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On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a
gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters.
The data around the time of the event were analyzed coherently across the LIGO network using a suite of
accurate waveform models that describe gravitational waves from a compact binary system in general
relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36þ5

−4M⊙ and
29þ4

−4M⊙; for each parameter we report the median value and the range of the 90% credible interval. The
dimensionless spin magnitude of the more massive black hole is bound to be < 0.7 (at 90% probability).
The luminosity distance to the source is 410þ160

−180 Mpc, corresponding to a redshift 0.09þ0.03
−0.04 assuming

standard cosmology. The source location is constrained to an annulus section of 610 deg2, primarily
in the southern hemisphere. The binary merges into a black hole of mass 62þ4

−4M⊙ and spin 0.67þ0.05
−0.07 .

This black hole is significantly more massive than any other inferred from electromagnetic observations in
the stellar-mass regime.

DOI: 10.1103/PhysRevLett.116.241102

I. INTRODUCTION

In Ref. [1] we reported the detection of gravitational
waves (GWs), observed on September 14, 2015 at 09:50:45
UTC, by the twin instruments of the twin instruments of
the Laser Interferometer Gravitational-Wave Observatory
(LIGO) located at Hanford, Washington, and Livingston,
Louisiana, in the USA [2,3]. The transient signal, named
GW150914, was detected with a false-alarm-probability of
< 2 × 10−7 and has been associated with the merger of a
binary system of black holes (BHs).
Here we discuss the properties of this source and its

inferred parameters. The results are based on a complete
analysis of the data surrounding this event. The only
information from the search stage is the time of arrival
of the signal. Crucially, this analysis differs from the search
in the following fundamental ways: it is coherent across the
LIGO network, it uses waveform models that include
the full richness of the physics introduced by BH spins,
and it covers the full multidimensional parameter space
of the considered models with a fine (stochastic) sampling;
we also account for uncertainty in the calibration of the
measured strain. The results of this analysis provide the
parameter values quoted in Ref. [1] describing the proper-
ties of the source of GW150914. (Following the publication
of Ref. [1] we repeated the analysis after fixing minor errors
in the coordinate transformation between precessing and

nonprecessing binary systems that affects waveforms used
in the analysis. The parameter values reported here, in
Table I and the figures, are the updated values and should
be used for future studies. The only value different from
what was reported in Ref. [1] is the total energy radiated,
which previously was 3.0þ0.5

−0.5M⊙c2 and now rounds to
3.0þ0.5

−0.4M⊙c2).
In general relativity, two objects in orbit slowly spiral

together due to the loss of energy and angular momentum
through gravitational radiation [7,8]. This is in contrast
to Newtonian gravity where bodies can follow closed,
elliptical orbits [9,10]. As the binary shrinks, the frequency
and amplitude of the emitted GWs increase. Eventually the
two objects merge. If these objects are BHs, they form a
single perturbed BH that radiates GWs as a superposition of
quasinormal ringdown modes. Typically, one mode domi-
nates soon after merger, and an exponentially damped
oscillation at constant frequency can be observed as the BH
settles to its final state [11,12].
An isolated BH is described by only its mass and spin,

since we expect the electric charge of astrophysical BHs
to be negligible [13–16]. Merging (BBHs) are therefore
relatively simple systems. The two BHs are described by
eight intrinsic parameters: the masses m1;2 (defined as the
gravitational masses of the BHs in isolation) and spins S1;2
(magnitude and orientation) of the individual BHs. For a
BH of mass m, the spin can be at most Gm2=c; hence,
it is conventional to quote the dimensionless spin magni-
tude a ¼ cjSj=ðGm2Þ ≤ 1. Nine additional parameters are
needed to fully describe the binary: the location (luminosity
distance DL, right ascension α, and declination δ); orien-
tation (the binary’s orbital inclination ι and polarization ψ );
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time tc and phase ϕc of coalescence, and two parameters
describing eccentricity (the magnitude e and the argument
of periapsis) of the system.
Radiation reaction is efficient in circularizing orbits [17]

before the signal enters the sensitive frequency band of the
instruments (∼20–1000 Hz). In our analysis, we assume
circular orbits (we therefore do not include the eccentricity
parameters), and we find no evidence for residual eccen-
tricity, see the Discussion. Under the approximation of a
circular orbit, the binary emits GWs primarily at twice the
orbital frequency [18].
The gravitational waveform observed for GW150914

comprises ∼10 cycles during the inspiral phase from 30 Hz,
followed by the merger and ringdown. The properties of the
binary affect the phase and amplitude evolution of the
observed GWs, allowing us to measure the source param-
eters. Here we briefly summarize these signatures, and
provide an insight into our ability to characterize the
properties of GW150914 before we present the details of

the Results; for methodological studies, we refer the reader
to Refs. [4,19–24] and references therein.
In general relativity, gravitational radiation is fully

described by two independent, and time-dependent polar-
izations, hþ and h×. Each instrument k measures the strain

hk ¼ FðþÞ
k hþ þ Fð×Þ

k h×; ð1Þ
a linear combination of the polarizations weighted by the

antenna beam patterns Fðþ;×Þ
k ðα; δ;ψÞ, which depend on the

source location in the sky and the polarization of the waves
[25,26]. During the inspiral and at the leading order, the
GW polarizations can be expressed as

hþðtÞ ¼ AGWðtÞð1þ cos2ιÞ cosϕGWðtÞ; ð2aÞ
h×ðtÞ ¼ −2AGWðtÞ cos ι sinϕGWðtÞ; ð2bÞ

where AGWðtÞ and ϕGWðtÞ are the GWamplitude and phase,
respectively. For a binary viewed face-on (cos ι ¼ �1),

