equiva- pends on the neutron skin thickness, even if it is an indirect

lently the neutron skin thicknegsR, is relevant to determine dependence through the diffuseness. This shows that, lthoug
the isovector contribution. the energy can be splitted into different terms, theserlaén-

This stresses the importance of the experimental measur89t be decorrelated and have tf) be. treated altogether..
ment of neutron skin thickness as a key quantity for the knowl We have already observed in Figlrd 15 that the different

edge of the density dependence of the symmetry energy [55functionals predict very different surface energydat= 0,
which might be surprising considering that the symmetric nu

clear properties are supposed to be well constrained by ex-

T sy — perimental data. An obvious interpretation would be that th
SKI3 = ; discrepancy comes from the surface properties, thatisthe n
SGI local gradient terms and the (poorely constrained) diffiess
S LNS == % parameter. However, comparing the different values of the
ﬁ .,..,:.',':,::;;,,,.,,% 1= predicted diffuseness @ = 0 from Figure[1V, we can see
:: " iy, z thatasg < a_ns = asks < asLy. This inequality sequence is
5 -=""";‘;";,"L'"~~-.m & | E\ not re_spected for the surface eney (0 = Q) in Fig.[18,
@ Equrt """"m.,.,, % meaning that the difference of surface energies cannot-be as
= 1r 1 1= cribed to the diffuseness.
=l ISAL ; The ppssible erendence on the couplings of gradient and
el eurv spin-orbit terms is also excluded. Indeed, we can see from
* * SR — Figure[I8 that atd = 0, the isovector part is zero by def-
0 0.1 0.2 0 0.1 0.2 0.3 inition and therefore the equalil&'sﬁ*rLf = Eg’r'\f'L is verified.
0 g This means that the total surface energy for symmetric laulk i
Esurf = 2E§"r"f, which does not depend on the non-local terms

FIG. 18. (Color online) Decomposition of the local (left)danon- [ . .
local (right) part of the isoscalar surface energy per rarglénto of the functional, but only depends on the bulk interaction

its surface and curvature component as a function of thedmykn-  CO€fficients(psai(0),Co,Cs, Cefr, @) according to Eqs[(17)-
metry & for the isobaric chairA = 100, as predicted by Ed._(84). @9.

Different Skyrme interactions are considered: SLy4 [28]l(fed), We can conclude that the differences of the total surface en-
Ski3 [60] (dashed green), SGL[61] (dotted blue), LNS [62gbed-  ergies observed fod = 0, that is nuclei very close to isospin
dotted black). symmetry, in Figuré_15, does not come from the non-local

properties but are intrinsically linked to the bulk intetian

To conclude, we study in Figufe]18 the decomposition intocoefficients(Co,Cs,Ce+, @ ), though the SLy4, Ski3 and SGI
local and non-local terms as predicted by the different funcmodels correpond to compatible isoscalar equations of stat
tionals. Only the isoscalar part of the surface energy isicbn  (that is: compatible values for the saturation denpiy(0),
ered because these different terms are mixed up in the gausulk energyEp(d = 0), compressibilityKsa: and effective
sian approximation we have employed for the isovector commass). This shows that, at variance with the skin thickness
ponent. AR which is strongly correlated to the isovector equation of

Again, we can see that the qualitative behavior of the differ state, the nuclear surface energy very poorely constrams t
ent Skyrme models is the same for each specific term. We cagquation of state, even for symmetric or quasi-symmetric nu
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clei. Fock (HF) results for all stable nuclei up to asymmetrie$ef t
order ofl ~ 0.2, and leads to a relatively limited overestima-
tion of the order otz 400 KeV/nucleon close to the driplines.

V. SUMMARY AND CONCL USIONS A better approximation is obtained if isospin inhomo-
geneities are accounted for. To this aim, we have introduced
In this paper we have addressed the problem of the determf: different radms_ fo_r the neutran and proton distributicas
well as an explicit difference between the global asymmietry

nation of an analytical mass formula with coefficients disec .
linked to the different parameters of standard Skyrme funcfjmd the asymmetry in the nuclgar baikdue to both Coulomb_
nd neutron skin effects. In this more general case, tommhtai

tionals, in the extended Thomas-Fermi (ETF) approximatioﬁ"1 ;
at second order ifi. The purpose of this effort is twofold. mass formula we make the assumption that the surface energy

On one side, such a formula is useful for astrophysical ap(_jensw is peaked at the nuclear surface, and curvaturesterm

o : can be neglected. A reproduction of HF results witki200
plications where extendend c_alculatlo_ns are needfed cwyer KeV/nucIe%n at the drip?lines is obtained, and simple expres
t_he whole mass table ar_u_j using a variety qf effective Ir]teracsions are given for the surface energy ar;d the surface difus
tion to assess the sen&Hy of astrophysical obsereanie ness parameter. In particular we show that both linear and
the nuclear physics inputs [31]. On the other side, analitic . " .

