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François Aymard,1 Francesca Gulminelli,1 and Jérôme Margueron2
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The problem of the determination of the nuclear surface and surface symmetry energy is addressed in the
framework of the Extended Thomas Fermi (ETF) approximationusing Skyrme functionals. We propose an
analytical model for the density profiles with variationally determined diffuseness parameters. For the case
of symmetric nuclei, the resulting ETF functional can be exactly integrated, leading to an analytical formula
expressing the surface energy as a function of the couplingsof the energy functional. The importance of non-
local terms is stressed, which cannot be simply deduced fromthe local part of the functional. In the case of
asymmetric nuclei, we propose an approximate expression for the diffuseness and the surface energy. These
quantities are analytically related to the parameters of the energy functional. In particular, the influence of the
different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy
components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our
analytical solution of the ETF integral improves over previous models and leads to a precision better than
200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.

I. INTRODUCTION

Skyrme functionals have been widely used to describe nu-
clear structure properties, with different level of sophistica-
tion in the many-body treatment, from the simplest Thomas-
Fermi [1] to modern multi-reference calculations [2]. The
most basic observable accessible to the functional treatment
is given by nuclear mass, allowing the analysis of the differ-
ent mass components in terms of bulk and surface properties,
as well as isovector and isoscalar properties. The theoretical
prediction of nuclear mass is not only important in itself, but it
is also a fundamental tool to optimize the different functional
forms and associated parameters, for an increasing predictive
power of density functional calculations [3]. Indeed mass pre-
dictions from microcopic density functionals nowadays starts
to equalize the most precise phenomenological mass formulas
available in the literature[4–6].

For practical applications in nuclear structure or nuclear
astrophysics problems, different parametrizations of nuclear
masses fitted on density functional calculations with Skyrme
forces have been proposed [7–10]. The limitation of these
works is that the different coefficients are not analytically cal-
culated but they result from the fit to the numerically deter-
mined nuclear masses. As a consequence, the fit has to be
performed again each time that the functional is improved by
adding further constraints from the rapidly improving experi-
mental data. Moreover, the absence of an analytical link be-
tween the Skyrme parameters and the coefficients of the mass
formula implies that it is difficult to make an unambiguous
correlation between the different parts of the mass functional
and the physical properties of the effective interaction. For
these reasons, it appears interesting to search for an analytical
expression of the mass formula coefficients, directly linked to
the functional form and parameters of the Skyrme interaction.
The derivation of such an analytical formula is the purpose of
this paper.

An especially appealing formalism when seeking for an-
alytical expressions is the semi-classical Extended-Thomas-

Fermi (ETF) approach, which is based on an expansion in
powers ofh̄ of the energy functional [9, 12–15]. The advan-
tage of the ETF approximation is that the non-local terms in
the energy density functional are entirely replaced by local
gradients. As a consequence, the energy functional solely de-
pends on the local particle densities. Thus, the energy of any
arbitrary nuclear configuration can be calculated if the neu-
tron and proton density profilesρn andρp are given through
a parametrized form. These density profiles are those of the
ground state, or of any arbitrary excited state. A large number
of configurations can therefore be explored, and this appealing
property of ETF has been used to study nuclear configurations
in dilute stellar matter contributing to the sub-saturation finite
temperature equation of state [17–19]. On the other side, the
well known limitation of ETF is that only the smooth part of
the nuclear mass can be addressed, and shell effects have to be
added on top, for instance through the well known Strutinsky
integral theorem[11] .

In this paper, we will consider an ETF expansion up to the
second̄h2-order, and limit ourselves to the smooth part of the
mass functional.

The plan of the paper is as follows.
Section II addresses the problem of symmetric nuclei. A

single density profile is supposed for protons and neutrons,
and symmetry breaking effects are included by accounting
for the Coulomb modification of the bulk compressibility. In
this simplified case, the ETF integrals can be analytically in-
tegrated leading to a very transparent form for the surface and
curvature terms of the nuclear energy (section II A) and of
the surface diffuseness (section II B) . In this same sectionwe
also retrive (section II C) that in a one-dimensional geometry
the local and non-local terms are related, and the surface ten-
sion can be consequently be expressed as a function of the
local terms only [12]. This means that the surface tension
solely depends on the local components of the energy density
functional, that is the bulk properties of nuclear matter, and
it does not depend on the non-local gradient and spin-orbit
terms. This remarkable property however breaks down in
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spherical symmetry, and any, even slight approximation to the
exact variational profile, for instance the use of parametrized
densities, increases the difference between local and non-local
contributions to the surface energy. As a consequence, using
parametrized density profiles, the contribution of non-local
terms has to be carefully calculated independently of the local
part, and the two separate contributions must be summed up
to obtain the surface energy and the surface tension.

The more general problem of isospin asymmetric nuclei is
studied in section III. We first demonstrate in section III A that
a large part of the isospin dependence can be accounted for,
if the asymmetry dependence of the saturation density is in-
troduced in the nuclear bulk. The residual surface symmetry
part is then defined in terms of the isovector density. This en-
ergy density term is not analytically integrable, meaning that
approximations have to be performed. We propose in sec-
tion III B two different approximations and critically discuss
their validity in comparison both to numerical integrationof
the ETF functional, and to complete Hartree-Fock (HF) cal-
culations using the same functional (section III B 3). The first
approximation, inspired from Ref. [16], consists in neglect-
ing the neutron skin (section III B 1). Surprisingly enough,
this very crude approximation leads to an overestimation of
Hartree-Fock energies of medium-heavy and heavy nuclei of
no more than 200-400 keV/nucleon even for the most extreme
dripline nuclei. Again, such an accuracy can be obtained only
if both local and non-local terms in the energy functional are
separately calculated, meaning that the symmetry energy does
not only depend on bulk nuclear matter properties. This might
be at the origin of the well known ambiguities in the extraction
of the symmetry energy from density functional calculations
of finite nuclear properties [10, 36, 42, 43]. A better accuracy
for neutron rich nuclei is obtained if isospin fluctuations are
accounted for, and in section III B 2 the approximation is made
that the surface symmetry energy density is strongly peakedat
the nuclear surface.

Finally the complete mass formula is calculated for differ-
ent representative Skyrme functionals in section IV. The qual-
itative behavior of the different energy components, that is the
surface, curvature and higher order terms decomposed into
isovector and isoscalar parts, and local and non-local parts,
is discussed. The different analytical expressions for themass
functional are explicitly demonstrated in the appendix andcan
be readily used with any Skyrme interaction. The paper is
summarized in section V, and conclusions are given.

II. SYMMETRIC NUCLEI

Let us first consider a locally symmetric matter distribu-
tion, that is characterized by a single density profile whichis
supposed to be identical for protons and neutrons. This ide-
alized situation is not completely realistic even inN = Z nu-
clei because of isospin symmetry breaking due to Coulomb.
However, it was shown [19] that a great part of the Coulomb
isospin symmetry breaking effects can be included simply ac-
counting for the Coulomb modification of the bulk compress-
ibility [26, 27, 35]. This single-density model leads to an ex-

cellent reproduction of the microscopically calculated aswell
as experimentally measured magicN = Z nuclei over the pe-
riodic table [19, 20].

The idealized case of a common density profile for protons
and neutrons has the advantage of leading to exact formu-
las for the nuclear binding energy, as we explicitly show in
this section. As we will see, this allows disentangling in a
non-ambiguous way bulk, surface, curvature as well as higher
order terms, and to determine exact relations connecting the
different energy components to the parameters of the energy
functional.

Neglecting spin-gradient terms, the ETF Skyrme energy
density reads,

H [ρ ] = h(ρ)+
h̄2

2m∗(ρ)
τ2+

(

Cf in −
C2

so

h̄2 ρm∗(ρ)
)

(∇∇∇ρ)2 .

(1)

In this expression,m∗(ρ) is the density dependent effective
mass,m/m∗ = 1+ 2m

h̄2 Ce f fρ , the kinetic energy density con-
sists of a zero order Thomas-Fermi termτ0 as well as of a
second order local and non-local correctionτ2 = τ l

2+ τnl
2 :

τ0 =
3
5

(

3π2

2

)2/3

ρ5/3 (2)

τ l
2 =

1
36

(∇∇∇ρ)2

ρ
+

1
3

∆ρ (3)

τnl
2 =

1
6

∇∇∇ρ∇∇∇ f
f

+
1
6

ρ
∆ f
f
−

1
12

ρ
(

∇∇∇ f
f

)2

, (4)

with f = m/m∗. The local terms are given by:

h(ρ) =
h̄2

2m∗(ρ)
τ0+C0ρ2+C3ρα+2, (5)

and gradient terms arise both from the non-local and the spin-
orbit part of the Skyrme functional.(C0,C3,Ce f f ,Cf in,Cso,α)
are Skyrme parameters, given in appendix A. Spin-gradient
terms are not considered in the applications of this paper, but
their inclusion is straightforward. Full expressions are given
in appendix A. We will also limit ourselves to spherical sym-
metry throughout the paper.

To compute Eq. (1), the density profileρ(r) is required.
The most common choice in the literature [20] consists in tak-
ing a Fermi function. In particular, it was shown [19] that a
Fermi function succeeds in well reproducing the density pro-
files and the corresponding energy calculated with the spheri-
cal HF model. The density profile reads,

ρ(r) = ρsatF(r) ; F(r) =
(

1+e(r−R)/a
)−1

. (6)

In this equation,ρsat is the saturation density of symmetric
nuclear matter, andR is the radius parameter related to the
particle number of the nucleus

A≃
4
3

πρsatR
3
[

1+π2
( a

R

)2
]

. (7)

Let us observe that Eq. (7) is a finite expansion and does not
require any assumption except that e−R/a ≪ 1, that isa . R
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[22]. If, in addition, we assumea≪R, we can invert equation
(7) to get at the fourth order in(a/R)

R= RHS

[

1−
π2

3

(

a
RHS

)2

+O

(

(

a
RHS

)4
)]

, (8)

whereRHS = A1/3rsat is the equivalent homogeneous sphere

radius, andrsat =
(

4
3πρsat

)−1/3
is the mean radius per nu-

cleon.
The two other parameters entering Eq. (6) are the diffuse-

nessa of the density profile, which is analytically derived in
section II B, and the saturation densityρsat which corresponds
to the equilibrium density of homogeneous infinite symmetric
matter.

A. Ground state energy

Integrating in space Eq. (1) computed with the parametrized
density profile given by Eq. (6), allows obtaining the total en-
ergyE of a nucleus of a massA defined by Eq. (7):

E =

∫ ∞

0
drH [ρ(r)]. (9)

Within the nucleus total binding energy, it is interesting to dis-
tinguish the bulk, surface, and curvature components corre-
sponding to different functional dependences on the nuclear
size [21].

The bulk energyEb is the energy of a finite volume of nu-
clear matter. It corresponds to the energy that the nucleus
would have without finite-size effects, defined by:

Eb = HsatVHS= λsatA, (10)

whereVHS = 4/3πR3
HS = A/ρsat is the equivalent homoge-

neous sphere volume andλsat is the energy per particle at sat-
uration:

λsat =
H

ρ

∣

∣

∣

∣

ρsat

=Ckin
m

m∗
sat

ρ2/3
sat +C0ρsat+C3ρα+1

sat , (11)

with Ckin = 3
5h̄2/(2m)(3π2/2)2/3 andm∗

sat = m∗(ρsat). The
finite-size correction to the bulk energyEs is defined as the
total energy after the bulk is removed, that is

Es =

∫

drH [ρ(r)]−HsatVHS

= 4π
∫ ∞

0
dr
{

H [ρ(r)]−λsatρ(r)
}

r2. (12)

This finite size contributionEs will be called the surface en-
ergy in the following. Let us notice that if we have properly
removed the bulk energy part by Eq. (10), the surface energy
should scale withA with a dependence slower than linear, but
the dependence can be different fromA2/3 because of curva-
ture and higher order terms, see also ref .[21]. We will see in

the following that it is indeed the case in spherical symmetry.
In the energy densityH [ρ ] Eq. (1), we can distinguish the
non-local terms which depend on the density derivatives and
are pure finite-size effects, from the local energy parth(ρ)
which only depends on the equation of state and on the density
profile. We then write the surface energy asEs = EL

s +ENL
s ,

with EL
s the local part andENL

s the non-local one [64]:

EL
s = 4π

∫ ∞

0
dr

{

h[ρ(r)]−
h(ρsat)

ρsat
ρ(r)

}

r2, (13)

ENL
s = 4π

∫ ∞

0
dr

{

h̄2τ2

2m∗
+

(

Cf in −
C2

so

h̄2 ρm∗

)

(∇ρ)2
}

r2.

(14)

To obtain Eq. (14), we have changed the Laplace deriva-
tives into gradients in the kinetic part, see Eqs. (A16), in-
tegrating by parts. Making a simple variable change, the
originally 3-dimensional integral can be turned into the sum
of three 1-dimensional integrals (see appendix B). Then a
very accurate approximation, that is with an error less than
(

exp(−5a/3R)− exp(−a/R)
)

, allows to analytically inte-
grate the differences of Fermi functions, such that the local
and non-local terms can be written as a function of the effec-
tive interaction parameters as (calculation details are given in
appendix C):

EL
s = C

L
sur f

a(A)
rsat

A2/3

+ C
L
curv

(

a(A)
rsat

)2

A1/3

+ C
L
ind

(

a(A)
rsat

)3

+ o

(

(

a(A)
rsat

)4

A−1/3

)

; (15)

ENL
s =

1
a2(A)

C
NL
sur f

a(A)
rsat

A2/3

+
1

a2(A)
C

NL
curv

(

a(A)
rsat

)2

A1/3

+
1

a2(A)
C

NL
ind

(

a(A)
rsat

)3

+ o

(

(

a(A)
rsat

)4

A−1/3

)

, (16)

where the coefficientsC L(NL)
sur f(curv)(ind) depend on the sat-

uration density ρsat and on the Skyrme parameters
C0,C3,Ce f f ,α,Cf in,Cso, and where we have anticipated the
(slight) A-dependence of the diffuseness in the most general
case (see section II B).