TABLE I. Summary of the parameters that characterize GW150914. For model parameters we report the median value as well as the
range of the symmetric 90% credible interval [4]; where useful, we also quote 90% credible bounds. For the logarithm of the Bayes
factor for a signal compared to Gaussian noise we report the mean and its 90% standard error from 4 parallel runs with a nested sampling
algorithm [5]. The source redshift and source-frame masses assume standard cosmology [6]. The spin-aligned EOBNR and precessing
IMRPhenom waveform models are described in the text. Results for the effective precession spin parameter χp used in the IMRPhenom
model are not shown as we effectively recover the prior; we constrain χp < 0.71 at 90% probability, see left panel of Fig. 5. The Overall
results are computed by averaging the posteriors for the two models. For the Overall results we quote both the 90% credible interval or
bound and an estimate for the 90% range of systematic error on this determined from the variance between waveform models. The sky
location associated with GW150914 is presented in Fig. 4 and discussed in the text.

EOBNR IMRPhenom Overall

Detector-frame total mass M=M⊙ 70.3þ5.3
−4.8 70.9þ4.0

−3.9 70.6þ4.6�0.5
−4.5�1.3

Detector-frame chirp mass M=M⊙ 30.2þ2.5
−1.9 30.6þ1.8

−1.8 30.4þ2.1�0.2
−1.9�0.5

Detector-frame primary mass m1=M⊙ 39.4þ5.5
−4.9 38.5þ5.6

−3.6 38.9þ5.6�0.6
−4.3�0.4

Detector-frame secondary mass m2=M⊙ 30.9þ4.8
−4.4 32.2þ3.6

−4.8 31.6þ4.2�0.1
−4.7�0.9

Detector-frame final mass Mf=M⊙ 67.1þ4.6
−4.4 67.6þ3.6

−3.5 67.4þ4.1�0.4
−4.0�1.2

Source-frame total mass Msource=M⊙ 65.0þ5.0
−4.4 65.0þ4.0

−3.6 65.0þ4.5�0.8
−4.0�0.7

Source-frame chirp mass Msource=M⊙ 27.9þ2.3
−1.8 28.1þ1.7

−1.6 28.0þ2.0�0.3
−1.7�0.3

Source-frame primary mass msource
1 =M⊙ 36.3þ5.3

−4.5 35.3þ5.2
−3.4 35.8þ5.3�0.9

−3.9�0.1

Source-frame secondary mass msource
2 =M⊙ 28.6þ4.4

−4.2 29.6þ3.3
−4.3 29.1þ3.8�0.1

−4.3�0.7

Source-frame final mass Msource
f =M⊙ 62.0þ4.4

−4.0 62.0þ3.7
−3.3 62.0þ4.1�0.7

−3.7�0.6

Mass ratio q 0.79þ0.18
−0.19 0.84þ0.14

−0.20 0.82þ0.17�0.01
−0.20�0.03

Effective inspiral spin parameter χeff −0.09þ0.19
−0.17 −0.05þ0.13

−0.15 −0.07þ0.16�0.01
−0.17�0.05

Dimensionless primary spin magnitude a1 0.32þ0.45
−0.28 0.32þ0.53

−0.29 0.32þ0.49�0.06
−0.29�0.01

Dimensionless secondary spin magnitude a2 0.57þ0.40
−0.51 0.34þ0.54

−0.31 0.44þ0.50�0.08
−0.40�0.02

Final spin af 0.67þ0.06
−0.08 0.66þ0.04

−0.06 0.67þ0.05�0.01
−0.07�0.02

Luminosity distance DL=Mpc 390þ170
−180 440þ150

−180 410þ160�20
−180�40

Source redshift z 0.083þ0.033
−0.036 0.093þ0.029

−0.036 0.088þ0.032�0.005
−0.037�0.008

Upper bound on primary spin magnitude a1 0.65 0.74 0.69� 0.08
Upper bound on secondary spin magnitude a2 0.93 0.78 0.89� 0.13
Lower bound on mass ratio q 0.64 0.68 0.66� 0.03

Log Bayes factor lnBs=n 288.7� 0.2 290.3� 0.1 � � �
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GWs are circularly polarized, whereas for a binary observed
edge-on (cos ι ¼ 0), GWs are linearly polarized.
During the inspiral, the phase evolutionϕGWðt;m1;2; S1;2Þ

can be computed using post-Newtonian (PN) theory, which
is a perturbative expansion in powers of the orbital velocity
v=c [27]. For GW150914, v=c is in the range ≈0.2–0.5 in
the LIGO sensitivity band. At the leading order, the phase
evolution is driven by a particular combination of the two
masses, commonly called the chirp mass [28],

M ¼ ðm1m2Þ3=5
M1=5 ≃ c3

G

�
5

96
π−8=3f−11=3 _f

�
3=5

; ð3Þ

where f is the GW frequency, _f is its time derivative, and
M ¼ m1 þm2 is the total mass. Additional parameters
enter at each of the following PN orders. First, the mass
ratio, q ¼ m2=m1 ≤ 1, and the BH spin components
parallel to the orbital angular momentum vector L affect
the phase evolution. The full degrees of freedom of the
spins enter at higher orders. Thus, from the inspiral, we
expect to measure the chirp mass with highest accuracy and
only place weak constraints on the mass ratio and (the
components parallel to L of) the spins of the BHs [21,29].
Spins are responsible for an additional characteristic

effect: if misaligned with respect to L, they cause the
binary’s orbital plane to precess around the almost-constant
direction of the total angular momentum of the binary,
J ¼ Lþ S1 þ S2. This leaves characteristic amplitude and
phase modulations in the observed strain [30,31], as ψ and ι
become time dependent. The size of these modulations
depends crucially on the viewing angle of the source.
As the BHs get closer to each other and their velocities