; ; - P uadratic terms i andAR are needed to correctly explain
expressions of the dn‘feren.t coefficients of the mass foariml ?he surface term. Moreover, within this analyticalymass for
terms of the_Skyrme couplings allow a better unders_tancﬁng Omula, we show tHat the neut}on skin is essentially deterchine
the correlation between these couplings and the different aby th’e slope of the symmetry energy at saturation, thus con-

ects of nuclear energetics, for the construction of otmi .7 . . 4 . ’

Etting procedures of tr?e functionals firming earlier numerical results from different groups/55

The modellina of Eermi densit' rofiles pronosed in Conversely, the surface symmetry energy is shown to be due to
Ref. [20] aIIowsgan (almost) exactyanpal tical gvalpuation ofd complex interplay of all different local and non-localnter
the .isoscalar part of the nuclear energyynaturally leatting in the energy functional. This implies that constraints lo@ t
the appearance in the surface energy of a curvature term ariﬁ ?;Tnztr:¥seg1?g;%¥ Ezr?nrgzt; dﬁyeﬁ p'lé?’gelﬁ’ grfrjorrgirsrlwss(sji?geajé\s a
a constant term independent of the baryonic number. Th : '

further developement of this work, we plan to extend the mass

dl_ffu_seness of the dens_|ty profile |s_var|at|onally_ calteth formula to the case of neutron-rich nuclei beyond the dripli
within the same formalism, and a simple analytical expres-

sion is given. The relative importance of local and nondoca'” equilibrium with a neutron (and possibly proton) gas. fsuc

. L . . a parametrization will allow including modifications of the
terms is studied in detail. Non-local energy componenteari :
. . o . nuclear surface energy due the presence of continuum states
both from gradient and spin-orbit in the Skyrme functional,

and from the higheh terms in the Wigner-Kirkwood expan- n nuclear StatIStIC?.I eq“"'?’”“'.“ quels, currently used
. different astrophysical applications in supernova andnoeu

sion of the kinetic energy. We show that in the limit of semi- star physic<[31]. A self-consistent inclusion of pairifiigets

infinite matter the isoscalar surface energy 6?3 and solely . S , .
. in the local density BCS approximation, using consisteht ca
depends on the local terms. This remarkable property al-

ready observed in Ref. [12] is however violated in finite ®iicl cula‘uonfs for_the Imear|1 f'e.ld and g%%%uatmn with the same
even if spherical symmetry is assumed, and both componeni‘.asnergy unctional, is also in progress|[63].
contribute in a complex way to the determination of the sur-
face energy. However, the huge d|spers_|on obsga_rved on the ACKNOWLEDGMENTS
value of the surface tension for symmetric nuclei in modern
Skyrme functionals is essentially due to the local couing
even if these different functionals correspond to comparab )
saturation properties of symmetric nuclear matter. Thig-fin ~ANR-10-BLAN-0503 and it has been supported by New-
ing means that nuclear matter properties are not suffictent tCompstar, COST Action MP1304.
pin down surface properties of finite nuclei even in the sym-
metric case.
The extension to isospin asymmetric nuclei is highly non-
trivial. No exact analytical integration of the ETF funatal
is possible in the presence of isospin inhomogeneitiesapnd
proximations have to be done. We have proposed two different
approximations for the determination of the surface synmynet
energy. The first approximation consists in completely oege
ing the difference between the neutron and proton radias, th
is the neutron skiAR. The resulting surface energy shows a
guadratic dependence on the isospin asymmletand con-
sists of local and non-local plane surface, curvature angsma
dependent terms which are simple generalizations of the ex-
pressions obtained for symmetric nuclei. Surprisinglys th
crude approximation reproduces very well numerical Hartre

This work has been partially funded by the SN2NS project
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Appendix A: The Skyrme effective interaction while the D; coefficients, associated to the isovector part of
the energy, are given by:
The Skyrme functional for the energy densi# (r) is ex- 1
pressed a$ [28, 53] Do=—glo [2x0+1],
1
D3=——t3|2x3+1
3 28 3[ 3+ },

H(1) = H (1) +H0(r) + A3(r) + Hess(r) +

1
- () + Haolr) + AT, (A1) Detr = 762+ 1) ~tu(@a+ 1))
1
Dfin = — = [3t1(21+ 1) —t2(2x2+ 1),
o . 64
where the kinetic term, the effective mass term, the zengea