The coefficientsC L
i andC NL

i corresponding to the local and
non-local energy components read (see appendix C 1):
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C
L
sur f = 3

{

Ckinρ2/3
sat

[

η(0)
5/3

m
m∗

sat
−

3
5

δmsat

]

−C0ρsat+C3ρα+1
sat η(0)

α+2

}

, (17)

C
L
curv = 6

{

Ckinρ2/3
sat

[(

η(1)
5/3−

π2

6

)

m
m∗

sat
−

3
5

η(0)
5/3δmsat

]

+C3ρα+1
sat

(

η(1)
α+2−

π2

6

)}

, (18)

C
L
ind = 3

{

Ckinρ2/3
sat

[(

η(2)
5/3−

2π2

3
η(0)

5/3

)

m
m∗

sat
−

2
5

(

3η(1)
5/3−π2

)

δmsat

]

+
π2

3
C0ρsat+C3ρα+1

sat

(

η(2)
α+2−

2π2

3
η(0)

α+2

)}

,(19)

C
NL
sur f = 3

{

h̄2

2m
1
6

(

1
12

−
11
36

δmsat−
1
2

imax

∑
i=0

(−1)i (δmsat)
i+2

(i +3)(i +4)

)

+
1
6

Cf inρsat+Vsoρ2
sat

imax

∑
i=0

(−1)i (δmsat)
i

(i +3)(i +4)

}

, (20)

C
NL
curv = 6

{

h̄2

2m
1
6

(

1
12

−
1
2

imax

∑
i=0

(−1)i (δmsat)
i+2

(i +3)(i +4)

[

η(0)
i+2+1

]

)

+Vsoρ2
sat

imax

∑
i=0

(−1)i (δmsat)
i

(i +3)(i +4)

[

η(0)
i+3+1

]

}

, (21)

C
NL
ind = 6

{

h̄2

2m
1
6

(

−
1
12

π2

6
+

11
36

(

1+
π2

6

)

δmsat−
1
2

imax

∑
i=0

(−1)i (δmsat)
i+2

(i +3)(i +4)

[

η(1)
i+2+η(0)

i+2−
π2

3

]

)

−

(

1+
π2

6

)

Cf inρsat+6Vsoρ2
sat

imax

∑
i=0

(−1)i (δmsat)
i

(i +3)(i +4)

[

η(1)
i+3+η(0)

i+3−
π2

3

]

}

. (22)

whereδmsat = (m−m∗
sat)/m∗

sat, Vso= −mC2
so/h̄2, and where

we have introduced the coefficientsη(k)
γ defined by equa-

tion (B2). Their numerical values are given in the same
appendix. In order to have an analytical expression, we
have made in eqs. (20)-(22) a Taylor expansion of the effec-
tive mass inversef−1 = ∑∞

i=0(−1)i(δm)i . This expansion is
rapidly convergent: a truncation atimax= 7 produces an error
∼ 1% at the highest possible densityρsat = 0.16 fm−3 in the
case of the SLy4 interaction.

Equations (15) and (16) show that the dominant surface ef-
fect in the symmetric nucleus energetics is, as expected, a term
∝ A2/3. As it is well known, this term fully exhausts the finite-
size effects given by the presence of a nuclear surface in the
one-dimensional case of a semi-infinite slab geometry [8, 12].
Indeed in this case we have, see appendix B 2,

Eslab
s =

∫ +∞

−∞
dx
{

H [ρ(x)]−λsatρ(x)
}

. (23)

The evaluation of the integral Eq. (23) leads to the same∝
A2/3 term as in the spherical geometry, with a modified form
factor 4πR2

HS:

σ = σL +σNL =

(

C
L
sur f +

1
a2C

NL
sur f

)

a

4πr3
sat

. (24)

whereσ = limA→∞ Eslab
s /A2/3 is the slab surface tension. The

form factor difference between the surface energy of the slab

and the one in spherical symmetry signs the difference of ge-
ometry, and the spherical surface energy is the surface area
multiplied by the energy per unit area of the infinite tangent
plane. Let us notice that since the mass cannot be defined in
the semi-infinite medium, the diffuseness in Eq. (24) is a con-
stant.

In a three-dimensional geometry, the existence of a surface
leads to additional finite-size terms, even in the spherically
symmetric case, as shown by eqs. (15), (16). The terms pro-
portional toA1/3 are the so-called curvature terms which cor-
rect the surface energy with respect to the slab tangent limit. It
is interesting to notice that we also haveA-independent terms,
which are rarely accounted for in the literature but turn outto
be important for light nuclei [21]. As it can be seen in Eq. (8),
higher order terms are of the order∝ A−1/3 and are systemat-
ically neglected in this work. This Taylor expansion is known
in the literature as the leptodermous expansion [21, 38]. It
is interesting to observe that both local and non-local plane
surface, curvature, and mass independent energy components
arise even if no explicit gradient term is included in the func-
tional. As a consequence, surface properties are determined
by a complex interplay between equation of state properties
and specific finite nuclei properties like spin-orbit and finite
range. Using the definitions of the energy per particle at satu-
rationλsat = h/ρ |ρsat

= ∂h/∂ρ |ρsat
and the nuclear symmet-

ric matter incompressibilityKsat= 9ρ2
sat∂ 2(h/ρ)/∂ρ2|ρsat, we

can express the local energy eqs. (17), (18) and (19) as a func-
tion of nuclear matter properties only, using the followingex-
pressions:
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α =−
Ksat+9λsat−Ckinρ2/3

sat

(

m
m∗

sat
+3δmsat

)

9
[

λsat−Ckinρ2/3
sat

(

m
3m∗

sat
− δmsat

)] , (25)

C0ρsat =
λsatKsat−Ckinρ2/3

sat Ksat
m

m∗
sat

−Ckinρ2/3
sat λsat

(

4 m
m∗

sat
+21δmsat

)

−9C2
kinρ4/3

sat δmsat

Ksat+9λsat−Ckinρ2/3
sat

(

m
m∗

sat
+3δmsat

) , (26)

C3ρα+1
sat =

9
[

λsat−Ckinρ2/3
sat

(

m
3m∗

sat
− δmsat

)]2

Ksat+9λsat−Ckinρ2/3
sat

(

m
m∗

sat
+3δmsat

) . (27)

The expression of the coefficientsC
(N)L
i greatly simplifies

if we consider a simplistic Zamick-type interaction, withα =
1 andm= m∗:

C
L
sur f =

(

9
5

η(0)
5/3+

3
2

)

eF
sat−

3
2

λsat, (28)

C
NL
sur f =

1
24

h̄
2m

+
1
2

Cf inρsat, , (29)

where we have introduced the Fermi energy per nucleon at

saturationeF
sat =

5
3Ckinρ2/3

sat .
We can see that even in this oversimplified model the nu-

clear surface properties cannot be simply reduced to EoS pa-
rameters. We can also gather the local and non-local terms
in order to classify finite-size effects according to the rank of
the Taylor expansion. Thus we introduce the surfaceEsur f,
curvatureEcurv andA-independentEind energy components:

Esur f =

[

C
L
sur f +

1
a2(A)

C
NL
sur f

]

a(A)
rsat

A2/3, (30)

Ecurv =

[

C
L
curv+

1
a2(A)

C
NL
curv

](

a(A)
rsat

)2

A1/3, (31)

Eind =

[

C
L
ind +

1
a2(A)

C
NL
ind

](

a(A)
rsat

)3

. (32)

We can see that all terms are multiplied by a power of the
diffuseness except the non-local curvature part which is not.
The role of the diffuseness on the surface properties thus de-
pends on the rank of the Taylor expansion (surface, curva-
ture, independent,...) and is not the same for the local or the
non-local part. The functional difference between the local
and non-local terms comes from the squared density gradi-
ent appearing in the non-local energy Eq. (14). Globally, if
the diffuseness is high, the local energy dominates over the
non-local one, see eqs. (30)-(32). This is easy to understand:
in the limit of a purely local energy functional, the optimal
configuration corresponds to a homogeneous hard sphere at
saturation density, given bya = 0. The existence of a finite
diffuseness for atomic nuclei is due to the presence of non-
local terms in the functional, because of both explicit gradient
interactions and of quantum effects on the kinetic energy den-
sity. Let us notice that both effects are present even in the
simplified eqs. (28), (29).

B. Analytical expression for the diffuseness

The ground state energy of this model for symmetric nu-
clei is given by the minimization of the energy per nucleon
δ (E/A) = 0 with the constraint of a given mass numberA.
We have seen in section II A that the only unconstrained pa-
rameter of the model is the diffuseness parametera. Though
it does not play any role in the bulk energy, it is an essential
ingredient for the surface energyEs given by eqs. (15), (16).
The diffuseness parameter can therefore be obtained from the
variational equation [12]:

∂Es

∂a
= 0. (33)

In principle, one should also add the surface Coulomb energy
into Es, which would change the variational equation. How-
ever, the resulting correction ona is very small [20].

Equation (33) turns out to be particularly simple in the one-
dimensional case of semi-infinite matter, or equivalently ne-
glecting curvature andA-independent terms when consider-
ing nuclei. Indeed, in this case, Eq. (24) leads to an analytical
solution, already obtained in Ref. [12]:

a=

√

√

√

√

C NL
sur f

C L
sur f

. (34)

This equation shows that the slab diffusenessa is determined
by the balance between the local terms, which favour low dif-
fuseness values corresponding to a hard sphere of matter at
saturation density; and non-local terms which favour a large
diffuseness corresponding to matter close to uniformity.

The complete spherical case leads to the following 4th de-
gree polynomial equation:

3 C
L
ind

(

a
rsat

)4

+2C
L
curvA

1/3
(

a
rsat

)3

(35)

+

(

C
L
sur fA

2/3+
1

r2
sat

C
NL
ind

)(

a
rsat

)2

−
1

r2
sat

C
NL
sur fA

2/3 = 0.

which has to be solved numerically.
Notice that the coefficientC NL

curv does not contribute to this
equation since, as already mentioned, it does not depend ona,
cf. Eq.(31). The solution of this equation, as well as the slab



6

0.40

0.45

0.50

0.55
a
 (

fm
)

 −13

 −12

 −11

 40  80  120  160  200

E
/A

 (
M

eV
)

A

Ref. [20]

eq. (34)
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FIG. 1. (Color online) Diffuseness (upper panel) and energy
per nucleon (lower panel) of symmetric nuclei as a function of the
mass number. Full red lines: calculations using the slab diffuseness
Eq. (34). Dashed blue lines: calculations using the spherical dif-
fuseness Eq. (35). Dash-dotted green lines: calculations using the
diffuseness fitted from HF density profiles [20]. Star symbols: full
Hartree-Fock calculations in spherical symmetry.

approximation Eq. (34), are shown in the case of the SLy4
interaction in the upper panel of Figure 1. We can see that
the mass dependence of the diffuseness parametera in the
general case is very small. This agrees with the findings of
Ref. [20] (green dash-dotted lines), where the diffusenesspa-
rameter was extracted from a fit of Hartree-Fock density pro-
files. Considering only the surface term we geta≈ 0.45 fm,
while we can observe that taking into account terms beyond
surface (curvature and mass independent), the diffusenessis
shifted to lower values of the order ofa≈ 0.4 fm. This rela-
tively large effect is due to the fact that the non-local curva-
ture term does not contribute to the diffuseness (see Eq. (31)).
Therefore the effect of the curvature energy is to increase the
local component, which tends to favor a low diffuseness.

The energy per nucleon is shown in the lower panel of
Fig. 1, for the three models considered in the upper panel,
and in comparison to HF calculations. We can see from this
figure that the variational approach systematically produces
more binding than the use of a fitted value for the diffuseness,
as we could have anticipated. Indeed the value of Ref. [20]
was obtained from a fit of the density, which does not guaran-

tee a minimal energy. Less expected is the fact that the ener-
gies calculated with the three different choices for the diffuse-
ness are very close, though the value of the diffuseness are
quite different. Specifically, implementing the differentdif-
fusenesses into Eq. (9), the resulting total energy reproduces
the Hartree-Fock nuclear energies with very similar accuracy.

We can then conclude that introducing higher order terms
in the variational derivation of the diffuseness, as it has been
done in equation (35), does not significantly improve the pre-
dictive power of the model. Therefore we will preferentially
use the simpler expression of the slab diffuseness given by
equation (34). This choice is made in all the following fig-
ures, unless explicitly specified.

C. Decomposition of the surface energy

 0

 1
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 Es    

 Esurf

Ecurv

Eind  

FIG. 2. (Color online) Numerical (black circles) and analytical
(full red line) surface energy per nucleon (see text), and its analytical
decomposition into plane surface (∝ A2/3, dashed-dotted blue line),
curvature (∝ A1/3, dotted green line), and mass independent (double
dotted black line) components (eqs (30), (31), (32)) of symmetric
nuclei, as a function of the mass number.

In this section, we study the functional behavior of the an-
alytical formulas of section II B. For these applications, we
keep on focussing on a specific Skyrme interaction, namely
SLy4 [23].

In order to verify the accuracy of the analytical expression
for the surface energyEs, we compare in Figure 2 the sum of
eqs. (30)-(32) with the numerical integration of Eq. (12), as
a function of the nucleus mass. We can see that the analytical
expressions (full red line) very well reproduce the numerical
values ofEs (black circles). An error smaller than 50 keV per
nucleon is obtained for the lightest considered nuclei, which
rapidly vanishes with increasing mass. The deviation for light
nuclei comes from the approximation in the relation between
the radiusR and the massA. Indeed, the expansion of the ra-
dius parameter Eq. (8) leads to an expansion up toA1/3(a/rsat)

for Es. The missing terms∝ A−1/3(a/rsat)
4 rapidly vanish

with A, explaining the excellent reproduction of the exact nu-
merical integral.
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Figure 2 also shows the plane surface, curvature and
A-independent energy per nucleon components defined in
eqs. (30), (31) and (32). Comparing the total surface energy
Es (full red line) with Esur f (dashed-dotted blue line), we can
see that theA2/3 dependence dominates over the whole mass
table. However, the curvature part (dotted green line), which
represents the energetic cost of a spherical geometry, cannot
be neglected even for heavy nuclei, impacting the total en-
ergy of& 300 keV per nucleon for the heaviest nuclei. For
lighter nuclei (A. 100), the curvature contribution to the to-
tal finite-size effects is of the order of∼ 20%. Though theA-
independent energy (black dotted line) can be neglected from
A & 100 for whichEind/A . 50 keV, it should be taken into
account for light nuclei if high accuracy is requested. Indeed,
for A = 40, theA-independent term contributes∼ 5% of the
total surface energy.
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FIG. 3. (Color online) Surface energy per nucleon of symmetric
nuclei using different choices for the diffusivity parameter a. Panel
a): variational diffuseness including finite size effects from Eq.(35);
panel b): variational diffuseness neglecting curvature terms from
Eq.(34); panel c): diffuseness fitted from HF calculations in Ref.[20]
a = 0.54 fm. Red lines: total surface energy per nucleon. Blue
(green) lines: local (non-local) part multiplied by two.

We now turn to the decomposition of the surface energy
into a local and a non-local component. It was shown in
Ref. [12] that the local and non-local terms are expected to
be exactly equal in the case of symmetric matter in a semi-
infinite slab geometry. This result comes from the fact that
the one-dimensional Euler-Lagrange variational equationcan
be solved by quadrature [24]. As a consequence, it is easy
to show that if the density profile is the exact solution of the
Euler-Lagrange variational equation, the first moment of the
Euler-Lagrange equation implies that the contribution of the
local term in the surface energy density is at each point of
space equal to the contribution of the non-local term, lead-
ing to the global equality between the local and non-local slab
surface tensions:

σL = σNL. (36)

Extended to finite nuclei, this result would imply that only
the local properties of the interaction (that is: the equation

of state) are needed to predict the surface properties of finite
nuclei.