increase, the accuracy of the PN expansion degrades, and
eventually the full solution of Einstein’s equations is
needed to accurately describe the binary evolution. This
is accomplished using numerical relativity (NR) which,
after the initial breakthrough [32–34], has been improved
continuously to achieve the sophistication of modeling
needed for our purposes. The details of the ringdown are
primarily governed by the mass and spin of the final BH. In
particular, the final mass and spin determine the (constant)
frequency and decay time of the BH’s ringdown to its
final state [35]. The late stage of the coalescence allows
us to measure the total mass which, combined with the
measurement of the chirp mass and mass ratio from the
early inspiral, yields estimates of the individual component
masses for the binary.
The observed frequency of the signal is redshifted by a

factor of ð1þ zÞ, where z is the cosmological redshift.
There is no intrinsic mass or length scale in vacuum general
relativity, and the dimensionless quantity that incorporates
frequency is fGm=c3. Consequently, a redshifting of
frequency is indistinguishable from a rescaling of the
masses by the same factor [20,36,37]. We therefore
measure redshifted masses m, which are related to source

frame masses by m ¼ ð1þ zÞmsource. However, the GW
amplitude AGW, Eq. (2), also scales linearly with the mass
and is inversely proportional to the comoving distance in
an expanding universe. Therefore, the amplitude scales
inversely with the luminosity distance, AGW ∝ 1=DL, and
from the GW signal alone we can directly measure the
luminosity distance, but not the redshift.
The observed time delay, and the need for the registered

signal at the two sites to be consistent in amplitude and
phase, allow us to localize the source to a ring on the sky
[38,39]. Where there is no precession, changing the
viewing angle of the system simply changes the observed
waveform by an overall amplitude and phase. Furthermore,
the two polarizations are the same up to overall amplitude
and phase. Thus, for systems with minimal precession, the
distance, binary orientation, phase at coalescence, and sky
location of the source change the overall amplitude and
phase of the source in each detector, but they do not change
the signal morphology. Phase and amplitude consistency
allow us to untangle some of the geometry of the source. If
the binary is precessing, the GWamplitude and phase have
a complicated dependency on the orientation of the binary,
which provides additional information.
Our ability to characterize GW150914 as the signature of

a binary system of compact objects, as we have outlined
above, is dependent on the finite signal-to-noise ratio
(SNR) of the signal and the specific properties of the
underlying source. These properties described in detail
below, and the inferred parameters for GW150914 are
summarized in Table I and Figs. 1–6.

II. METHOD

Full information about the properties of the source is
provided by the probability density function (PDF) pð~ϑj~dÞ
of the unknown parameters ~ϑ, given the two data streams

from the instruments ~d.
The posterior PDF is computed through a straightfor-

ward application of Bayes’ theorem [40,41]. It is propor-
tional to the product of the likelihood of the data given the
parameters Lð~dj~ϑÞ, and the prior PDF on the parameters

pð~ϑÞ before we consider the data. From the (marginalized)
posterior PDF, shown in Figs. 1–4 for selected parameters,
we then construct credible intervals for the parameters,
reported in Table I.
In addition, we can compute the evidence Z for the

model under consideration. The evidence (also known as
marginal likelihood) is the average of the likelihood under
the prior on the unknown parameters for a specific model
choice.
The computation of marginalized PDFs and the

model evidence require the evaluation of multidimensional
integrals. This is addressed by using a suite of Bayesian
parameter-estimation and model-selection algorithms tail-
ored to this problem [42]. We verify the results by using
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two independent stochastic sampling engines based on
Markov-chain Monte Carlo [43,44] and nested sampling
[5,45] techniques. (The marginalized PDFs and model
evidence are computed using the LALInference
package of the LIGO Algorithm Library (LAL) software
suite [46]).
At the detector output we record the data dkðtÞ ¼

nkðtÞ þ hMk ðt; ~ϑÞ, where nk is the noise, and hMk is the
measured strain, which differs from the physical strain hk
from Eq. (1) as a result of the detectors’ calibration [47]. In
the frequency domain, we model the effect of calibration
uncertainty by considering

~hMk ðf; ~ϑÞ ¼ ~hkðf; ~ϑÞ½1þ δAkðf; ~ϑÞ�
× exp½iδϕkðf; ~ϑÞ�; ð4Þ

where ~hMk and ~hk are the Fourier representation of the time-

domain functions hMk and hk, respectively. δAkðf; ~ϑÞ and

δϕkðf; ~ϑÞ are the frequency-dependent amplitude and
phase calibration-error functions, respectively. These
calibration-error functions are modeled using a cubic spline
polynomial, with five nodes per spline model placed
uniformly in ln f [48].
We have analyzed the data at the time of this event using

a coherent analysis. Under the assumption of stationary,
Gaussian noise uncorrelated in each detector [49], the
likelihood function for the LIGO network is [20,42]

Lð~dj~ϑÞ ∝ exp

�
−
1

2

X
k¼1;2

hhMk ð~ϑÞ − dkjhMk ð~ϑÞ − dki
�
; ð5Þ

where h·j·i is the noise-weighted inner product [20]. We
model the noise as a stationary Gaussian process of zero
mean and known variance, which is estimated from the
power spectrum computed using up to 1024 s of data
adjacent to, but not containing, the GW signal [42].
The source properties are encoded into the two polar-

izations hþ and h× that enter the analysis through Eqs. (1)
and (4). Here we focus on the case in which they originate
from a compact binary coalescence; we use model
waveforms (described below) that are based on solving
Einstein’s equations for the inspiral and merger of two BHs.