1
term, the density-dependent term, the finite-range termn, th Dso= ZWO’
spin-orbit term and the spin-gradient term are respegtivel 1
2
o = ET’ The semi-classical development ) so-called Extended
2m Thomas-Fermi (ETF), provides expressions for the kinetic
Hett =CertPT+ DeripsTs, densities and spin-orbit density vectors, that is at therséc
6 = Cop®+ Dop}, order [1]:
3 = (Cap” +Dap3)p*, Tq(r) = Toq(r) + T2q(r) + O(A"), (A)
Hiin = Crin(0p)? + Drin(Op3)?, Jq(r) = Jog(r) + Jaq(r) + O(R*). (AT)
Hso= CSOJZ' Dp+ |325033 ‘Dps, The results of nuclear matter calculations give the zeratbio
Hsg= Csg)” + Dsgl3, (A2)  andread:
_ 3 2/3. (\5/3
and where we have introduced the local isoscalar and isovec- Toq(r) = 5(3712) Palr)™, (A8)
tor particle densities, kinetic densities and spin-orleisity Jog(r) =0. (A9)

vectors:
The Wigner-Kirkwood expansion gives the second order of

the kinetic densities development:

P(r) = pn(r)+pp(r),

p3(r):pn(r)—p2(r , T2q(r) = Toq(r) + T34(r) + 55(r), (A10)
T(r) = tn(r) + tp(r), with

13(r) = Tn(r) — 7p(r), 1 (Op.)? 1

J(r) = In(r) +Jp(r), TIZqZ%( [)):) + 3800,

J3(r) =JIn(r) = Jp(r) (A3)

10py0fy 1 Afg 1 Ofy) 2
n_ +9Pqtlq 1 ABlg 1 (Ulg
e I 12pq< fq ) ’

The coefficientsC; in equations[[AR), associated with the 1 /2m\ 2 W 2

isoscalar contribution, are linear combinations of thelitra Tq = 5 < ) Pq (-q) ) (A11)

tional Skyrme parametets x; andW as follows: R fq
The second order of the Thomas-Fermi approximation for the
3 spin-orbit currentsyqy(r) reads
CO - §t07 2m W
1 Jog=— " Pg (A12)
C= Et3’ he™ fq

1 where we have introduced the effective mass coefficients
Cetf = E[3t1+t2(4x2+5)}, fq(r) = m/m(r) with m(r) the effective masses, and the
spin-orbit potential§Vqy(r) as follows [54]:

1
Crin = 52 [9t; —to(4%2+5)],
2m + Det1p3) (A13)
3 fom 14 20 ,
Cso= ZWO’ q = (Cefp = Defp3
1 Wq = Csollp + Dsollps
Csg= 35 [t1(1—2x) —ta(1+2x)] (A4) +2Csg) + 2Dggls, (A14)
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where+ stand for neutrons (protons) . ) k
In several Skyrme interactions (such as SLy4, Sllil, SGJI... My 0 1 2
the spin-gradient termsg are neglected. Therefore in the fol- 1 0 /6 0
lowing, we takeCsg = Dsg= 0, which in particular uncouples_ 5/3 | 0758981245 517431001 260168706
the equationg(A12) and (All4). For more general Skyrme in- 2 2
teractions, a full treatment of the spin-gradient termsustho 2 -1 /6 —m/3
be implemented [54]. a+2| —1.10223102 172183325  —3.59345480
In symmetric matter, we can set the usual following equal- 3 -3/2 1/2+1/6
ities, at every location 4 ~11/6 1+ 12/6
5 —25/12 3524+ 1 /6
2pq(r) = p(r), | | 6 | —137/60 4524+ 12 /6
n SO
219(r) = 1(r) = To(r) + 12(r) + 12 (1) + 15°(r), 7 ~49/20 20390+ 12/6
2Jq(r) = J(r), (A15) 8 | —363/140 469180+ 172 /6
with 9 | -761/280 29531/10,080+ /6
10 |—7,129/2,520 6515/2,016+ /6
3/3m\?° ¢4 cientg i
To= s\ o P, TABLE Il. Values of the coefficients), calculated via the equa-
tions of appendik BI1.
L 1 (Dp)z 1 The calculations foy € N are analytical; numerical otherwise. For
2= 36 p T §Ap, the specifia){’ which depends on the value af that is of the ef-
fective interaction, we show here the result considerimgShy4 in-
W 10p0f 1 Af 1 /0Of)\2 . oo i
T, =————+-p———p|— |, teraction ¢ = 1/6). Then,_ are given up to the 7 order in the
6 f 6 f 12 f spin-orbit Taylor expansion (see text).
1/2m\? [Csdp\?
=2 = Al6
r-3(5) o (5F2) (a16)
2m Csop 1. G
J=_= Al7 . General formulae
P (A17)