In this paper, we do not solve the Euler-Lagrange equation
since we impose a given density profile, but we do use a varia-
tional approach in minimising the energy to obtain the diffuse-
ness parameter. Therefore, it is easy to show that our model
verifies the previous theorem in the one-dimensional case. In-
deed, using the slab diffuseness Eq. (34), equation (24) reads,

σL = σNL = lim
A→∞

1
2

Eslab
s

A2/3
=

1

4πr3
sat

√

C L
sur fC

NL
sur f . (37)

At first sight this result might look surprising since we havere-
duced the full variational problem to the variation of a single
variable, which represents a very poor variational approach.
Equality (37) simply means that verifying the Euler-Lagrange
first moment is equivalent to minimising the energy with re-
spect to a single free parameter. That is, the density derivative
is well described by the same parameter, here the diffuseness
a, as the density itself.

Unfortunately, this elegant theorem cannot be extended to
the case of a spherical geometry. Indeed, it is easy to show
that the integrated Euler-Lagrange first moment leads to [25]

EL
s −ENL

s = 4
∫ ∞

0
dr
∫ r

∞
dr ′

εNL(r ′)
r ′

. (38)

The addition of this non-zero integral to the local energy isdue
to the gradient part (∝ 1/r) of the spherical Laplacien, which
comes from the difference between the plane and the spheri-
cal geometry, that is the spatial curvature. Eq. (38) shows that
in a three-dimensional geometry the equality between the lo-
cal and non-local terms is violated for all components of the
surface energy, including the term∝ A2/3.

The left panel of Figure 3 displays the decomposition of the
surface energy between local (dashed-dotted blue line) and
non-local (dotted green line) components, when the diffuse-
ness of the density profile is consistently obtained from the
numerical solution of the variational equation Eq. (35). We
can see that the two terms are indeed different. This differ-
ence is however small, and the non-local energy only slightly
dominates over the local one. This difference is amplified if
the ansatz for the density profile deviates from the variational
one. As an example, the central panel in Figure 3 shows the
surface energy obtained if the simpler expression Eq. (34) for
the diffuseness is employed. The diffuseness extracted from
a numerical fit of Hartree-Fock density profiles is employed
following [20] in the right panel. We can see that the dif-
ference between local and non-local terms is increased as we
consider density profiles increasingly deviating from the exact
variational result.

As we have already remarked, a higher diffusivity (from a)
to c)) trivially leads to a globally higher surface energy. More
interesting, the increased deviation from the exact variational
result from a) to c) leads to a considerable increase of the local
energy over the non-local one. This is a direct consequence of
Eqs. (30)-(32).

From Eq. (38), it is clear that the degree of violation of
equality (36) will depend on the functional, as well as on
the variational model. This point is illustrated in Figure 4,
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FIG. 4. (Color online) Hartree-Fock calculations. Surfaceen-
ergy per nucleon (red stars) and its local (blue circles) andnon-local
(green squares) components multiplied by 2, for symmetric nuclei, as
a function of the mass number. Left (right) panel: Coulomb energy
excluded (included).

which shows again the decomposition of the surface energy
Es into local (blue circles) and non-local parts (green squares),
calculated numerically from spherical Hartree-Fock calcula-
tions. In the calculations presented in the left panel the
Coulomb energy, which breaks the equalityEL

s = ENL
s even in

one-dimensional matter [25], is artificially switched off.We
can see that the Euler-Lagrange result in the slab geometry
Eq. (36) is reasonably well verified within 10%, especially for
medium-heavy nucleiA & 90. This shows that the approxi-
mate equality between local and non-local terms is not limited
to the ETF variational principle, but it is also verified by the
Hartree-Fock variational solution. However, if the Coulomb
interaction is included (right panel), the self-consistent modi-
fication of the Hartree-Fock density profile due to Coulomb is
sufficient to lead to a strong violation of the equality between
local and non-local terms, going up to 50%.

This discussion shows that the exact shape of the density
profile, and in particular the exact value of the diffusenesspa-
rameter, are not important for the determination of the global
surface energy, but are crucial for a correct separation of local
and non-local components. In practice it is very difficult toex-
tract precisely the diffusivity coefficient from theory or experi-
ment: as we have seen in Fig. 1, the diffuseness extracted from
the Hartree-Fock variational density profile is very different
from the ETF value, though the energies are close. Moreover
the equality theorem is violated both because of curvature ef-
fects and of isospin symmetry breaking terms which cannot be
neglected even in symmetric nuclei because of the Coulomb
interaction. For all these reasons, we conclude that the con-
tribution from non-local terms cannot be estimated from the
local part making use of Eq. (36). As a consequence, nuclear
surface properties cannot be understood without masteringthe
gradient and spin-orbit terms of the energy functional.

III. ASYMMETRIC NUCLEI

We now turn to examine the general problem of an ETF
analytical mass model for asymmetric nuclei, which requires
the introduction of the proton and neutron density profiles as
two independent degrees of freedom. In this general case, the
ETF energy integral cannot be evaluated analytically. The
usual approach in the literature consists in calculating the
integral numerically, with density profiles which are either
parametrized [9, 15, 20], or determined with a variational cal-
culation [13, 26–28]. The limitation of such approaches is
that the decomposition of the total binding energy into its
different components (isoscalar, isovector, surface, curvature,
etc.) out of a numerical calculation is not unambiguous nor
unique [19]. Moreover, a numerical calculation makes it hard
to discriminate the specific influence of the different physi-
cal parameters (EOS properties, finite range, spin orbit, etc)
on quantities like the surface symmetry energy or the neutron
skin.

As a consequence, correlations between observables and
physical parameters requires a statistical analysis basedon a
large set of very different models. In this way, one may hope
that the obtained correlation is not spuriously induced by the
specific form of the effective interaction [29]. The correla-
tion may also depend on several physical parameters and the
statistical analysis becomes quite complex [30].

Earlier approaches in the literature have introduced ap-
proximations in order to keep an analytical evaluation pos-
sible [16]. These approximations however typically neglect
the presence of a neutron skin, and more generally of inho-
mogeneities in the isospin distribution [9]. As a consequence,
the results are simple and transparent, but their validity out of
the stability valley should be questioned.

One of the main applications of the present work concerns
the production of reliable mass tables for an extensive use in
astrophysical applications [31]. For this reason, we aim at
expressions which stay valid approaching the driplines. In
the specific application to the neutron star inner crust, even
more exotic nuclei far beyond the driplines are known to be
populated [32, 33]. We will not consider this situation in
the present paper, because a correct treatment of nuclei be-
yond the dripline imposes considering the presence of both
bound and unbound states which modify the density pro-
files and leads to the emergence of a nucleon gas. Opti-
mal parametrized density profiles have been proposed for this
problem [19, 20, 34], but the developement of systematic ap-
proximations to analytically integrate the ETF functionalin
the presence of a gas is a delicate issue, which will be ad-
dressed in a forthcoming paper [25].

A. Decomposition of the nuclear energy

The presence of two separate good particle quantum num-
bers, N and Z, implies that we have to work with a 2-
dimensional problem, and introduce, in addition to the total
density profile Eq. (6), an additional degree of freedom. Con-
cerning the energy functional, it is customary to split it into an
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isoscalar and an isovector component:

H [ρ ,ρ3] = H
IS[ρ ,ρ3 = 0]+H

IV [ρ ,ρ3] (39)

with:

H
IS[ρ ,ρ3] =

h̄2

2m
τ +Ce f fρτ +(C0+C3ρα)ρ2

+Cf in(∇∇∇ρ)2+CsoJ ·∇∇∇ρ , (40)

H
IV [ρ ,ρ3] = H

IS[ρ ,ρ3]−H
IS[ρ ,ρ3 = 0]

+ De f fρ3τ3+(D0+D3ρα)ρ2
3

+ D f in(∇∇∇ρ3)
2+DsoJ3 ·∇∇∇ρ3, (41)

where we have introduced the local isoscalar and isovector
particle densities, kinetic densities and spin-orbit density vec-
tors. Isoscalar densities are given by the sum of the corre-
sponding neutron and proton densities, while isovector den-
sities (noted with the subscript ”3”) are given by their differ-
ence. As for symmetric matter, the semi-classical Wigner-
Kirkwood development in̄h allows expressing all these den-
sities in terms of the local isoscalarρ = ρn+ρp and isovector
ρ3 = ρn − ρp density profiles, as well as their gradients. In
equation (40), the isoscalar energy density also depends onρ3
because of the presence of the kinetic densitiesτ = τn + τp
which cannot be written as a function ofρ only. Therefore, to
truly obtain the isoscalar part in Eq. (39), we have to consider
H IS[ρ ,ρ3 = 0]. The iso-vector energy density Eq. (41) con-
tains therefore terms which explicitly depend on the isovector
densities, but also an isovector contribution of the so-called
isoscalar componentH IS. Detailed expressions, and defini-
tion of parameters are given in appendix A.

1. Isospin inhomogeneities

Concerning the density profiles, we choose to work with the
total densityρ(r) and with the proton density profileρp(r).
Alternatively, we could as well have used(ρ ,ρn) or (ρp,ρn)
as independent variables, and we have checked that these
different representations lead to the same level of reproduc-
tion of full Hartree-Fock calculations. The total density is
parametrized by Eq. (6), where now the saturation density pa-
rameterρsat corresponds to the equilibrium density reached
in asymmetric matter [20]. This density depends on the asym-
metryδ which represents the nucleus bulk asymmetry, defined
below:

ρsat(δ ) = ρsat(0)

(

1−
3Lsymδ 2

Ksat+Ksymδ 2

)

. (42)

In this expression, Ksat = 9ρ2
sat∂ 2(H /ρ)/∂ρ2|ρsat

is the nuclear (symmetric) matter incompressibil-
ity, and Lsym = 3ρsat∂ (Hsym/ρ)/∂ρ |ρsat and Ksym =

9ρ2
sat∂ 2(Hsym/ρ)/∂ρ2|ρsat are the slope and curvature of

the symmetry energy at (symmetric) saturation, where we
have introduced the usual definition of the symmetry energy
density :

Hsym=
1
2

ρ2 ∂ 2H

∂ρ2
3

∣

∣

∣

∣

ρ3=0

. (43)

As a consequence, the radius parameterRentering Eq. (6) also
depends on the nucleus bulk asymmetryδ . Indeed, in Eq. (8),
the equivalent homogeneous sphere radius now readsRHS =
A1/3rsat(δ ), where the mean radius per nucleon isrsat(δ ) =
(

4
3πρsat(δ )

)−1/3
.

The proton density profile is parametrized as an indepen-
dent Fermi function [20]:

ρp(r) = ρsat,pFp(r) ; Fp(r) =
(

1+e(r−Rp)/ap
)−1

. (44)

In equation (44), the proton radius parameterRp is deter-
mined, similarly to Eq. (8), by proton number conservation
as:

Rp = RHSp

[

1−
π2

3

(

ap

RHSp

)2

+O

(

(

ap

RHSp

)4
)]

, (45)

with RHSp(δ ) = Z1/3rsat,p(δ ) the equivalent homogeneous

proton sphere radius,rsat,p(δ ) =
(4

3πρsat,p(δ )
)−1/3

, and
where we assumedap ≪ Rp .

The diffusenessesa and ap will be calculated in sec-
tion III B by a minimization of the surface energy, as it has
been done for symmetric nuclei in section II B whereap = a.
We can anticipate that the isoscalar diffusenessa will be mod-
ified with respect to the result of symmetric nuclei Eqs. (34)
and (35).

In order to have the correct bulk limit of infinite asym-
metric matter, the parametersρsat and ρsat,p introduced in
Eqs. (6) and (44) respectively represent the saturation densi-
ties of baryon and proton of asymmetric matter. These densi-
ties are related to the properties of the Skyrme functional and
to the bulk asymmetryδ = 1−2ρsat,p/ρsat by Eq. (42).

The bulk asymmetry differs from the global asymmetry
I = 1−2Z/A because of the competing effect of the Coulomb
interaction and symmetry energy, which act in opposite di-
rections in determining the difference between the proton and
neutron radii [26, 27, 35]:

δ =
I + 3ac

8Q
Z2

A5/3

1+ 9Jsym
4Q

1
A1/3

. (46)

In this equation,Jsym= Hsym[ρsat]/ρsat is the symmetry en-
ergy per nucleon at the saturation density of symmetric matter,
Q is the surface stiffness coefficient, andac is the Coulomb pa-
rameter. Because of the complex interplay between Coulomb
and skin effects, the bulk asymmetryδ of a globally sym-
metric I = 0 nucleus is not zero, though small for nuclei in
the nuclear chart. We have shown in Ref. [19] that account-
ing for theδ dependent saturation density gives a reasonably
good approximation of the isospin symmetry breaking effects
in I = 0 nuclei. A complete discussion on this point can be
found in Ref. [36].

As a consequence, the interval ofδ is slightly smaller than
the interval ofI over the periodic table. The relation between
the global asymmetry and the asymmetry in the nuclear bulk is
shown in Fig. 5. From this figure we can see thatδ is a slowly
increasing function of the global asymmetryI . This value in-
creases to−0.1< δ < 0.3 if we consider the ensemble of the
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FIG. 5. (Color online) Bulk asymmetry Eq. (42) as a function of the
global asymmetryI for nuclei within the theoretical driplines eval-
uated from the SLy4 energy functional. The different colorscorre-
spond to different intervals in mass number: 40≤ A < 100 in red,
100≤ A < 150 in blue, 150≤ A < 200 in green,A ≥ 200 in grey.
The functiony= x is also plotted (black).

heavy and medium-heavy nuclei within the driplines [65]. It
is also observed from Fig. 5 that as the massA increases,δ
becomes closer toI , as expected from the analytical expres-
sion (46).
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FIG. 6. (Color online)β -stable nuclei (green), unstable nuclei syn-
thetized in the laboratory [37] (red), theoretical neutronand proton
driplines evaluated from the SLy4 energy functional (blacksquares)
and some iso-δ lines (blue dots) are plotted in theN,Z plane.

Figure 6 shows in the(N,Z) plane the heavy and medium-
heavy measured nuclei, the theoretical neutron and proton
driplines evaluated from the SLy4 energy functional, and
some iso-δ lines. We can see that allA.40-isotopes ever syn-
thesized in the laboratory lay betweenδ ≈ 0 andδ ≈ 0.2. Fur-
thermore, the theoretical neutron dripline well matches with
the iso-δ line δ ≈ 0.3, which roughly corresponds toI ≈ 0.4.

This means that in the following, we will be interested in
approximations producing reliable formulae up toδ ≈ 0.3.