A. BBH waveform models

For the modeled analysis of binary coalescences, an
accurate waveform prediction for the gravitational radiation
hþ;× is essential. As a consequence of the complexity of
solving the two body problem in general relativity, several
techniques have to be combined to describe all stages
of the binary coalescence. While the early inspiral is well
described by the analytical PN expansion [27], which relies
on small velocities and weak gravitational fields, the
strong-field merger stage can only be solved in full

generality by large-scale NR simulations [32–34]. Since
these pioneering works, numerous improvements have
enabled numerical simulations of BBHs with sufficient
accuracy for the applications considered here and for the
region of parameter space of relevance to GW150914
(see, e.g., Refs. [50–52]). Tremendous progress has also
been made in the past decade to combine analytical and
numerical approaches, and now several accurate waveform
models are available, and they are able to describe the entire
coalescence for a large variety of possible configurations
[51,53–59]. Extending and improving such models is an
active area of research, and none of the current models can
capture all possible physical effects (eccentricity, higher
order gravitational modes in the presence of spins, etc.) for
all conceivable binary systems. We discuss the current state
of the art below.
In the Introduction, we outlined how the binary param-

eters affect the observable GW signal, and now we discuss
the BH spins in greater detail. There are two main effects
that the BH spins S1 and S2 have on the phase and
amplitude evolution of the GW signal. The spin projections
along the direction of the orbital angular momentum affect
the inspiral rate of the binary. In particular, spin compo-
nents aligned (antialigned) with L increase (decrease) the
number of orbits from any given separation to merger with
respect to the nonspinning case [27,60]. Given the limited
SNR of the observed signal, it is difficult to untangle the
full degrees of freedom of the individual BHs’ spins, see,
e.g., Refs. [61,62]. However, some spin information is
encoded in a dominant spin effect. Several possible one-
dimensional parametrizations of this effect can be found in
the literature [21,63,64]; here, we use a simple mass-
weighted linear combination of the spins [63,65–67]

χeff ¼
c

GM

�
S1
m1

þ S2
m2

�
·
L
jLj ; ð6Þ

which takes values between −1 (both BHs have maximal
spins antialigned with respect to the orbital angular
momentum) and þ1 (maximal aligned spins).
Having described the effect of the two spin components

aligned with the orbital angular momentum, four in-plane
spin components remain. These lead to precession of the
spins and the orbital plane, which in turn introduces
modulations in the strain amplitude and phase as measured
at the detectors. At leading order in the PN expansion, the
equations that describe precession in a BBH are [30]

_L ¼ G
c2r3

ðB1S1⊥ þ B2S2⊥Þ × L; ð7Þ

_Si ¼
G
c2r3

BiL × Si; ð8Þ

where Si⊥ is the component of the spin perpendicular to L;
overdots denote time derivatives; r is the orbital separation;
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B1 ¼ 2þ 3q=2 and B2 ¼ 2þ 3=ð2qÞ, and i ¼ f1; 2g. It
follows from Eqs. (7) and (8) that L and Si precess around
the almost-constant direction of the total angular momen-
tum J. For a nearly equal-mass binary (as we find is the
case for GW150914), the precession angular frequency
can be approximated by Ωp ≈ 7GJ=ðc2r3Þ, and the total
angular momentum is dominated during the inspiral by
the orbital contribution, J ≈ L. Additional, higher
order spin-spin interactions can also contribute signifi-
cantly to precession effects for some comparable-mass
binaries [68,69].
The in-plane spin components rotate within the orbital

plane at different velocities. Because of nutation of the
orbital plane, the magnitude of the in-plane spin compo-
nents oscillates around a mean value, but those oscillations
are typically small. To first approximation, one can
quantify the level of precession in a binary by averaging
over the relative in-plane spin orientation. This is achieved
by the following effective precession spin parameter [70]:

χp ¼ c
B1Gm2

1

maxðB1S1⊥; B2S2⊥Þ > 0; ð9Þ

where χp ¼ 0 corresponds to an aligned-spin (nonprecess-
ing) system, and χp ¼ 1 to a binary with the maximum
level of precession. Although the definition of χp is
motivated by configurations that undergo many precession
cycles during inspiral, we find that it is also a good
approximate indicator of the in-plane spin contribution
for the late inspiral and merger of GW150914.
For the analysis of GW150914, we consider waveform

models constructed within two frameworks capable of
accurately describing the GW signal in the parameter space
of interest. The effective-one-body (EOB) formalism
[71–75] combines perturbative results from the weak-field
PN approximation with strong-field effects from the test-
particle limit. The PN results are resummed to provide the
EOB Hamiltonian, radiation-reaction force, and GW polar-
izations. The Hamiltonian is then improved by calibrating
(unknown) higher order PN terms to NR simulations.
Henceforth, we use “EOBNR” to indicate waveforms
within this formalism. Waveform models that include spin
effects have been developed, for both double nonprecessing
spins [54,59] (11 independent parameters) and double
precessing spins [55] (15 independent parameters). Here,
we report results using the nonprecessing model [54]
tuned to NR simulations [76]. This model is formulated
as a set of differential equations that are computationally
too expensive to solve for the millions of likelihood
evaluations required for the analysis. Therefore, a fre-
quency-domain reduced-order model [77,78] was imple-
mented that faithfully represents the original model with an
accuracy that is better than the statistical uncertainty caused
by the instruments’ noise. (In LAL, as well as in technical
publications, the aligned, precessing and reduced-order