The Fermi functiorF (r) (Eq. [8)) to any power can be in-
tegrated in any dimension in using the following general for

mula [22]:

where we have used/y = Csolp and where we have intro-
duced the effective mass

f=fy=1+kp with Kzzﬁ—g‘ceff. (A18)

00
|m,y=4n/ drFEY(r)r™ (B1)
JO
With these formulae, the energy density given by EQs] (A2) RTH1 ( ) mom\ (a)kJrl
straightforwardly reads ~Am 1+(m+1 ( )’7 5 ;
g y m+ 1 2.\ (R
2
A|p] =h(p) + ;nf(r'pL ™) 4 Ctin (Op)? withmeN, ye R+*,
p 2 00 _ k — yu
+ Vso (OP)°, (A19) (k) _ k/ 1+ (=Dfe™ ] &
f ny’ = (-1 A du Arey) 1|u%, (B2)

where we have highlighted the local terms and the binomial coefficier(fy) = m!/(kl(m—k)!). The val-

R2 ues of the coefficients that have been used for this work are
h(p) = 51 +Cop?+C3p?+2, (A20)  givenin table[(D).
Equation[[B2) is an approximation for which the tiny error

and where we have gathered the spin-orbit cun@gf)( Op)  is ~ exp(—R/a). One can observe that

and kinetic densityg% f 159 terms which lead to the definition

of the spin-orbit potentialso = — 3 %“;Cgo.

) (k=1

1 k
vy —ny = - N —ny = = ) 4-0/(B3)

Appendix B: Integrals of Fermi functions 2. Expressionsof a3D integral as 1D integrals

We give here the formulae useful to analytically integrate In this section we express the differenle, , =15, — 12
Fermi functions to some power. as a sum of 1-dimensional integrals.
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The moments of the difference betwieen two one-get at the third order ifa/Rys):
dimensional Fermi function8(x) = (1+€92) " to different

powersy,y can be integrated &s [22] @AIV y= (n —n° ) 8 s
3 v I'sat
2
+e @ _ ) (2 1/3
/7 xkAFy/,y(x)dx = akt! (nf,k) — n,(,k)) , (B4) +2 ('7,/ —ny ) (?at) AY
3
@ _ @) _ 2 2(,0 0\ (2
with AF, , = FY —FY, + <('7V n’) 3"2('7V My )) (rsat)
Making the change of variable=r — R, we can express a\4
the 3-dimensional integrd$,, = [drFY(r) as a sum of three +0 <<—) A1/3> : (B7)
1-dimensional integrals of moments of Fermi functié(s): Fsat

oo oo With rea = RysA 13 = (%rrpsat)*m. Let us notice that we
loy = 471/ . (x+ R)2FY(x)dx + 471/ (x+ R)2FY(x)dx can also obtain equation (B7) using the general forniula.(B2)

—00

-R
- 47'[/ (x4 R)2FY(x)dx, (B5) _ _ _
—o Appendix C: Analytical expression for the surface energy

where we have used the Chasles formula to get integrals over we show in this section how equatidn {B7) allows to obtain
the entire slab- -Space. Assumlng that the bulk is reachdwbin t an ana|yt|ca| formula for the symmetnc |ocE!;- and non-
"negative” region, that i (x < —R) = 1, we can express the |ocal ENL surface energy which lead to equatiofis| (15)] (16)
difference of two Fermi functions to different powers @) and m) We also detail the gauss|an approx|ma‘[|ons as
a function of 1-dimensional integrals.
NV’V_47TR2/ AFVV )dx+87TR/ XAF,. y( dx 1. Theisoscalar local energy

e, The surface local energgt only depends on the density
+ 4”/700 X“DFy y(X)dx. (B6) profile p(r) = psaF (1) throughh(p) = 3, ¢,p" (see Eq.[(b)

for the values o, cy), such that

Because of the previous approximation, we have spuriously . h(psat)

inserted a bulk part in EqL_(B6), but with the very tiny error EL = / dr {h(p) - —Satp} = ZCypg’atAly’l. (C1)

~ (exp(—)/R/a) —exp(—yR/a)). Computing Eq.[(BB) with Psat v

Eg. (B4) and expanding the radius param&es a series of Computing with the equatiof (B7) for thevalues ofh(p)