2. Bulk energy: limit of asymmetric nuclear matter

Following the same procedure as for the symmetric case,
we can define the bulk energy in asymmetric matter as:

Eb(δ ) = Hsat(δ )VHS(δ ) = λsat(δ )A, (47)

Hsat(δ ) = λsat(δ )ρsat(δ ), (48)

whereVHS(δ ) = 4/3πR3
HS(δ ) = A/ρsat(δ ) is the equivalent

homogeneous sphere volume andλsat(δ ) corresponds to the
chemical potential of asymmetric nuclear matter:

∂H

∂ρ

∣

∣

∣

∣

[ρsat(δ ),ρsat,3(δ )]
= λsat(δ ) =

H

ρ

∣

∣

∣

∣

[ρsat(δ ),ρsat,3(δ )]
. (49)

Here,ρsat,3 = ρsat−2ρsat,p, and the total energy densityH is
given by Eq. (39).

3. Decomposition of the surface energy

The surface energyEs(δ ) corresponds to finite-size effects
and can be decomposed, as in the symmetric case in section II,
into the plane surface, the curvature, and the higher order
terms. It is defined as the difference between the total and
the bulkEb(δ ) energy,

Es(δ ) =
∫

drH [ρ ,ρ3]−Hsat(δ )VHS(δ )

= 4π
∫ ∞

0
dr
{

H [ρ ,ρ3]−λsat(δ )ρ
}

r2. (50)

Because of the isospin asymmetry, the Skyrme functionalH

now depends on the two densitiesρ andρ3 = ρ −2ρp and on
the two gradients∇ρ and∇ρ3 = ∇ρ −2∇ρp.

Making again the decomposition of the energy density into
an isoscalar (only depending on the total density) and an
isovector component (depending onρ andρ3), we get from
Eqs. (40) and (41):

Es = EIS
s +EIV

s , (51)

with

EIS
s = 4π

∫ ∞

0
dr

{

H
IS[ρ ,ρ3 = 0]−

H IS[ρsat,ρsat,3 = 0]
ρsat(δ )

ρ
}

r2

= 4π
∫ ∞

0
dr

{

H [ρ ,ρ3 = 0]−
H [ρsat,ρsat,3 = 0]

ρsat(δ )
ρ
}

r2,

(52)

EIV
s = 4π

∫ ∞

0
dr

{

H
IV [ρ ,ρ3]−

H IV [ρsat,ρsat,3]

ρsat(δ )
ρ
}

r2

= 4π
∫ ∞

0
dr

{

H [ρ ,ρ3]−
H [ρsat,ρsat,3]

ρsat(δ )
ρ
}

r2−EIS
s .

(53)

It is interesting to remark that Eq. (50) is not the only pos-
sible definition of the surface energy in a multi-component
system. Indeed in a two-component system, there are two
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possible definitions of the surface energy which depend on
the definition of the bulk energy in the cluster [38–40]: the
first one is given by Eq. (50) and corresponds to identify-
ing the bulk energy of a system ofN neutrons andZ pro-
tons to the energy of an equivalent piece of nuclear matter .
The second definitionEs≡ E−µnN−µpZ+ pV corresponds
to the grandcanonical thermodynamical Gibbs definition, and
gives the quantity to be minimized in the variational calcu-
lation conserving proton and neutron number. Though this
second definition has been often employed in the ETF liter-
ature [28, 38–40], the first one Eq. (50) is the most natural
definition in the present context. Indeed, using the decomposi-
tion Eq. (39) between isoscalar and isovector energy densities,
only this definition allows recovering for the isoscalar energy,
the results of section II concerning symmetric matter. More-
over, we have shown in Ref. [19] that the best reproduction of
full Hartree-Fock calculations is achieved considering that the
bulk energy in a finite nucleus scales with the bulk asymmetry
δ as in Eq. (50), rather than with the total asymmetryI , as it
is implied by the Gibbs definition.

Let us first concentrate on the isoscalar surface energy. The
dependence of the surface energy on the bulk asymmetryδ
implies that its decomposition into an isoscalar and an isovec-
tor part is not straightforward. Indeed, although the isoscalar
energyEIS

s does not depend on the isospin asymmetry profile
ρ3(r), it does depend on the bulk isospin asymmetryδ through
the isospin dependence of the saturation densityρsat(δ ) ap-
pearing in the density profileρ Eq. (6). Moreover, in Eq. (52)
the isoscalar bulk term which is removed depends directly on
δ too, because of the equivalent volumeVHS=A/ρsat(δ ). The
quantityEIS

s has therefore an implicit dependence on isospin
asymmetryδ .

The isoscalar surface energy can be calculated exactly for
any nucleus of any asymmetry, with the expressions devel-
oped in section II. In particular we can distinguish a plane
surface, a curvature, and a mass independent term:

EIS
s = EIS

sur f +EIS
curv+EIS

ind+O

(

(

a(A,δ )
rsat(δ )

)4

A−1/3

)

,(54)

with an identical result as in Eqs. (30), (31), (32), namely:

EIS
sur f =

[

C
L
sur f +

1
a2(A,δ )

C
NL
sur f

]

a(A,δ )
rsat(δ )

A2/3, (55)

EIS
curv =

[

C
L
curv+

1
a2(A,δ )

C
NL
curv

](

a(A,δ )
rsat(δ )

)2

A1/3, (56)

EIS
ind =

[

C
L
ind +

1
a2(A,δ )

C
NL
ind

](

a(A,δ )
rsat(δ )

)3

. (57)

The local C L
i and non-localC NL

i functions are given by
Eqs. (19) and (22), where the saturation density now depends
on asymmetryρsat = ρsat(δ ) through Eq. (42). The other dif-
ference with respect to the case of symmetric nuclei Eqs. (30),
(31), (32), is that now the diffuseness depends on the asym-
metryδ .

Since the analytical expressions of the isoscalar surface en-
ergyEIS

s are the same as in symmetric nuclei, the same accu-
racy and conclusions as in section II are dressed: we can vari-
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FIG. 7. (Color online) Diffuseness as a function of the isospin
asymmetry, for four isobaric chains (A = 400: full lines,A = 200:
dotted lines,A = 100: dashed-dotted lines,A = 50: dashed lines).
Red lines: calculations using the slab diffuseness Eq. (34). Blue
lines: calculations using the spherical diffuseness Eq. (35). Green
lines: calculations using the quadratic diffuseness, fitted from HF
density profiles in Ref. [20].

ationally evaluate the isoscalar diffusenessa, solving equa-
tion (35), or using equation (34) which amounts to neglect-
ing terms varying slower thanA2/3. Though we have con-
sidered only isoscalar terms, the diffusenessa does depend
on the isospin asymmetryδ because of theδ dependence
of the saturation density. These results, as well as the fit
from HF density profiles [20], where mass independence and
quadratic behaviour inδ is assumed (that is:a=C1+C2δ 2),
are shown in Fig. 7. Concerning the mass-dependence of
Eq. (35) (blue lines labelled ”Eq. (35)”), we observe a slight
spread for masses fromA= 50 toA= 400, corroborating both
the mass independence assumption in the HF fit [20] and the
previous conclusions in section II B: to obtain the diffuseness
we can neglect the mass dependence and limit to terms∝ A2/3

(red line, labelled ”Eq. (34)”). However, one can see that the
dependence found from the variational equation is opposite
to the one exhibited by the fit to HF results: the diffuseness
decreases withδ instead of increasing. It is difficult to be-
lieve that such a huge and qualitative difference might come
from the difference between ETF and HF. The discrepancy
rather suggests that the variational procedure should include
the isovector energy to obtain the correct behaviour of the dif-
fuseness with the isospin asymmetry. Indeed, we will see in
section III B that adding the isovector part reverses the trend.

This discussion shows that, in the case of asymmetric nu-
clei, Eq. (34) which only takes into account the isoscalar
terms, is not a good approximation to find the diffuseness.
This statement is confirmed by Fig. 8, where the isoscalar sur-
face energy per nucleon is plotted for different isobaric chains
and for different prescriptions for the diffuseness. The full
red and the dashed-dotted lines stand for the diffuseness given
by Eq. (34) and Eq. (35) respectively. There is almost no
difference in the isoscalar surface energy for these two pre-
scriptions. In addition, the observedδ dependence is ex-
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FIG. 8. (Color online) Isoscalar surface energy per nucleonas a
function of the isospin asymmetry, for four isobaric chains. Full red
lines: calculations using the slab diffuseness Eq. (34). Dash-dotted
blue lines: calculations using the spherical diffuseness Eq. (35).
Dashed green lines: calculations using the quadratic diffuseness, fit-
ted from HF density profiles in Ref. [20].

tremely weak. The isoscalar surface energy evaluated with
the quadratic diffuseness [20] is represented in dashed green
line. A qualitative and quantitative difference is observed with
respect to the two other curves. This indicates again that the
isoscalar and isovector component of the surface energy can-
not be treated separately, and the correctδ dependence of the
isoscalar surface energy, as well as of the isoscalar diffuse-
ness, requires to consider the total surface energy in the varia-
tional principle.

It is also interesting to analyse theδ dependence of the sur-
face symmetry energy based on the fitted quadratic diffuse-
ness: its sign is positive, which contrasts with studies based
on liquid-drop parametrizations of the nuclear mass [8, 10,
35, 41–43]. This behavior is due to our choice of definition of
the surface in a two component system, as discussed at length
in Ref. [19].

B. Approximations for the isovector energy

In this section, we focus on the residual isovector surface
partEIV

s defined by Eq. (53), which cannot be written as inte-
grals of Fermi functions as in the previous sections. Indeed,
the isovector densityρ3 appearing in the energy density is not
a Fermi function, meaning that it cannot be analytically in-
tegrated to evaluateEIV

s . Approximations are needed to de-
velop an analytic expression for this part of the energy, and
we will consider in the following two different approaches.
At the end, we will verify the accuracy of our final formulae,
in comparing the analytical expressions with HF calculations.

1. No skin approximation

As a first approximation, we neglect all inhomogeneities
in the isospin distribution in the same spirit as Ref. [16].
This simplification consists in replacing the isospin asym-
metry profileρ3(r)/ρ(r) in Eq. (53) by its mean value〈δ 〉.
Within this approximation, the local isovector energy onlyde-
pends on the total baryonic density profileρ defined Eq. (6),
and the non-local isovector part, involving gradients∇ρ3, is
identically zero. In other words, this approximation amounts
neglecting the non-local contribution to the isovector surface
energy.

Integrating in space the equalityρ3(r) = 〈δ 〉ρ(r) we imme-
diately obtain that the mean value of the isospin distribution
is given by the global asymmetry of the nucleus:

〈δ 〉=
N−Z

A
= I . (58)

In particular, in this approximation, the bulk isospin asym-
metry δ is equal to the global asymmetryI , at variance
with the more elaborated relation betweenδ and I given by
Eq. (46). In neglecting isospin inhomogeneities, we indeed
neglect both neutron skin and Coulomb effects which are re-
sponsible for the difference betweenδ andI . Consequently in
this section, the saturation densityρsat of asymmetric matter is
still given by Eq. (42), but replacingδ by I . This no-skin ap-
proximation therefore modifies the bulk energy Eq. (47), and
the isoscalar energy Eq. (12).

The choice ofI instead ofδ to compute the saturation den-
sity only slightly worsens the predictive power of the total
ETF energy with respect to Hartree-Fock calculations, but the
relative weight between bulk and surface energies is drasti-
cally modified. In particular, this change of variable switches
the sign of the symmetry surface energy [19].

The obvious advantage is that analytical results can be ob-
tained without further approximations than the ones devel-
oped in section II A, as we now detail.

Replacing ρ3(r) by Iρ(r) and ρsat,3(δ ) by Iρsat(I) in
Eq. (53), allows to express the energy density as a function
of ρ(r) only. Thus we can follow the same procedure as for
symmetric nuclei in section II A, and analytically integrate the
energy density. Making a quadratic expansion inI for the ki-
netic densitiesτ3 gives the following expressions:

EIV
s = C

IV
sur f

(

ρsat(I),XIV
sky

) a(A, I)
rsat(I)

A2/3I2

+ C
IV
curv

(

ρsat(I),XIV
sky

)

(

a(A, I)
rsat(I)

)2

A1/3I2

+ C
IV
ind

(

ρsat(I),XIV
sky

)

(

a(A, I)
rsat(I)

)3

I2

+ o

(

(

a(A, I)
rsat(I)

)4

A−1/3I2

)

, (59)

whereXIV
sky=

{

Ce f f ,α,De f f
}

stands for the effective interac-
tion parameters appearing in the isovector local terms. The
coefficientsC IV

i are given by:
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C
IV
sur f = 3

{

Ckin

[

5
3

η(0)
5/3

(

m
3m∗

sat
+∆msat,3

)

−

(

δmsat

3
+∆msat,3

)]

−D0ρsat+D3ρα+1
sat η(0)

α+2

}

, (60)

C
IV
curv = 6

{

Ckin

[

5
3

(

η(1)
5/3−

π2

6

)(

m
3m∗

sat
+∆msat,3

)

−η(0)
5/3

(

δmsat

3
+∆msat,3

)]

+D3ρα+1
sat

(

η(1)
α+2−

π2

6

)}

, (61)

C
IV
ind = 3

{

Ckin

[

5
3

(

η(2)
5/3−

2π2

3
η(0)

5/3

)(

m
3m∗

sat
+∆msat,3

)

−
2
3

(

3η(1)
5/3−π2

)

(

δmsat

3
+∆msat,3

)]

+
π2

3
D0ρsat+D3ρα+1

sat

(

η(2)
α+2−

2π2

3
η(0)

α+2

)

}

, (62)

wherem/m∗
sat= (m/m∗

sat,n+m/m∗
sat,p)/2, δmsat = (δmsat,n+

δmsat,p)/2, ∆msat,3 = (m/m∗
sat,n − m/m∗

sat,p)/(2I) =

(δmsat,n − δmsat,p)/(2I), and where the coefficientsη(k)
γ

are defined by equation (B2).
As for the isoscalar energy, Eq. (59) shows that the dom-

inant finite-size effect is a surface term (∝ A2/3). Additional
finite-size terms, which would be absent in a slab configu-
ration, are found in spherical nuclei. As we have only con-
sidered the local part of the isovector energy, we recover the
same diffuseness dependence as in the local isoscalar terms
Eqs. (15) and (16).

We have seen in section II B that the diffusenessa can be
obtained by minimization of the energy per nucleon with re-
spect to its free parameters. In this no-skin approximation, the
only non-constrained parameter of the model is again the dif-
fuseness parametera, as for symmetric nuclei. Therefore, we
can apply Eq. (33) in order to obtain the ground state energy.
If we neglect the curvature and mass independent terms, we
obtain an expression similar to Eq. (34):

a=

√

√

√

√

C NL
sur f(I)

C L
sur f(I)+C IV

sur f(I)I
2
, (63)

where the coefficientsC i
sur f depend on the saturation density

ρsat(I). This expression corresponds to the diffuseness of one-
dimensional semi-infinite asymmetric matter. Consideringall
the terms of Eq. (59), the diffuseness corresponding to the
complete variational problem is given by the solution of the
following equation:

3
(

C
L
ind +C

IV
indI2)

(

a
rsat

)4

+2
(

C
L
curv+C

IV
curvI

2)A1/3
(

a
rsat

)3

+

(

(

C
L
sur f +C

IV
curvI

2)A2/3+
1

r2
sat

C
NL
ind

)(

a
rsat

)2

(64)

−
1

r2
sat

C
NL
sur fA

2/3 = 0.