EOBNR models are called SEOBNRv2, SEOBNRv3 and
SEOBNRv2_ROM_DoubleSpin, respectively). Bayesian
analyses that use the double precessing spin model [55] are
more time consuming and are not yet finalized. The results
will be fully reported in a future publication.
An alternative inspiral-merger-ringdown phenomeno-

logical formalism [79–81] is based on extending frequency-
domain PN expressions and hybridizing PN and EOB with
NR waveforms. Henceforth, we use “IMRPhenom” to
indicate waveforms within this formalism. Several wave-
form models that include aligned-spin effects have been
constructed within this approach [58,66,67], and here we
employ the most recent model based on a fitting of untuned
EOB waveforms [54] and NR hybrids [57,58] of non-
precessing systems. To include leading-order precession
effects, aligned-spin waveforms are rotated into precessing
waveforms [82]. Although this model captures some two-
spin effects, it was principally designed to accurately model
the waveforms with respect to an effective spin parameter
similar to χeff above. The dominant precession effects are
introduced through a lower-dimensional effective spin
description [70,83], motivated by the same physical argu-
ments as the definition of χp. This provides us with an
effective-precessing-spin model [83] with 13 independent
parameters. (In LAL, as well as in some technical pub-
lications, the model used is called IMRPhenomPv2).
All models we use are restricted to circular inspirals.

They also include only the dominant spherical harmonic
modes in the nonprecessing limit.

B. Choice of priors

We analyze coherently 8 s of data with a uniform prior
on tc of width of �0.1 s, centered on the time reported by
the online analysis [1,84], and a uniform prior in ½0; 2π�
for ϕc. We consider the frequency region between 20 Hz,
below which the sensitivity of the instruments significantly
degrades (see panel (b) of Fig. 3 in Ref. [1]), and 1024 Hz,
a safe value for the highest frequency contribution to
radiation from binaries in the mass range considered here.
Given the lack of any additional astrophysical constraints

on the source at hand, our prior choices on the parameters
are uninformative. We assume sources uniformly distrib-
uted in volume and isotropically oriented. We use uniform
priors in m1;2 ∈ ½10; 80�M⊙, with the constraint that
m2 ≤ m1. We use a uniform prior in the spin magnitudes
a1;2 ∈ ½0; 1�. For angles subject to change due to precession
effects we give values at a reference GW frequency
fref ¼ 20 Hz. We use isotropic priors on the spin orienta-
tion for the precessing model. For the nonprecessing
model, the prior on the spin magnitudes may be interpreted
as the dimensionless spin projection onto L having a
uniform distribution ½−1; 1�. This range includes binaries
where the two spins are strongly antialigned relative to
one another. Many such antialigned-spin comparable-mass
systems are unstable to large-angle precession well before
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entering our sensitive band [85,86] and could not have
formed from an asymptotically spin antialigned binary.
We could exclude those systems if we believe the binary is
not precessing. However, we do not make this assumption
here and instead accept that the models can only extract
limited spin information about a more general, precessing
binary.
We also need to specify the prior ranges for the ampli-

tude and phase error functions δAkðf; ~ϑÞ and δϕkðf; ~ϑÞ, see
Eq. (5). The calibration during the time of observation of
GW150914 is characterized by a 1-σ statistical uncertainty
of no more than 10% in amplitude and 10° in phase [1,47].
We use zero-mean Gaussian priors on the values of the
spline at each node with widths corresponding to the
uncertainties quoted above [48]. Calibration uncertainties
therefore add 10 parameters per instrument to the model
used in the analysis. For validation purposes we also
considered an independent method that assumes frequency-
independent calibration errors [87], and obtained consistent
results.

III. RESULTS

The results of the analysis using binary coalescence
waveforms are posterior PDFs for the parameters describ-
ing the GW signal and the model evidence. A summary is
provided in Table I. For the model evidence, we quote
(the logarithm of) the Bayes factor Bs=n ¼ Z=Zn, which
is the evidence for a coherent signal hypothesis divided
by that for (Gaussian) noise [5]. At the leading order, the
Bayes factor and the optimal SNR ρ ¼ ½PkhhMk jhMk i�1=2 are
related by lnBs=n ≈ ρ2=2 [88].
Before discussing parameter estimates in detail, we

consider how the inference is affected by the choice of
the compact-binary waveform model. From Table I, we see
that the posterior estimates for each parameter are broadly
consistent across the two models, despite the fact that
they are based on different analytical approaches and that
they include different aspects of BBH spin dynamics. The
models’ logarithms of the Bayes factors, 288.7� 0.2 and
290.3� 0.1, are also comparable for both models: the data
do not allow us to conclusively prefer one model over the
other [89]. Therefore, we use both for the Overall column
in Table I. We combine the posterior samples of both
distributions with equal weight, in effect marginalizing
over our choice of waveform model. These averaged results
give our best estimate for the parameters describing
GW150914.
In Table I, we also indicate how sensitive our results are

to our choice of waveform. For each parameter, we give
systematic errors on the boundaries of the 90% credible
intervals due to the uncertainty in the waveform models
considered in the analysis; the quoted values are the 90%
range of a normal distribution estimated from the variance
of results from the different models. (If X were an edge of a

credible interval, we quote systematic uncertainty
�1.64σsys using the estimate σ2sys¼ ½ðXEOBNR−XOverallÞ2þ
ðXIMRPhenom−XOverallÞ2�=2. For parameters with bounded
ranges, like the spins, the normal distributions should
be truncated. However, for transparency, we still quote
the 90% range of the uncut distributions. These numbers
provide estimates of the order of magnitude of the potential
systematic error). Assuming a normally distributed error is
the least constraining choice [90] and gives a conservative
estimate. The uncertainty from waveform modeling is less
significant than the statistical uncertainty; therefore, we are
confident that the results are robust against this potential
systematic error. We consider this point in detail later in the
Letter.
The analysis presented here yields an optimal coherent

SNR of ρ ¼ 25.1þ1.7
−1.7 . This value is higher than the one

reported by the search [1,3] because it is obtained using a
finer sampling of (a larger) parameter space.
GW150914’s source corresponds to a stellar-mass BBH

with individual source-frame masses msource
1 ¼ 36þ5

−4M⊙
and msource

2 ¼ 29þ4
−4M⊙, as shown in Table I and Fig. 1.