(a/Rys) until the third order according to Eq.1(8), we finally (y=5/3, 8/3, 2 and(a + 2)), we obtain

3\ %3 a
Eé_ 3{ m ( ) _pszzét3 {’75/3 + Kpsatrlg/g,} Copsat + CSPgaJtrlna+2} r_A2/3
sat

h’ 32/3(  m 1w T a\* /s
{% 5 _psat |:r75/3+ KPsatng/g, 6 msa +C, pgaJtr rla+2_ E @ A /
R 33 23] (2 21 2) 21 (0)
{_m N 5psat |:r75/3_ —05/3+Kpsat ng/g 3 ng/g
21 a\? a\*
+ = Copsat+C3P§aTl nazlz - —’75{(22 — ) +o((—) A 5 (C2)
3 I'sat I'sat
|
where the values ot;f,k) are given in tablé€Jl. Using((B3) 2. Thesymmetric non-local energy
which gives a relation betweeqﬁ;)3 andné';)s, we get the local
energyEL, as a function Oﬁé‘;)s and néklz only (k= 0,1,2) The non-local ene_zrgﬁg“- is the integration of a quadratic
(Egs. [15),[(1B) and(19)). function in the density gradient such that we can put it on the

form Eycy(Dp)sz*2 (see Eq.[(14) for the values ¢f cy).
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Expressing the Fermi gradient function as follows as 1-dimensional integrals in order to obtain the isovestor

Op(r) = psatJF (r) ; OF(r) = é(Fz(r) — F(r)) ,(C3) tive interaction parameters. As for the symmetric energy, w

make the variable change=r — Ry:

we can write
e~ [y s 0o .
! Eo=d4ne/ | dx(x+ RM)Zexp(—ﬁ)
:ichy /'dr[(FerZ_FVJrl)_(Fy+1_Fy):| (0}
az yMsat X2
=5 CyPLat {AI y+2,y+1— Al y+1,y] : (C4)
y

Fory > 1, using the recursion relation (B3), we have

1
'7,(,3)2 - '7,(,3)1— (’7,(,2)1— '7;(/0>) = D the second integral in Eq_{C8) is negligible with an accyrac
Yy ~ exp(—R§;/(202)). Then integrating the gaussian moments
(1) (1) (1) (1Y) _ (0) i
i, —nit, - (’7y+1 —n} ) = oD (ny T 1) ’ straightforwardly lead to
(2 (2 (2 (2)\ _ (1) (0)
Nyr2 =Ny~ (’7V+1_’7v ) “Y+D (’7v +ny ) )

(C5) Ec =2(2m* %0/ (R +d?), (C9)

which allows simplifying the expression &'- once we have
computed Eq[{04) with Eq._(B7):

NL 1 function of the energy density second derivatives (see sec-
Es -2 z oyplat” viy+ 1 tion[IIB). To haveEg as a function of the mass, we just need
, to express the gaussian maximum positityn as a function
of A. If we assum =R, it reads, using EqLI8):
{31A2/3+6[n§°)+1} (i) AL/3 Ru 9 Eql18)
sat I'sat
3
., o _ T2
colnen? -5 () } Es = 2(2m° 0e/rly

2 2 4
A2/3+07_ﬁ<i> 40 (3) A2
rsat 3 rsat I’o

a \4
+0 ((—) A1/3>. (C6)
I'sat

(C10)
Looking at the definition of the non-local energ{" Eq. (13),
one can see that there are tefth$~* = (14 kp)~L. In order
to have an expression in the form of Hg.1C6), we n_eed to mak
a Taylor expansion, such that! = 5;_o(—1)!(kp)". Then
we can straightforwardly compute the non-local energy with'

Eq. (C8) (withy =1, 2,i + 2 andi + 3) to obtain Eqs.[{15),

Fn the general case, if we defiddr = Ry — R, we find addi-
tional terms, especially curvature:

(18) and [(ZD). o
Ec =2(2m)*? 012,
2 2
3. Theisovector energy A2/3+2 Al/3 o’ ﬁ <ﬁ) + (ﬁ)
I'sat rgat 3 \rsat I'sat
In this section we develop the 3-dimensional gaus&iér) 272 AR 4

integral _arania A*l/3+0 a) a3

. 3 Trsat \Io lo

Eg =4 / dre 24 (1), (C11)
0

— 47'[/0oo drr.e/ exp(—(r_ziaR'zw)z) (C7)

face energy as a function of the nucleus mass and of the effec-

Since we are interested in the surface energy, we assume that
the gaussiaff (r) is zero at the center of the nucleus, such that

where we have used the expression of the variance as a
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