Figure 9 displays the results of Eqs. (63) and (64). At vari-
ance with Fig. 7 where we only took into account the isoscalar
energy, we can clearly see that adding the isovector energy to
the variational procedure leads to the expected behavior ofa
diffuseness increasing with asymmetry.

This behavior shows the importance of the isovector part to
correctly determine the isoscalar diffusenessa. As for sym-
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FIG. 9. (Color online) Diffuseness as a function of the global asym-
metry, for four isobaric chains (A= 400: full lines,A= 200: dotted
lines, A = 100: dashed-dotted lines,A = 50: dashed lines). Red
lines: calculations using the slab diffuseness Eq. (63). Blue lines:
calculations using the spherical diffuseness Eq. (64). Green line:
calculations using the quadratic diffuseness fitted from HFdensity
profiles [20]. Grey line: calculations using the diffuseness Eq. (66),
based on [16].

metric nuclei, we observe again that the mass dependence of
the diffuseness calculated in the spherical case is negligible
(only a slight spread of the blue curves, no spread in the red
curves).

The analytical total surface energyEs = EIS
s +EIV

s per nu-
cleon, given by Eqs. (15), (16) and (59), is plotted on Fig. 10,
for different isobaric chains. The results using the slab dif-
fuseness (full red curves) are very close to the ones obtained
by solving Eq. (64) (dash-dotted blue curves), and to the ones
using the numerical fit to HF calculations of Ref. [20] (dashed
green curves), even if the corresponding values for thea pa-
rameter are very different. The conclusions are thus the same
as in section II B: although curvature (and mass independent)
terms are important to reproduce the energetics, they are not
required to determine the diffuseness. Therefore this latter can
be well determined by the simplest expression, Eq. (63).

For completeness, we also compare our results to the ap-
proximation for the surface energy proposed in Ref. [16], and
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FIG. 10. (Color online) Total surface energy per nucleon as afunc-
tion of the global asymmetry, for four isobaric chains. Fullred lines:
calculations using the slab diffuseness Eq. (63). Dash-dotted blue
lines: calculations using the spherical diffuseness Eq. (64). Dashed
green lines: calculations using the quadratic diffusenessfitted from
HF density profiles [20]. Dotted grey lines: calculations using the
diffuseness Eq. (66), based on [16].

represented by grey curves in Figs. 9 and 10:

Es = EIS
s (I = 0)

+ 2





EIS
s (I = 0)

A2/3

Lsym

Ksat
−

a
(

Lsym−
Ksym
12

)

rsat(I = 0)



A2/3I2.(65)

In Ref. [16], no expression for the diffuseness was proposed.
For consistency, we have determined thea parameter entering
Eq. (65) by minimizing the surface energy given by the same
equation, leading to:

a=

√

√

√

√

√

C NL
sur f(I = 0)

(

1+ 2Lsym
Ksat

I2
)

C L
sur f(I = 0)

(

1+ 2Lsym
Ksat

I2
)

−2
(

Lsym−
Ksym
12

)

I2
.(66)

To obtain Eq. (65) , the authors of Ref. [16] did the same ap-
proximationρ3(r) = Iρ(r) as we made, neglected the curva-
ture and constant terms, and assumed the equalityEL

s = ENL
s

for the isovector part in order to evaluate the non-local isovec-
tor energy. As we have shown in section II C, this property
fails in a three-dimensional system. As a consequence, the
diffuseness which is determined by the balance between local
and non-local parts, is overestimated (see Fig. 9) and finally
leads to a largely underestimated energy, as seen in Fig. 10.

To check the accuracy of our analytical no-skin expression
given by Eqs. (54), (59) and (63), we will quantitatively com-
pare our analytical results with Hartree-Fock calculations in
section III B 3.

2. Gaussian approximation

To take into account isospin inhomogeneities, we develop
in this section an alternative gaussian approximation to the

isovector surface energy. In particular, as in section III A, we
will distinguish the bulk asymmetryδ Eq. (46) from the global
one I , which allows considering skin and Coulomb effects.
This approximation is therefore expected to be more realistic
than the no-skin procedure developed in section III B 1.
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FIG. 11. (Color online) Numerical isovector energy densityprofile
(red full lines) and Gaussian approximation Eq. (68) (blackdashed-
dotted lines) for two massesA= 50 (left curves of each panel) and
A = 200 (right curves of each panel). a)δ = 0.1; b) δ = 0.2; c)
δ = 0.3; d) δ = 0.4.

SinceEIV
s is the surface isovector energy, the corresponding

energy density

H
IV

s [ρ ,ρ3] = H
IV [ρ ,ρ3]−

H IV [ρsat,ρsat3]

ρsat(δ )
ρ (67)

is negligible at the nucleus center, whereρ → ρsat. This is
shown in Fig. 11, which displays this quantity for several nu-
clei in a representative calculation using the diffusenessesa
andap from Ref. [20], and with the interaction SLy4. More-
over, as it is a surface energy, the maximum is expected to be
close to the surface radiusR, that is the inflection point where
ρ(R) = ρsat(δ )/2. Thus we approximate the isovector energy
density by a Gaussian peaked atr = R:

H
IV

s (r)≃ Gtot(r) = A (A,δ )exp

(

−
(r −R)2

2σ2(A,δ )

)

, (68)

whereA is the maximum amplitude of the Gaussian andσ2

its variance atR:

A (A,δ ) = H
IV

s [ρ(R),ρ3(R)], (69)

σ2(A,δ ) =−A (A,δ )
(

d2H IV
s

dr2

)−1

r=R
. (70)

Fig. 11 shows the quality of this Gaussian approximation on
the energy density profile for several nuclei. Each panel corre-
sponds to a different representative value ofδ : δ = 0.1 (upper
left) corresponds to most stable nuclei (see Fig. 6); medium-
heavy neutron rich nuclei synthesized in modern radioactive
ion facilities lay aroundδ = 0.2 (upper right); the (largely
unexplored) neutron drip-line closely corresponds toδ = 0.3
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(lower left); the higher valueδ = 0.4 (lower right) is only
obtained beyond the dripline, that is for nuclei which are in
equilibrium with a neutron gas in the inner crust of neutron
stars.

We can see that for all these very different asymmetries, the
exact energy density (full red lines) is indeed peaked at the
equivalent hard sphere radiusR. However, we can notice that
the profiles have small negative components. We thus expect
the Gaussian approximation will overestimate the isovector
energy part.

As Gaussian functions and their moments are analytically
integrable, this approximation allows obtaining an analytical

expression for the isovector energyEIV
s ≈ 4π

∫

r2
Gtot(r)dr.

Indeed, neglecting the terms∼ e−R2/(2σ2), we obtain (see ap-
pendix C 3):

EIV
s = 2(2π)3/2 σ(A,δ ,a,ap)A (A,δ ,a,ap)r

2
sat(δ )

[

A2/3+
σ2(A,δ ,a,ap)

r2
sat(δ )

−
2π2

3

(

a(A,δ )
rsat(δ )

)2
]

,(71)

where we have highlighted the dependence on the nuclear
mass numberA, bulk asymmetryδ , and diffusenessesa(A,δ )
andap(A,δ ) when they explicitly appear. The neglected terms
are of the order(a/rsat)

4A−2/3. We can notice that the curva-
ture term (∝ A1/3) is missing. This is due to our approxima-
tion. Indeed, we have assumed that the isovector energy is
symmetric with respect to the inflection point for which the
curvature is zero, such that the curvature is disregarded by
construction.

Though equation (71) is an analytical expression, the ex-
plicit derivation of the amplitudeA (A,δ ) and of the variance
σ(A,δ ) leads to formulae far from being transparent. In par-
ticular, it is not clear how the different physical ingredients of
the energy functional (compressibility, effective mass, sym-
metry energy) and of the nucleus properties (neutron skin, dif-
fuseness) affect the isovector surface properties. For this rea-
son, we turn to develop a further approximation for the isovec-
tor energy partEIV

s in terms of the nuclear matter coefficients
J, L andK, and of the neutron skin thickness. Moreover, these
approximations will allow to find a simple analytical expres-
sion for the diffuseness.

Making the usual quadratic assumption for the symme-
try energy H IV [ρ ,ρ3] = Hsym[ρ ](ρ3/ρ)2, the amplitude
A (A,δ ) Eq. (69) reads

A (A,δ ) = Hsym[ρ(R)]
(

ρ3(R)
ρ(R)

)2

−Hsym[ρsat(δ )]
ρ(R)

ρsat(δ )
δ 2.

(72)

In order to have a simpler explicit expression, we make a den-
sity expansion of the symmetry energy per nucleonesym[ρ ] =
Hsym[ρ ]/ρ around a densityρ∗, such that:

Hsym[ρ ] = ρ
[

J∗+
L∗

3ρ∗
(ρ −ρ∗)+

K∗

18ρ2
∗

(ρ −ρ∗)
2
]

,(73)

whereJ∗ = Hsym[ρ∗]/ρ∗, L∗ = 3ρ∗∂ (Hsym/ρ∗)/∂ρ |ρ∗ and
K∗ = 9ρ2

∗∂ 2(Hsym/ρ∗)/∂ρ2|ρ∗ . As we can see in Eq. (72),

we need to evaluate the symmetry energy at two different
densities: atρsat(δ ) and at the surface radius whereρ(R) =
ρsat(δ )/2. For this reason, we will apply Eq. (73) to two dif-
ferent densitiesρ∗ = ρsat(0) and ρ∗ = ρsat(0)/2. At ρ∗ =
ρsat(0), the coefficients(J∗,L∗,K∗) are the usual symmetry
energy coefficients(Jsym,Lsym,Ksym). Their values for the
Skyrme interaction SLy4 areJsym= 32 MeV,Lsym= 46 MeV,
and Ksym= −119.8 MeV. At one half of the saturation of
symmetric nuclear matter,ρ∗ = ρsat(0)/2 we label the corre-
sponding coefficients(J1/2,L1/2,K1/2) which, for the Skyrme
interaction SLy4, areJ1/2 = 22.13 MeV, L1/2 = 38.6 MeV,
andK1/2 =−74 MeV.

Using the expansion aroundρ∗= ρsat(0)/2 for the first term
of Eq. (72) and aroundρ∗ = ρsat(0) for the second one, we
obtain, at second order inδ :

A (A,δ )
ρsat(0)

=
J1/2

8

(

∆R(a)
a(A,δ )

)2

+
J1/2

2

[

∆R(a)
a(A,δ )

−
1
2

(

∆R(a)
a(A,δ )

)2
]

δ

+
J1/2

2

[

(

1−
Jsym

J1/2

)

−
∆R(a)
a(A,δ )

−
1
4

(

1+
LsymL1/2

J1/2Ksat

)(

∆R(a)
a(A,δ )

)2
]

δ 2.(74)

Notice that theKsymparameter does not appear in this equation
because of the truncation at second order inδ . In Eq.(74), the
isospin asymmetry inhomogeneities clearly appear through
the quantity∆R(a) = R(a)−Rp(a) which represents the neu-
tron skin thickness:

∆R(a) = ∆RHS

(

1+
π2

3
a2

RHSRHS,p

)

, (75)

where∆RHS(A,Z) = ∆R(a= 0,A,Z) = RHS(A)−RHS,p(Z) is
the neutron skin thickness of nuclei theoretically described by
hard spheres. Moreover, we have considered the diffuseness
differencea− ap as a second order correction with respect
to the neutron skin, and have assumeda= ap in Eq. (74). We
have also used the following expansion in∆R(a)/a to evaluate
ρ3(R):

2ρp(R) = ρsat,p(δ ) [1−∆R(a)/(2a)] (76)

+ O
(

(∆R(a)/a)3) .

Eq.(74) gives a relatively simple and transparent expression of
the isovector energy density at the nuclear surface, as a func-
tion of the EoS parameters. The situation is more complicated
for the varianceσ(A,δ ) which also enters the isovector energy
Eq. (71). This quantity involves the second spatial derivative
of the energy density Eq. (70), therefore its explicit expres-
sion is not transparent, even with the previous simplifications.
Extra approximations are in order.

From Fig. 11, we can observe that the width of the numer-
ical gaussians, that is the values ofσ2(A,δ ), is almost inde-
pendent of the bulk isospinδ . This numerical evidence can
be understood from the fact that the width gives a measure of
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the nucleus surface, which is mostly determined by isoscalar
properties. It is therefore not surprising that the dominant
isospin dependence is given by the amplitudeA which rep-
resents the isovector energy density at the surface. For this
reason, we evaluate the variance atδ = 0:

σ(A,δ )≈ σ(A) =

√

√

√

√

2

1−
K1/2

18J1/2

a0 = σ0. (77)

In this equation,a0 stands for the diffuseness atδ = 0. We re-
call that this quantity does not depend on the nucleus mass if

we do not take into account terms beyond surface in the vari-
ational approach discussed in section II B. This approximate
mass independence of the variance can be verified in Fig. 11:
the width of the two gaussians corresponding toA = 50 and
A= 200 are very close. Neglecting the isovector component
at δ = 0, the diffuseness is then given by the expression (34)
valid for symmetric matter:

a0 =
√

C NL
sur f(δ = 0)/C L

sur f(δ = 0). (78)

Inserting Eqs. (74) and (77) into (71), the surface isovector
energy can be expressed as a function of the symmetry energy
coefficients(Jsym,Lsym,Ksym):

EIV
s = 3

√

√

√

√

π

1−
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ρsat(0)
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×
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


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rsat(δ )
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−
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a(A,δ )
rsat(δ )
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





. (79)

In principle the surface coefficients(J1/2,L1/2,K1/2) can be
expressed as a function of the bulk ones(Jsym,Lsym,Ksym) by
using polynomial expansion in the density. However, we can
see from Eq. (79) that the surface isovector energyEIV

s is pro-
portional to the symmetry energyJ1/2 evaluated at the sur-
faceR. It is quite natural that the surface energy component
is mainly determined by the surface properties of the nuclei,
and therefore, the surface symmetry energy is mainly propor-
tional to the isovector parameterJ1/2. For this reason, express-
ing Eq. (79) only in terms of bulk quantities(Jsym,Lsym,Ksym)
would make Eq. (79) less transparent.

For completely symmetric nuclei, that is∆R= 0 andδ = 0,
the isovector energy is identically zero as it should. However,
if we neglect the neutron skin thickness only, that is we con-
sider∆R= 0 butδ 6= 0, a non-zero isovector surface energy is
obtained, given by

EIV,∆R=0
sur f = 3

√

√

√

√

π

1−
K1/2

18J1/2

ρsat(0)
ρsat(δ )

a0

rsat(δ )
(

J1/2− Jsym
)

δ 2A2/3.

(80)

This expression is proportional to the energy density differ-
ence between bulk and surface

(

J1/2− Jsym
)

, that is to the
Lsymparameter. In this approximation, the diffusenessa(A,δ )
does not appear, which means that the isovector surface en-
ergy contributes to the determination of the diffuseness only
if we consider the neutron skin.