The two BHs are nearly equal mass. We bound the mass
ratio to the range 0.66 ≤ q ≤ 1 with 90% probability. For
comparison, the highest observed neutron star mass is
2.01� 0.04M⊙ [91], and the conservative upper-limit for

FIG. 1. Posterior PDFs for the source-frame component masses
msource

1 and msource
2 . We use the convention that msource

2 ≤ msource
1 ,

which produces the sharp cut in the two-dimensional distribution.
In the one-dimensional marginalized distributions we show the
Overall (solid black), IMRPhenom (blue), and EOBNR (red)
PDFs; the dashed vertical lines mark the 90% credible interval
for the Overall PDF. The two-dimensional plot shows the
contours of the 50% and 90% credible regions plotted over a
color-coded PDF.
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the mass of a stable neutron star is 3M⊙ [92,93]. The
masses inferred from GW150914 are an order of magnitude
larger than these values, which implies that these two
compact objects of GW150914 are BHs, unless exotic
alternatives, e.g., boson stars [94], do exist. If the compact
objects were not BHs, this would leave an imprint on the
waveform, e.g., Ref. [95]; however, in Ref. [96] we verify
that the observed signal is consistent with that predicted
assuming BHs in general relativity. These results establish
the presence of stellar-mass BBHs in the Universe. It also
proves that BBHs formed in nature can merge within a
Hubble time [97].
To convert the masses measured in the detector frame to

physical source-frame masses, we require the redshift of the
source. As discussed in the Introduction, GW observations
are directly sensitive to the luminosity distance to a source,
but not the redshift [98]. We find that GW150914 is at
DL ¼ 410þ160

−180 Mpc. Assuming a flat ΛCDM cosmology
with Hubble parameterH0 ¼ 67.9 kms−1Mpc−1 and matter
density parameter Ωm ¼ 0.306 [6], the inferred luminosity
distance corresponds to a redshift of z ¼ 0.09þ0.03

−0.04 .
The luminosity distance is strongly correlated to the

inclination of the orbital plane with respect to the line of
sight [4,20,99]. For precessing systems, the orientation of
the orbital plane is time dependent. We therefore describe
the source inclination by θJN, the angle between the total
angular momentum (which typically is approximately
constant throughout the inspiral) and the line of sight

[30,100], and we quote its value at a reference GW
frequency fref ¼ 20 Hz. The posterior PDF shows that
an orientation of the total orbital angular momentum of the
BBH strongly misaligned to the line of sight is disfavored;
the probability that 45° < θJN < 135° is 0.35.
The masses and spins of the BHs in a (circular) binary

are the only parameters needed to determine the final mass
and spin of the BH that is produced at the end of the merger.
Appropriate relations are embedded intrinsically in the
waveform models used in the analysis, but they do not
give direct access to the parameters of the remnant BH.
However, applying the fitting formula calibrated to
nonprecessing NR simulations provided in Ref. [101] to
the posterior for the component masses and spins [102],
we infer the mass and spin of the remnant BH to be
Msource

f ¼ 62þ4
−4M⊙, and af ¼ 0.67þ0.05

−0.07 , as shown in Fig. 3
and Table I. These results are fully consistent with those
obtained using an independent nonprecessing fit [57]. The
systematic uncertainties of the fit are much smaller than
the statistical uncertainties. The value of the final spin is a
consequence of conservation of angular momentum in
which the total angular momentum of the system (which
for a nearly equal mass binary, such as GW150914’s
source, is dominated by the orbital angular momentum)
is converted partially into the spin of the remnant black hole
and partially radiated away in GWs during the merger.
Therefore, the final spin is more precisely determined than
either of the spins of the binary’s BHs.

FIG. 2. Posterior PDFs for the source luminosity distance DL
and the binary inclination θJN . In the one-dimensional margin-
alized distributions we show the Overall (solid black), IMRPhe-
nom (blue), and EOBNR (red) PDFs; the dashed vertical lines
mark the 90% credible interval for the Overall PDF. The
two-dimensional plot shows the contours of the 50% and 90%
credible regions plotted over a color-coded PDF.

FIG. 3. PDFs for the source-frame mass and spin of the remnant
BH produced by the coalescence of the binary. In the one-
dimensional marginalized distributions we show the Overall
(solid black), IMRPhenom (blue), and EOBNR (red) PDFs;
the dashed vertical lines mark the 90% credible interval for the
Overall PDF. The two-dimensional plot shows the contours of the
50% and 90% credible regions plotted over a color-coded PDF.
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The calculation of the final mass also provides an
estimate of the total energy radiated in GWs as
Erad ¼ Msource −Msource

f . GW150914 emitted a total of

Erad ¼ 3.0þ0.5
−0.4M⊙c2 ¼ 5.3þ0.9

−0.8 × 1047J in GWs, the major-
ity of which was at frequencies in LIGO’s sensitive band.
These values are fully consistent with those given in the
literature for NR simulations of similar binaries [103,104].
The energetics of a BBH merger can be estimated at the
order of magnitude level using simple Newtonian argu-
ments. The total energy of a binary system at separation r is
given by E ≈Mc2 − Gm1m2=ð2rÞ. For an equal-mass
system, and assuming the inspiral phase to end at about
r ≈ 5GM=c2, then around 2%–3% of the initial total energy
of the system is emitted as GWs. Only a fully general
relativistic treatment of the system can accurately describe
the physical process during the final strong-field phase of
the coalescence. This indicates that a comparable amount
of energy is emitted during the merger portion of
GW150914, leading to ≈5% of the total energy emitted.
We further infer the peak GW luminosity achieved

during the merger phase by applying to the posteriors a
separate fit to nonprecessing NR simulations [105]. The
source reached a maximum instantaneous GW luminosity
of 3.5þ0.5