From a mathematical point of view we can also consider

the limit δ = 0, ∆R 6= 0, giving:

EIV,δ=0
sur f =

3
4

√

√

√

√

π

1−
K1/2

18J1/2

J1/2
∆R2(a0)

a0rsat(0)
A2/3. (81)

This expression shows that an isovector surface energy can be
induced in asymmetric nuclei even if no asymmetry is present
in the bulk. Of course in realistic situations the bulk asymme-
try and the difference between neutron and proton radii are not
independent variables; in particular the skin is negligeable if
δ = 0 as we have already assumed in order to obtain Eq. (78)
above.

Eq. (79) shows than even in our rather crude approxima-
tion the surface symmetry energy presents a very complex
dependence on the physical quantities that measure isospin
inhomogeneity, namely the bulk asymmetryδ and the neu-
tron skin thickness∆R. In particular we find thatEIV

s (A,δ )
is not quadratic withδ but has non-negligible linear compo-
nents (see also Fig. 16 below). We have also quantitatively
tested that both linear and quadratic terms in∆R are required
to correctly reproduce the surface isovector energy. It is in-
teresting to notice that the linear components mixδ and∆R.
Indeed, as we can see in Eqs. (80) and (81), putting to zero
one of those variables, which both measure the isospin inho-
mogeneities, leads to a quadratic behavior with respect to the
other variable (cf. eqs (80) and (81)).

Similar to the previous section, the diffuseness is the only
unconstrained parameter of the model. It can therefore be de-
termined in a variational approach by minimizing the total
(isoscalar and isovector) surface energy. In section II B, we
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FIG. 12. (Color online) Diffuseness as a function of the bulkisospin
asymmetry. Red lines: Eq. (82) from the minimization of the gaus-
sian approximation . Blue lines: minimization of the exact numeri-
cally calculated ETF surface energy. Green lines: fit from HFdensity
profiles, taken from [20].

have shown that only the dominant∝ A2/3 terms are important
to evaluate the diffuseness. For this reason, we neglect again
terms beyond plane surface, and we approximate the neutron
skin thickness∆R by the hard sphere approximation∆RHS.
Neglecting the quadratic terms in the expansion in∆RHS/a,
we obtain

a2(A,δ ) = a2
IS(δ )

+

√

√

√

√

π

1−
K1/2

18J1/2

ρsat(0)
ρsat(δ )

3J1/2
(

δ − δ 2
)

C L
sur f(δ )

a0∆RHS(A,δ ),

(82)

where aIS(δ ) is the diffuseness obtained in section III A 1
by neglecting the isovector component :aIS(δ ) =
√

C NL
sur f(δ )/C L

sur f(δ ). We found in section III A 1 thataIS

slightly decreases with the isospin asymmetry (see Fig 7),
which does not appear consistent with the behavior observed
in full HF calculations. Now considering in the variational
principle the isovector term in addition to the isoscalar one,
the diffusenessa given by Eq. (82) acquires an additional term
which modifies its globalδ dependence. The complete result
Eq. (82) is displayed in Figure 12. We can see that the ad-
ditional term due to the isovector energy contribution inverses
the trend found section III A 1, as expected. More specifically,
though it does not clearly appear in Eq. (82), the analytical
diffuseness is seen to quadratically increase withδ , corrobo-
rating the assumption found in Ref. [20].

Although we only considered terms∝ A2/3, as in a slab
geometry, the results slightly depend on the nucleus mass as
shown by the slight dispersion of the different red curves in
Figure 12. This is due to the neutron skin since∆RHS(A,δ )
increases with decreasing mass numberA. For comparison,
the diffusenessesa andap 6= a obtained by a fit of HF density
profiles in Ref. [20] are also represented in Figure 12 (green
curves), as well as the numerically calculated pair(amin,amin

p )

which minimises the energy (blue curves).
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FIG. 13. (Color online) Lower panel: surface energy per nucleon
as a function of the bulk isospin asymmetry for four isobaricnucleus
chains. Full red lines: gaussian approximation using the diffuseness
Eq. (82). Dash-dotted blue lines: exact numerically calculated ETF
surface energy using the optimal diffusenesses(amin,amin

p ) (see text).
Dashed green lines: exact numerically calculated ETF surface energy
using the diffusenesses from [20].

As we can see, these diffusenesses significantly differ from
each other, but their consequence on the energy is small as we
can observe in Fig. 13 which displays the corresponding sur-
face energyEs= EIS

s +EIV
s per nucleon, for different isobaric

chains. In this figure, the blue curves correspond to a numer-
ical integration of the ETF energy density, using the diffuse-
nesses which minimize the total surface energy. These results
can thus be considered as ”exact” ETF results. The use of
the very differenta andap values fitted from HF (green lines)
leads to only slightly different energies, except for the lightest
isobar chain. The analytical approximation given by the sum
of Eq. (54) and Eq. (79), is also plotted (red curves), where
the diffuseness is given by the analytical formula Eq. (82).
We can see that our analytical approximation closely follows
the ”exact” ETF results.

All the curves show a positive surface symmetry energy,
which contrasts with Fig. 10. As it has been discussed in [19],
this change of sign is due to the choice between the bulk asym-
metryδ or the global asymmetryI , in the definition of the bulk
energy. This choice obviously affects the residual part of the
energyEs, since the sum of the two gives the same ETF func-
tional. This residual part is, to first order, given by the surface
symmetry energy as discussed in Ref. [19].

In order to further validate the analytical results of this sec-
tion, quantitative comparisons with Hartree-Fock calculations
are shown in the next section III B 3.

3. Comparison to Hartree-Fock calculations

In this section, we explore the level of accuracy of both
the no-skin approximation and the gaussian approximation,
respectively developed in sections III B 1 and III B 2.
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As previously discussed, the two different approximations
lead to two different bulk energetics. Neglecting isospin in-
homogeneities implies that the bulk asymmetryδ is equalized
to the average asymmetryI . Thus the bulk quantitiesρsat and
Eb defined by Eqs. (42) and (47) depend onI , and the total
energy of a nucleus(A, I) within the no-skin approximation is
given by

ENoSkin(A, I) = Eb(A, I)+EIS
s (A, I)+EIV

s (A, I), (83)

whereEIS
s (A, I) is given by Eq. (54) (withI instead ofδ ),

EIV
s (A, I) by Eq. (59), and the diffuseness is given by Eq. (63).
On the other hand, the gaussian approximation allows

defining two independent density profiles. Therefore, the bulk
energy depends on the bulk asymmetryδ (A, I) defined by
Eq. (46) and the total energy of a nucleus(A, I) within this
approximation is given by

EGauss(A, I) = Eb(A,δ )+EIS
s (A,δ )+EIV

s (A,δ ), (84)

whereEIS
s (A,δ ) is given by Eq. (54),EIV

s (A,δ ) by Eq. (79),
and the isoscalar diffuseness is given by Eq. (82).
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FIG. 14. (Color online) Total energyE = Eb +Es per nucleon as
a function of the nucleus asymmetryI = 1−2Z/A calculated within
the no-skin approximation, Eq. (83) (blue dotted lines) andwithin
the gaussian approximation, Eq. (84) (red full lines), compared to
nuclear Hartree-Fock energy (stars). a)A= 50; b)A= 100; c)A=
200; d)A= 400.

In Figure 14, we compare the analytical expressions (83)
and (84) with Hartree-Fock energy calculations, for different
isobaric chains. To compare the same quantities, we used the
same interaction (SLy4), and we have removed the Coulomb
energy from the total HF energetics.

We can see from the figure that the no-skin and the gaussian
approximations predict close values for the total energy. For
low asymmetriesI . 0.2 where the two models are almost
undistinguishable: they reproduce the microscopic calcula-
tions with a very good accuracy, especially for medium-heavy
nuclei A & 100. However, for higher asymmetriesI & 0.2
where the symmetry energy becomes important, a systematic
difference between the two models appears and increases up
to∼400 keV/A for the highest asymmetriesI ∼ 0.4: the gaus-
sian approximation is systematically closer to the microscopic

results than the no-skin model. This observation highlights the
importance of taking into account the isospin asymmetry in-
homogeneities, considering the neutron skin and at the same
time differentiating the bulk asymmetryδ from the global
one I , as it has been discussed in Ref. [19]. Quantitatively,
for medium-heavy nuclei, the accuracy of Eq. (84) is better
than∼ 200 keV/A, which is similar to the predictive power of
spherical Hartree-Fock calculations for this effective interac-
tion, with respect to experimental data.

To conclude, the gaussian approximation developed in sec-
tion III B 2 provides a reliable analytical formula, especially
for the surface symmetry energy. For this reason we will only
use the gaussian approximation to further study the different
components of the nuclei energetics, as we turn to do in the
next section.

IV. STUDY OF THE DIFFERENT ENERGY TERMS

In this section, we use the analytical formulae based on the
gaussian approximation detailed in section III B 2, to studythe
different components of nuclear energetics. As we have previ-
ously discussed throughout this paper, we can decompose the
nucleus total energyE into bulkEb and surfaceEs parts. Both
can be written as sums of isoscalarEIS

i , that is the part inde-
pendent ofρ3(r), and isovectorEIV

i terms. The surface energy
can be further split into plane surfaceEsur f ∝ A2/3, curvature
Ecurv ∝ A1/3 and mass independentEind terms. Finally, we
can distinguish the localEIS,L

i and the non-localEIS,NL
i com-

ponents of the surface isoscalar part only, since we did not
discriminate them in the gaussian approximation used for the
isovector energy. In summary, the energy of a(A, I) nucleus
can be written as

E(A, I) = Eb(A,δ )+Es(A,δ ), (85)

Es(A,δ ) = EIS
s (A,δ )+EIV

s (A,δ ), (86)

EIV
s (A,δ ) = EIV

sur f(A,δ )+EIV
ind(A,δ ), (87)

EIS
s (A,δ ) = EIS

sur f(A,δ )+EIS
curv(A,δ )+EIS

ind(A,δ ), (88)

EIS
sur f(A,δ ) = EIS,L

sur f(A,δ )+EIS,NL
sur f (A,δ ), (89)

EIS
curv(A,δ ) = EIS,L

curv(A,δ )+EIS,NL
curv (A,δ ), (90)

where the bijective relation (for a given mass) betweenI and
δ is given by Eq. (46). The different isoscalar termsEIS, j

i are
defined by Eqs. (54) to (57), with the diffusenessa(A,δ ) de-
termined within the gaussian approximation, Eq. (82). The
isovector componentsEIV

i are introduced in Eq. (79), where
the curvature term, in this gaussian approximation, is identi-
cally zero by construction.

In the following, we will study each of these terms, and
specifically their dependence with the asymmetryδ . For this
comparison, we have chosen a representative isobaric chain
A = 100 for which the ETF approximation was successfully
compared to HF results in Fig. 14, for the SLy4 interaction.
For this choice of mass,δ ≈ 0 corresponds to the proton
dripline andδ ≈ 0.3 the neutron dripline (see Fig. 6).
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Due to our limited experimental knowledge of the isovector
properties of the effective interaction, the behavior of the dif-
ferent energy terms with asymmetry is to some extent model
dependent. In order to sort out general trends we have consid-
ered different Skyrme functionals which approximately span
the current uncertainties on the density dependence of the
symmetry energy.

The corresponding bulk parameters are reported in Ta-
ble I. In this table, the calculated surface coefficients
(J1/2,L1/2,K1/2) entering Eq. (79) and (82) are also given. As
it is well known [55], the different interactions are very close
at half saturation density, reflecting the fact that all Skyrme pa-
rameters have been fitted on ground state properties of finite
nuclei, which correspond to an average density of the order
of ρsat/2. Nevertheless, a considerable spread is already seen
at saturation density, showing that the extrapolation of isovec-
tor properties to unexplored density domains is still not well
controlled [55].

Concerning the LNS interaction, the parametrization pro-
posed in Ref. [62] corresponds to a too high saturation den-
sity which is not realistic. This induces a trivial deviation
with respect to the other interactions in both the bulk and sur-
face isovector components. For this reason, only the isovector
properties of this functional are of interest for this study.

A more complete study of the effective interactions param-
eter space would be necessary to reach sound conclusions on
the quantitative model dependence, but from the representa-
tive chosen interactions, we can already dress some qualitative
interpretations.

The bulk energy per nucleon is shown in the upper panel of
Fig. 15. At low asymmetries, the curves are indistinguishable
reflecting the good present knowledge of symmetric nuclear
matter properties. The only exception is given by LNS, which
presents a global shift with respect to the other functionals. As
already remarked, this is due to the irrealistically high satura-
tion density of this parametrization (tab. I). However, we can
see that the behavior with isospin is comparable to the one of
the other functionals, reflecting a compatible bulk symmetry
energy. For the highest asymmetriesδ & 0.25, we can see
that all the parametrizations differ, which reflects the larger
uncertainties for asymmetric matter.

The lower panel of Figure 15 displays the surface correc-
tions. We can see that the qualitative behaviour of the differ-
ent models is the same:Es/A increases with the asymmetry,
leading to a positive sign of the corresponding symmetry en-
ergy. As it has been already discussed in Ref. [19], this comes
from the consideration of the bulk asymmetryδ instead of the
global oneI in the definition of the nuclear bulk.

The increase rate with isospin is not the same in the differ-
ent models, reflecting the different surface symmetry energies
of the functionals. In particular, the steep behaviour predicted
by the SkI3 parametrization is due to the stiff isovector prop-
erties of this effective interaction (seeLsymandKsym in tab. I),
which lay close to the higher border of the presently accepted
values for these parameters[55].

Moreover, the four considered interactions predict very dif-
ferent values ofEs. In particular, atδ = 0 for which the SLy4,
SkI3 and SGI models are in perfect agreement on the bulk en-
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FIG. 15. (Color online) Bulk (upper panel) and surface (lower
panel) energy per nucleon as a function of the bulk asymmetryδ
for isobaric nucleiA= 100, predicted by Eq. (84). Different Skyrme
interactions are considered: SLy4 [23] (full red), SkI3 [60] (dashed
green), SGI [61] (dotted blue), LNS [62] (dashed-dotted black).

ergy, they however differ from∼ 500 keV per nucleon on the
surface energies. We will come back to this surprising result
later in this section.

Fig. 16 shows the energy decomposition of Eqs. (86) and
(87). As expected, atδ = 0, though not identically zero (see
Eq. (81)), the isovector energy (lower panel) is completely
negligible. This a-posteriori justifies the assumptionEIV

s (0) =
0 we made in order to obtaina0 in Eq. (77). However, for
asymmetric systems, though smaller than the isoscalar energy
(upper panel), the isovector energy cannot be neglected. In-
deed, its dependence withδ is much stronger, meaning that
the isovector term is the most important term determining the
surface symmetry energy . Concerning the mass independent
term, we can see that it is negligible compared to the other
components, as expected for the medium-heavy nucleus con-
cerned by this picture. Finally, we can observe that the isovec-
tor energy is not quadratic withδ , thus confirming that the
linear terms of Eq. (79) cannot be neglected.

Fig. 17 shows the predictions of the different functionals
concerning the parameters associated to the density profiles,
namely the diffuseness (upper panel), the neutron skin (mid-
dle panel) and their ratio (lower panel). We can see that, fora
given asymmetryδ , the spread of the diffuseness values given
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TABLE I. Bulk and surface nuclear properties for the different Skyrme interactions examined in this paper.

ρsat(0) m∗/m Ksat Jsym Lsym Ksym J1/2 L1/2 K1/2

Interaction (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
SLY4 [23] 0.1595 0.595 230.0 32.00 46.0 -119.8 22.13 38.6 -74.0
SkI3 [60] 0.1577 0.577 258.2 34.83 100.5 73.0 18.85 46.7 -25.2
SGI [61] 0.1544 0.608 261.8 28.33 63.9 - 52.0 16.75 38.4 -29.7
LNS [62] 0.1746 0.826 210.8 33.43 61.5 -127.4 21.10 44.6 -56.8
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FIG. 16. (Color online) Isoscalar (upper panel) and isovector (lower
panel) surface energy per nucleon as a function of the bulk asymme-
try δ for isobaric nucleiA = 100, predicted by Eq. (84). Different
Skyrme interactions are considered: SLy4 [23] (full red), SkI3 [60]
(dashed green), SGI [61] (dotted blue), LNS [62] (dashed-dotted
black).

by Eq. (82) is very important, reflecting the poor knowledge
of this quantity. These large uncertainties can be understood
considering that the diffuseness does not seem to affect the
energy in a systematic way. In particular, though SkI3 and
SGI models surprisingly give the same diffuseness, the corre-
sponding surface properties systematically differ. Moreover,
this similarity of the diffuseness cannot be straightforwardly
linked to any specific interaction property or parameter (see
tab. I). This reflects again the fact that the diffuseness is adel-
icate balance of all energy components, and is determined by
very subtle competing and opposite effects.

The middle part of the Figure shows the obvious correlation
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FIG. 17. (Color online) Diffusenessa (upper panel), neutron skin
thickness∆R (middle panel) and the ratio∆R/a (lower panel) as a
function of the bulk asymmetryδ for the isobaric chainA = 100,
predicted within the gaussian approximation (see text). Different
Skyrme interactions are considered: SLy4 [23] (full red), SkI3 [60]
(dashed green), SGI [61] (dotted blue), LNS [62] (dashed-dotted
black).

between∆R= R−Rp andδ . It is clear from this behavior that
quadratic terms in the neutron thickness cannot be neglected
to correctly estimate the symmetry energy (see Eq. (79)). Itis
interesting to observe that the SGI and LNS models give very
close results for this quantity, and the same was true for the
isovector part of the surface energy in Figure 16 above.

This comes from the fact, already observed in the literature
[55], that∆R is mainly determined by the slope of the sym-
metry energyLsym [55] which are close in the SGI and LNS
models. Our work confirms that the neutron thickness can be
viewed as a measurement of theL parameter. Indeed,∆R can
be well approximated using the equivalent hard spheres radii
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RHS(δ ), RHS,p(δ ), see Eq. (75). This means that∆R can be
seen as a function of the saturation densityρsat(δ ). In turn,
the saturation density is given by Eq. (42) which at first or-
der is quadratic inδ 2 with the coefficientLsym/Ksat. Since
Ksat is relatively well constrained, we then understand why
∆R is mainly determined byLsym. In particular, the neutron
skin thickness is predicted to be the same in the two specific
interactions SGI and LNS. Since the surface isovector energy
Eq. (79) at a given bulk asymmetry mainly depends on the
neutron skin, this also explains why we obtain the same ener-
gies for the two models in Fig. 16.

This essential role of∆R to determine the symmetry energy
is confirmed observing from Fig. 16 and 17 that Skyrme mod-
els which predict thicker neutron skin, that is higherLsym, give
systematically larger values of the isovector surface energy.

The lower part of Figure 17 shows the ratio∆R/a as a func-
tion of δ . Though it is the quantity which mainly governs the
behavior of Eq. (79), it does not constrain the surface isovector
energyEIV . Indeed, same∆R/a from the functionals SkI3 and
SGI lead to different energies (Fig. 16, lower panel), corrobo-
rating the above discussion: only theL parameter, or equiva-
lently the neutron skin thickness∆R, is relevant to determine
the isovector contribution.

This stresses the importance of the experimental measure-
ment of neutron skin thickness as a key quantity for the knowl-
edge of the density dependence of the symmetry energy [55].
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local (right) part of the isoscalar surface energy per nucleon, into
its surface and curvature component as a function of the bulkasym-
metry δ for the isobaric chainA = 100, as predicted by Eq. (84).
Different Skyrme interactions are considered: SLy4 [23] (full red),
SkI3 [60] (dashed green), SGI [61] (dotted blue), LNS [62] (dashed-
dotted black).

To conclude, we study in Figure 18 the decomposition into
local and non-local terms as predicted by the different func-
tionals. Only the isoscalar part of the surface energy is consid-
ered because these different terms are mixed up in the gaus-
sian approximation we have employed for the isovector com-
ponent.

Again, we can see that the qualitative behavior of the differ-
ent Skyrme models is the same for each specific term. We can

then safely conclude that the non-local curvature component
EIS,NL

curv can be neglected for medium-heavy nucleiA& 100, but
the local curvature energy has to be taken into account since
it represents for these nuclei 10% to 25% of the total surface
local energy, depending on the interaction choice and on the
asymmetryδ .

Concerning theδ dependence of the isoscalar surface ener-
gies in Fig. 18, we can notice that the local and non-local parts
have opposite behaviors, leading to the rather flat curves ob-
served in Fig. 16, upper panel. In section II C and III A 3, we
have shown that the exact equalityEIS,L

sur f = EIS,NL
sur f (Eq.(36))

is obtained only if both curvature and isovector terms are ne-
glected in the determination of the diffuseness. However, the
neglect of isovector terms leads to a wrong dependence withδ
as shown in Fig. 7. Thus, isovector terms cannot be avoided.

The results of Figure 18 clearly show that, once these terms
are consistently added in the variational procedure (Eq. (82)),
the equalityEIS,L

sur f = EIS,NL
sur f is completely violated for asym-

metric systems. Therefore the isoscalar energy strongly de-
pends on the neutron skin thickness, even if it is an indirect
dependence through the diffuseness. This shows that, though
the energy can be splitted into different terms, these latter can-
not be decorrelated and have to be treated altogether.

We have already observed in Figure 15 that the different
functionals predict very different surface energy atδ = 0,
which might be surprising considering that the symmetric nu-
clear properties are supposed to be well constrained by ex-
perimental data. An obvious interpretation would be that the
discrepancy comes from the surface properties, that is the non-
local gradient terms and the (poorely constrained) diffuseness
parameter. However, comparing the different values of the
predicted diffuseness atδ = 0 from Figure 17, we can see
thataSGI < aLNS= aSkI3 < aSLy4. This inequality sequence is
not respected for the surface energyEsur f(δ = 0) in Fig. 18,
meaning that the difference of surface energies cannot be as-
cribed to the diffuseness.

The possible dependence on the couplings of gradient and
spin-orbit terms is also excluded. Indeed, we can see from
Figure 18 that atδ = 0, the isovector part is zero by def-
inition and therefore the equalityEIS,L

sur f = EIS,NL
sur f is verified.

This means that the total surface energy for symmetric bulk is
Esur f = 2EIS,L

sur f, which does not depend on the non-local terms
of the functional, but only depends on the bulk interaction
coefficients(ρsat(0),C0,C3,Ce f f ,α) according to Eqs. (17)-
(19).

We can conclude that the differences of the total surface en-
ergies observed forδ = 0, that is nuclei very close to isospin
symmetry, in Figure 15, does not come from the non-local
properties but are intrinsically linked to the bulk interaction
coefficients(C0,C3,Ce f f ,α), though the SLy4, SkI3 and SGI
models correpond to compatible isoscalar equations of state
(that is: compatible values for the saturation densityρsat(0),
bulk energyEb(δ = 0), compressibilityKsat and effective
mass). This shows that, at variance with the skin thickness
∆R which is strongly correlated to the isovector equation of
state, the nuclear surface energy very poorely constrains the
equation of state, even for symmetric or quasi-symmetric nu-
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clei.

V. SUMMARY AND CONCLUSIONS

In this paper we have addressed the problem of the determi-
nation of an analytical mass formula with coefficients directly
linked to the different parameters of standard Skyrme func-
tionals, in the extended Thomas-Fermi (ETF) approximation
at second order in̄h. The purpose of this effort is twofold.
On one side, such a formula is useful for astrophysical ap-
plications where extendend calculations are needed covering
the whole mass table and using a variety of effective interac-
tion to assess the sensitivity of astrophysical observables to
the nuclear physics inputs [31]. On the other side, analytical
expressions of the different coefficients of the mass formula in
terms of the Skyrme couplings allow a better understanding of
the correlation between these couplings and the different as-
pects of nuclear energetics, for the construction of optimized
fitting procedures of the functionals.

The modelling of Fermi density profiles proposed in
Ref. [20] allows an (almost) exact analytical evaluation of
the isoscalar part of the nuclear energy, naturally leadingto
the appearance in the surface energy of a curvature term and
a constant term independent of the baryonic number. The
diffuseness of the density profile is variationally calculated
within the same formalism, and a simple analytical expres-
sion is given. The relative importance of local and non-local
terms is studied in detail. Non-local energy components arise
both from gradient and spin-orbit in the Skyrme functional,
and from the higher̄h terms in the Wigner-Kirkwood expan-
sion of the kinetic energy. We show that in the limit of semi-
infinite matter the isoscalar surface energy is∝ A2/3 and solely
depends on the local terms. This remarkable property al-
ready observed in Ref. [12] is however violated in finite nuclei
even if spherical symmetry is assumed, and both components
contribute in a complex way to the determination of the sur-
face energy. However, the huge dispersion observed on the
value of the surface tension for symmetric nuclei in modern
Skyrme functionals is essentially due to the local couplings,
even if these different functionals correspond to comparable
saturation properties of symmetric nuclear matter. This find-
ing means that nuclear matter properties are not sufficient to
pin down surface properties of finite nuclei even in the sym-
metric case.

The extension to isospin asymmetric nuclei is highly non-
trivial. No exact analytical integration of the ETF functional
is possible in the presence of isospin inhomogeneities, andap-
proximations have to be done. We have proposed two different
approximations for the determination of the surface symmetry
energy. The first approximation consists in completely negect-
ing the difference between the neutron and proton radius, that
is the neutron skin∆R. The resulting surface energy shows a
quadratic dependence on the isospin asymmetryI , and con-
sists of local and non-local plane surface, curvature and mass
dependent terms which are simple generalizations of the ex-
pressions obtained for symmetric nuclei. Surprisingly, this
crude approximation reproduces very well numerical Hartree-

Fock (HF) results for all stable nuclei up to asymmetries of the
order ofI ≈ 0.2, and leads to a relatively limited overestima-
tion of the order of≈ 400 KeV/nucleon close to the driplines.

A better approximation is obtained if isospin inhomo-
geneities are accounted for. To this aim, we have introduced
a different radius for the neutron and proton distributions, as
well as an explicit difference between the global asymmetryI
and the asymmetry in the nuclear bulkδ , due to both Coulomb
and neutron skin effects. In this more general case, to obtain a
mass formula we make the assumption that the surface energy
density is peaked at the nuclear surface, and curvature terms
can be neglected. A reproduction of HF results within≈ 200
KeV/nucleon at the driplines is obtained, and simple expres-
sions are given for the surface energy and the surface diffuse-
ness parameter. In particular we show that both linear and
quadratic terms inδ and∆R are needed to correctly explain
the surface term. Moreover, within this analytical mass for-
mula, we show that the neutron skin is essentially determined
by the slope of the symmetry energy at saturation, thus con-
firming earlier numerical results from different groups [55].
Conversely, the surface symmetry energy is shown to be due to
a complex interplay of all different local and non-local terms
in the energy functional. This implies that constraints on the
symmetry energy parameters (Jsym,Lsym,Ksym) from mass mea-
surements might be model dependent and misleading. As a
further developement of this work, we plan to extend the mass
formula to the case of neutron-rich nuclei beyond the dripline
in equilibrium with a neutron (and possibly proton) gas. Such
a parametrization will allow including modifications of the
nuclear surface energy due the presence of continuum states
in nuclear statistical equilibrium models, currently usedfor
different astrophysical applications in supernova and neutron
star physics [31]. A self-consistent inclusion of pairing effects
in the local density BCS approximation, using consistent cal-
culations for the mean field and gap equation with the same
energy functional, is also in progress [63].
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Appendix A: The Skyrme effective interaction

The Skyrme functional for the energy densityH (r) is ex-
pressed as [23, 53]

H (r) = K (r)+H0(r)+H3(r)+He f f(r)+

+ H f in(r)+Hso(r)+Hsg(r), (A1)

where the kinetic term, the effective mass term, the zero-range
term, the density-dependent term, the finite-range term, the
spin-orbit term and the spin-gradient term are respectively

K =
h̄2

2m
τ,

He f f =Ce f fρτ +De f fρ3τ3,

H0 =C0ρ2+D0ρ2
3,

H3 = (C3ρ2+D3ρ2
3)ρα ,

H f in =Cf in(∇∇∇ρ)2+D f in(∇∇∇ρ3)
2,

Hso=CsoJ ·∇∇∇ρ +DsoJ3 ·∇∇∇ρ3,

Hsg=CsgJ2+DsgJ2
3, (A2)

and where we have introduced the local isoscalar and isovec-
tor particle densities, kinetic densities and spin-orbit density
vectors:

ρ(r) = ρn(r)+ρp(r),

ρ3(r) = ρn(r)−ρp(r),

τ(r) = τn(r)+ τp(r),

τ3(r) = τn(r)− τp(r),

J(r) = Jn(r)+ Jp(r),

J3(r) = Jn(r)− Jp(r). (A3)

The coefficientsCi in equations (A2), associated with the
isoscalar contribution, are linear combinations of the tradi-
tional Skyrme parametersti , xi andW0 as follows:

C0 =
3
8

t0,

C3 =
1
16

t3,

Ce f f =
1
16

[

3t1+ t2(4x2+5)
]

,

Cf in =
1
64

[

9t1− t2(4x2+5)
]

,

Cso=
3
4

W0,

Csg=
1
32

[

t1(1−2x1)− t2(1+2x2)
]

, (A4)

while theDi coefficients, associated to the isovector part of
the energy, are given by:

D0 =−
1
8

t0
[

2x0+1
]

,

D3 =−
1
48

t3
[

2x3+1
]

,

De f f =
1
16

[

t2(2x2+1)− t1(2x1+1)
]

,

D f in =−
1
64

[

3t1(2x1+1)− t2(2x2+1)
]

,

Dso=
1
4

W0,

Dsg=
1
32

[

t1− t2
]

. (A5)

The semi-classical development in̄h, so-called Extended
Thomas-Fermi (ETF), provides expressions for the kinetic
densities and spin-orbit density vectors, that is at the second
order [1]:

τq(r) = τ0q(r)+ τ2q(r)+O(h̄4), (A6)

Jq(r) = J0q(r)+ J2q(r)+O(h̄4). (A7)

The results of nuclear matter calculations give the zeroth order
and read:

τ0q(r) =
3
5
(3π2)2/3ρq(r)5/3, (A8)

J0q(r) = 0. (A9)

The Wigner-Kirkwood expansion gives the second order of
the kinetic densities development:

τ2q(r) = τ l
2q(r)+ τnl

2q(r)+ τso
2q(r), (A10)

with

τ l
2q =

1
36

(∇∇∇ρq)
2

ρq
+

1
3

∆ρq,

τnl
2q =

1
6

∇∇∇ρq∇∇∇ fq
fq

+
1
6

ρq
∆ fq
fq

−
1
12

ρq

(

∇∇∇ fq
fq

)2

,

τso
2q =

1
2

(

2m

h̄2

)2

ρq

(

Wq

fq

)2

. (A11)

The second order of the Thomas-Fermi approximation for the
spin-orbit currentsJ2q(r) reads

J2q =−
2m

h̄2 ρq
Wq

fq
, (A12)

where we have introduced the effective mass coefficients
fq(r) = m/m∗

q(r) with m∗
q(r) the effective masses, and the

spin-orbit potentialsWq(r) as follows [54]:

fq = 1+
2m

h̄2

(

Ce f fρ ±De f fρ3
)

, (A13)

Wq =Cso∇∇∇ρ ±Dso∇∇∇ρ3

+2CsgJ±2DsgJ3, (A14)
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where± stand for neutrons (protons) .
In several Skyrme interactions (such as SLy4, SIII, SGII...),

the spin-gradient termHsg are neglected. Therefore in the fol-
lowing, we takeCsg= Dsg= 0, which in particular uncouples
the equations (A12) and (A14). For more general Skyrme in-
teractions, a full treatment of the spin-gradient terms should
be implemented [54].