−0.4 × 1056 erg s−1 ¼ 200þ30
−20M⊙c2 s−1. Here, the

uncertainties include an estimate for the systematic error
of the fit as obtained by comparison with a separate set of
precessing NR simulations, in addition to the dominant
statistical contribution. An order-of-magnitude estimate of
the luminosity corroborates this result. For the dominant
mode, the flux can be estimated by ≈c3j _hj2=ð16πGÞ∼
105 erg s−1m−2, where _h is the time derivative of the strain
(cf. Ref. [106], [section 18.6]), and we use a GWamplitude
of jhj ≈ 10−21 at a frequency of 250 Hz [1]. Using the
inferred distance leads to an estimated luminosity of
∼1056 erg s−1. For comparison, the ultraluminous GRB
110918A reached a peak isotropic-equivalent luminosity of
ð4.7� 0.2Þ × 1054 erg s−1 [107].
GW ground-based instruments are all-sky monitors

with no intrinsic spatial resolution capability for transient
signals. A network of instruments is needed to reconstruct
the location of a GW in the sky, via time of arrival, and
amplitude and phase consistency across the network [108].
The observed time delay of GW150914 between the
Livingston and Hanford observatories was 6.9þ0.5

−0.4 ms.
With only the two LIGO instruments in observational
mode, GW150914’s source location can only be recon-
structed to approximately an annulus set to first approxi-
mation by this time delay [109–111]. Figure 4 shows
the sky map for GW150914: it corresponds to a projected
two-dimensional credible region of 150 deg2 (50% prob-
ability) and 610 deg2 (90% probability). The associated
three-dimensional comoving volume probability region
is ∼10−2Gpc3; for comparison the comoving density of
Milky Way-equivalent galaxies is ∼107Gpc−3. This area of

the sky was targeted by follow-up observations covering
radio, optical, near infrared, x-ray, and gamma-ray wave-
lengths that are discussed in Ref. [112]; searches for
coincident neutrinos are discussed in Ref. [113].
Spins are a fundamental property of BHs. Additionally,

their magnitude and orientation with respect to the orbital
angular momentum carry an imprint of the evolutionary
history of a binary that could help in identifying the
formation channel, such as distinguishing binaries formed
in the field from those produced through captures in dense
stellar environments [97]. The observation of GW150914
allows us for the first time to put direct constraints on BH
spins. The EOBNR and IMRPhenom models yield con-
sistent values for the magnitude of the individual spins,
see Table I. The spin of the primary BH is constrained to
a1 < 0.7 (at 90% probability), and strongly disfavors the
primary BH being maximally spinning. The bound on the
secondary BH’s spin is a2 < 0.9 (at 90% probability),
which is consistent with the bound derived from the prior.
Results for precessing spins are derived using the

IMRPhenom model. Spins enter the model through the
two effective spin parameters χeff and χp. The left panel of
Fig. 5 shows that despite the short duration of the signal
in band we meaningfully constrain χeff ¼ −0.07þ0.16

−0.17 , see
Table I. The inspiral rate of GW150914 is therefore only
weakly affected by the spins. We cannot, however, extract
additional information on the other spin components
associated with precession effects. The data are uninform-
ative: the posterior PDF on χp (left panel of Fig. 5) is
broadly consistent with the prior, and the distribution of

FIG. 4. An orthographic projection of the PDF for the sky
location of GW150914 given in terms of right ascension α
(measured in hours and labeled around the edge of the figure) and
declination δ (measured in degrees and labeled inside the figure).
The contours of the 50% and 90% credible regions are plotted
over a color-coded PDF. The sky localization forms part of an
annulus, set by the time delay of 6.9þ0.5

−0.4 ms between the
Livingston and Hanford detectors.
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spins (right panel of Fig. 5) matches our expectations once
the information that jχeff j is small has been included. Two
elements may be responsible for this. If precession occurs,
at most one modulation cycle would be present in the LIGO
sensitivity window. If the source was viewed with J close
to the line of sight (Fig. 2), the amplitude of possible
modulations in the recorded strain is suppressed.
The joint posterior PDFs of the magnitude and orienta-

tion of S1 and S2 are shown in the right panel of Fig. 5.
The angle of the spins with respect to L (the tilt angle)
is considered a tracer of BBH formation channels [97].
However, we can place only weak constraints on this
parameter for GW150914: the probabilities that S1 and S2
are at an angle between 45° and 135° with respect to the
normal to the orbital plane L are 0.77 and 0.75, respec-
tively. For this specific geometrical configuration the spin
magnitude estimates are a1 < 0.8 and a2 < 0.8 at 90%
probability.
Some astrophysical formation scenarios favor spins

nearly aligned with the orbital angular momentum, par-
ticularly for the massive progenitors that in these scenarios
produce GW150914 [97,114,115]. To estimate the impact
of this prior hypothesis on our interpretation, we used the
fraction (2.5%) of the spin-aligned result (EOBNR) with
S1;2 · L > 0 to revise our expectations. If both spins must
be positively and strictly co-aligned with L, then we can
constrain the two individual spins at 90% probability to be
a1 < 0.2 and a2 < 0.3.
The loss of linear momentum through GWs produces a

recoil of the merger BH with respect to the binary’s original

center of mass [116,117]. The recoil velocity depends on
the spins (magnitude and orientation) of the BHs of the
binary and could be large for spins that are appropriately
misaligned with the orbital angular momentum [118–121].
Unfortunately, the weak constraints on the spins
(magnitude and direction) of GW150914 prevent us from
providing a meaningful limit on the kick velocity of the
resulting BH.