In symmetric matter, we can set the usual following equal-
ities, at every locationr

2ρq(r) = ρ(r),

2τq(r) = τ(r) = τ0(r)+ τ l
2(r)+ τnl

2 (r)+ τso
2 (r),

2Jq(r) = J(r), (A15)

with

τ0 =
3
5

(

3π2

2

)2/3

ρ5/3,

τL
2 =

1
36

(∇∇∇ρ)2

ρ
+

1
3

∆ρ ,

τNL
2 =

1
6

∇∇∇ρ∇∇∇ f
f

+
1
6

ρ
∆ f
f
−

1
12

ρ
(

∇∇∇ f
f

)2

,

τso
2 =

1
2

(

2m

h̄2

)2

ρ
(

Cso∇∇∇ρ
f

)2

, (A16)

J =−
2m

h̄2 ρ
Cso∇∇∇ρ

f
, (A17)

where we have usedWq = Cso∇∇∇ρ and where we have intro-
duced the effective mass

f = fq = 1+κρ with κ =
2m

h̄2 Ce f f . (A18)

With these formulae, the energy density given by Eqs. (A2)
straightforwardly reads

H [ρ ] = h(ρ)+
h̄2

2m
f (τ l

2+ τnl
2 )+Cf in (∇∇∇ρ)2

+Vso
ρ
f
(∇∇∇ρ)2 , (A19)

where we have highlighted the local terms

h(ρ) =
h̄2

2m
f τ0+C0ρ2+C3ρα+2, (A20)

and where we have gathered the spin-orbit current (CsoJ ·∇∇∇ρ)

and kinetic density (̄h
2

2m f τso
2 ) terms which lead to the definition

of the spin-orbit potentialVso=− 1
2

2m
h̄2 C2

so.

Appendix B: Integrals of Fermi functions

We give here the formulae useful to analytically integrate
Fermi functions to some power.

η(k)
γ

k

0 1 2

γ

1 0 π2/6 0

5/3 −0.758981245 1.517431001 −2.60168706

2 −1 π2/6 −π2/3

α +2 −1.10223102 1.72183325 −3.59345480

3 −3/2 1/2+π2/6

4 −11/6 1+π2/6

5 −25/12 35/24+π2/6

6 −137/60 45/24+π2/6

7 −49/20 203/90+π2/6

8 −363/140 469/180+π2/6

9 −761/280 29,531/10,080+π2/6

10 −7,129/2,520 6,515/2,016+π2/6

TABLE II. Values of the coefficientsη(k)
γ calculated via the equa-

tions of appendix B 1.
The calculations forγ ∈ N are analytical; numerical otherwise. For

the specificη(k)
α which depends on the value ofα, that is of the ef-

fective interaction, we show here the result considering the SLy4 in-

teraction (α = 1/6). Theη(k)
i∈N are given up to the 7th order in the

spin-orbit Taylor expansion (see text).

1. General formulae

The Fermi functionF(r) (Eq. (6)) to any power can be in-
tegrated in any dimension in using the following general for-
mula [22]:

Im,γ = 4π
∫ +∞

0
drF γ (r)rm (B1)

≃ 4π
Rm+1

m+1

[

1+(m+1)
m

∑
k=0

(

m
k

)

η(k)
γ

( a
R

)k+1
]

,

with m∈N, γ ∈ R
+∗,

η(k)
γ = (−1)k

∫ ∞

0
du

[

1+(−1)ke−γu

(1+e−u)γ −1

]

uk, (B2)

and the binomial coefficient
(m

k

)

= m!/(k!(m− k)!). The val-
ues of the coefficients that have been used for this work are
given in table (II).

Equation (B2) is an approximation for which the tiny error
is∼ exp(−R/a). One can observe that

η(0)
γ+1−η(0)

γ =−
1
γ

; η(k)
γ+1−η(k)

γ =−
k
γ

η(k−1)
γ (k>0).(B3)

2. Expressions of a 3D integral as 1D integrals

In this section we express the difference∆Iγ ′,γ = I2,γ ′ − I2,γ
as a sum of 1-dimensional integrals.
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The moments of the difference between two one-
dimensional Fermi functionsF(x) =

(

1+ex/a
)−1

to different
powersγ ′,γ can be integrated as [22]

∫ +∞

−∞
xk∆Fγ ′,γ(x)dx= ak+1

(

η(k)
γ ′ −η(k)

γ

)

, (B4)

with ∆Fγ ′,γ = Fγ ′ −Fγ .
Making the change of variablex = r −R, we can express

the 3-dimensional integralI2,γ =
∫

drFγ (r) as a sum of three
1-dimensional integrals of moments of Fermi functionsF(x):

I2,γ = 4π
∫ +∞

−R
(x+R)2Fγ (x)dx+4π

∫ +∞

−∞
(x+R)2Fγ (x)dx

− 4π
∫ −R

−∞
(x+R)2Fγ (x)dx, (B5)

where we have used the Chasles formula to get integrals over
the entire slab-space. Assuming that the bulk is reached in the
”negative” region, that isFγ (x<−R) = 1, we can express the
difference of two Fermi functions to different powers

∆Iγ ′,γ = 4πR2
∫ +∞

−∞
∆Fγ ′,γ (x)dx+8πR

∫ +∞

−∞
x∆Fγ ′,γ (x)dx

+ 4π
∫ +∞

−∞
x2∆Fγ ′,γ(x)dx. (B6)

Because of the previous approximation, we have spuriously
inserted a bulk part in Eq. (B6), but with the very tiny error

∼
(

exp(−γ ′R/a)−exp(−γR/a)
)

. Computing Eq. (B6) with

Eq. (B4) and expanding the radius parameterR as a series of
(a/RHS) until the third order according to Eq. (8), we finally

get at the third order in(a/RHS):

ρsat

3
∆Iγ ′,γ =

(

η(0)
γ ′ −η(0)

γ

) a
rsat

A2/3

+ 2
(

η(1)
γ ′ −η(1)

γ

)

(

a
rsat

)2

A1/3

+

(

(

η(2)
γ ′ −η(2)

γ

)

−
2
3

π2
(

η(0)
γ ′ −η(0)

γ

)

)(

a
rsat

)3

+ O

(

(

a
rsat

)4

A−1/3

)

, (B7)

with rsat = RHSA−1/3 =
(4

3πρsat
)−1/3

. Let us notice that we
can also obtain equation (B7) using the general formula (B2).

Appendix C: Analytical expression for the surface energy

We show in this section how equation (B7) allows to obtain
an analytical formula for the symmetric localEL

s and non-
local ENL

s surface energy which lead to equations (15), (16)
(19) and (22). We also detail the gaussian approximations as
a function of 1-dimensional integrals.

1. The isoscalar local energy

The surface local energyEL
s only depends on the density

profile ρ(r) = ρsatF(r) throughh(ρ) = ∑γ cγργ (see Eq. (5)
for the values ofγ, cγ ), such that

EL
s =

∫

dr
{

h(ρ)−
h(ρsat)

ρsat
ρ
}

= ∑
γ

cγργ
sat∆Iγ,1. (C1)

Computing with the equation (B7) for theγ-values ofh(ρ)
(γ = 5/3, 8/3, 2 and(α +2)), we obtain

EL
s = 3

{

h̄2

2m

(

3π2

2

)2/3
3
5

ρ2/3
sat

[

η(0)
5/3+κρsatη

(0)
8/3

]

−C0ρsat+C3ρα+1
sat η(0)

α+2

}

a
rsat

A2/3

+6

{

h̄2

2m

(

3π2

2

)2/3
3
5

ρ2/3
sat

[

η(1)
5/3+κρsatη

(1)
8/3−

π2

6
m

m∗
sat

]

+C3ρα+1
sat

(

η(1)
α+2−

π2

6

)

}

(

a
rsat

)2

A1/3

+3

{

h̄2

2m

(

3π2

2

)2/3
3
5

ρ2/3
sat

[

η(2)
5/3−

2π2

3
η(0)

5/3+κρsat

(

η(2)
8/3−

2π2

3
η(0)

8/3

)]

+
π2

3
C0ρsat+C3ρα+1

sat

(

η(2)
α+2−

2π2

3
η(0)

α+2

)

}

(

a
rsat

)3

+O

(

(

a
rsat

)4

A−1/3

)

, (C2)

where the values ofη(k)
γ are given in table II. Using (B3)

which gives a relation betweenη(k)
8/3 andη(k)

5/3, we get the local

energyEL
nb as a function ofη(k)

5/3 andη(k)
α+2 only (k = 0,1,2)

(Eqs. (15), (16) and (19)).

2. The symmetric non-local energy

The non-local energyENL
s is the integration of a quadratic

function in the density gradient such that we can put it on the
form ∑γ cγ (∇ρ)2 ργ−2 (see Eq. (14) for the values ofγ, cγ ).
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Expressing the Fermi gradient function as follows

∇ρ(r) = ρsat∇F(r) ; ∇F(r) =
1
a

(

F2(r)−F(r)
)

, (C3)

we can write

ENL
s =

∫

dr∑
γ

cγ (∇ρ)2 ργ−2

=
1
a2 ∑

γ
cγργ

sat

∫

dr
[(

Fγ+2−Fγ+1
)

−
(

Fγ+1−Fγ
)]

= ∑
γ

cγργ
sat

[

∆Iγ+2,γ+1−∆Iγ+1,γ

]

. (C4)

For γ ≥ 1, using the recursion relation (B3), we have

η(0)
γ+2−η(0)

γ+1−
(

η(0)
γ+1−η(0)

γ

)

=
1

γ (γ +1)
,

η(1)
γ+2−η(1)

γ+1−
(

η(1)
γ+1−η(1)

γ

)

=
1

γ (γ +1)

(

η(0)
γ +1

)

,

η(2)
γ+2−η(2)

γ+1−
(

η(2)
γ+1−η(2)

γ

)

=
2

γ (γ +1)

(

η(1)
γ +η(0)

γ

)

,

(C5)

which allows simplifying the expression ofENL
s once we have

computed Eq. (C4) with Eq. (B7):

ENL
s =

1
a2 ∑

γ
cγργ−1

sat
1

γ (γ +1)
{

3
a

rsat
A2/3+6

[

η(0)
γ +1

]

(

a
rsat

)2

A1/3

+6

[

η(1)
γ +η(0)

γ −
π2

3

](

a
rsat

)3
}

+O

(

(

a
rsat

)4

A−1/3

)

. (C6)

Looking at the definition of the non-local energyENL
s Eq. (14),

one can see that there are terms∝ f−1 = (1+κρ)−1. In order
to have an expression in the form of Eq. (C6), we need to make
a Taylor expansion, such thatf−1 = ∑i=0(−1)i(κρ)i . Then
we can straightforwardly compute the non-local energy with
Eq. (C6) (withγ = 1, 2, i + 2 andi + 3) to obtain Eqs. (15),
(16) and (22).

3. The isovector energy

In this section we develop the 3-dimensional gaussianG (r)
integral

EG = 4π
∫ ∞

0
drr 2

G (r),

= 4π
∫ ∞

0
drr 2

A exp

(

−
(r −RM)2

2σ2

)

(C7)

as 1-dimensional integrals in order to obtain the isovectorsur-
face energy as a function of the nucleus mass and of the effec-
tive interaction parameters. As for the symmetric energy, we
make the variable changex= r −RM:

EG = 4πA

∫ +∞

−∞
dx(x+RM)

2exp

(

−
x2

2σ2

)

− 4πA

∫ −RM

−∞
dx(x+RM)

2exp

(

−
x2

2σ2

)

. (C8)

Since we are interested in the surface energy, we assume that
the gaussianG (r) is zero at the center of the nucleus, such that
the second integral in Eq. (C8) is negligible with an accuracy
∼ exp

(

−R2
M/(2σ2)

)

. Then integrating the gaussian moments
straightforwardly lead to

EG = 2(2π)3/2σA
(

R2
M +σ2) , (C9)

where we have used the expression of the variance as a
function of the energy density second derivatives (see sec-
tion III B). To haveEG as a function of the mass, we just need
to express the gaussian maximum positionRM as a function
of A. If we assumeRM = R, it reads, using Eq. (8):

EG = 2(2π)3/2σA r2
sat

[

A2/3+
σ2

r2
sat

−
2π2

3

(

a
rsat

)2

+O

(

(

a
r0

)4

A−2/3

)]

(C10)

In the general case, if we define∆R= RM −R, we find addi-
tional terms, especially curvature:

EG = 2(2π)3/2 σA r2
sat

[

A2/3+2
∆R
rsat

A1/3+
σ2

r2
sat

−
2π2

3

(

a
rsat

)2

+

(

∆R
rsat

)2

−
2π2

3
∆R
rsat

(

a
r0

)2

A−1/3+O

(

(

a
r0

)4

A−2/3

)]

.

(C11)
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