A. A minimal-assumption analysis

In addition to the analysis based on the assumption that
the signal is generated by a binary system, we also consider
a model which is not derived from a particular physical
scenario and makes minimal assumptions about hþ;×.

In this case we compute directly the posterior pð~hj~dÞ by
reconstructing hþ;× using a linear combination of ellipti-
cally polarized sine-Gaussian wavelets whose amplitudes
are assumed to be consistent with a uniform source
distribution [84,122], see Fig. 6. The number of wavelets
in the linear combination is not fixed a priori but is
optimized via Bayesian model selection. This analysis
directly infers the PDF of the GW strain given the data

pð~hj~dÞ.
We can compare the minimal-assumption posterior for

the strain at the two instruments with the results of the

compact binary modeled analysis pð~hð~ϑÞj~dÞ. The wave-
forms are shown in Fig. 6. There is remarkable agreement
between the actual data and the reconstructed waveform
under the two model assumptions. As expected, the

FIG. 5. Left: PDFs (solid black line) for the χp and χeff spin parameters compared to their prior distribution (green line). The dashed
vertical lines mark the 90% credible interval. The one-dimensional plots show probability contours of the prior (green) and marginalized
PDF (black). The two-dimensional plot shows the contours of the 50% and 90% credible regions plotted over a color-coded PDF. Right:
PDFs for the dimensionless component spins cS1=ðGm2

1Þ and cS2=ðGm2
2Þ relative to the normal to the orbital plane L, marginalized

over uncertainties in the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt angles,
cos θLSi ¼ Si · L=ðjSijjLjÞ, where i ¼ f1; 2g, and therefore have equal prior probability.
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uncertainty is greater for the minimal-assumption
reconstruction due to greater flexibility in its waveform
model. The agreement between the reconstructed wave-
forms using the two models can be quantified through the
noise-weighted inner product that enters Eq. (5), and it is
found to be 94þ2

−3%, consistent with expectations for the
SNR at which GW150914 was observed.

IV. DISCUSSION

We have presented measurements of the heaviest stellar-
mass BHs known to date, and the first stellar-mass BBH.
The system merges into a BH of ≈60M⊙. So far, stellar-
mass BHs of masses ≈10M⊙ have been claimed using
dynamical measurement of Galactic x-ray binaries [123].
Masses as high as 16–20M⊙ and 21–35M⊙ have been
reported for IC10 X-1 [124,125] and NGC300 X-1 [126],
respectively; however, these measurements may have been
contaminated by stellar winds as discussed in Ref. [127]
and references therein. Our results attest that BBHs do form
and merge within a Hubble time. We have constrained the
spin of the primary BH of the binary to be a1 < 0.7 and
we have inferred the spin of the remnant BH to be af ≈ 0.7.
Up to now, spin estimates of BH candidates have relied on
modeling of accretion disks to interpret spectra of x-ray
binaries [128]. In contrast, GW measurements rely only on

the predictions of general relativity for vacuum spacetime.
Astrophysical implications of our results on the rate of
BBH mergers are discussed in Ref. [129] and implications
for our understanding of the formation and evolution of
BBHs are discussed in Ref. [97].
The statistical uncertainties with which we have char-

acterized the source properties and parameters reflect the
finite SNR of the observation of GW150914 and the error
budget of the strain calibration process. The latter degrades
primarily the estimate of the source location. If we assume
that the strain was perfectly calibrated, i.e., hM ¼ h, see
Eqs. (1) and (4), the 50% and 90% credible regions for sky
location would become 48 deg2 and 150 deg2, compared to
the actual results of 150 deg2 and 610 deg2, respectively.
The physical parameters show only small changes with the
marginalization over calibration uncertainty, for example,
the final mass Msource

f changes from 62þ4
−4M⊙ including

calibration uncertainty to 62þ4
−3M⊙ assuming perfect cali-

bration, and the final spin af changes from 0.67þ0.05
−0.07 to

0.67þ0.04
−0.05 . The effect of calibration uncertainty is to increase

the overall parameter range at a given probability, but the
medians of the PDFs remain largely unchanged. For
GW150914, the dominant source of statistical uncertainty
is the finite SNR. More accurate calibration techniques are
currently being tested, and one can expect that in future

FIG. 6. Time-domain data (sampled at 2048 Hz) and reconstructed waveforms of GW150914, whitened by the noise power spectral
density (in Fig. 1 of Ref. [1] the data are band passed and notched filtered), for the H1 (top) and L1 (bottom) detectors. Times are shown
relative to September 14, 2015 at 09:50:45 UTC. The ordinate axes on the right are in units of noise standard deviations from zero—i.e.,
the peak alone is an ∼4-σ excursion relative to the instrument noise at that time—and on the left are normalized in order to preserve the
strain amplitude at 200 Hz. The waveforms are plotted as bands representing the uncertainty in the reconstruction. Shaded regions
correspond to the 90% credible regions for the reconstructed waveforms. The broadest (dark blue) shaded region is obtained with the
model that does not assume a particular waveform morphology, but instead uses a linear combination of sine-Gaussian wavelets.
The lighter, narrower shaded region (cyan) is the result from the modeled analyses using IMRPhenom and EOBNR template waveforms.
The thin grey lines are the data. The agreement between the reconstructed waveforms using the two models is found to be 94þ2

−3%.
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LIGO observations the impact of calibration errors on
the inference of GW source parameters will be further
reduced [47].
Our analysis is based on waveform models that do not

include the effect of spins in their full generality. Still, the
aligned-spin EOBNR and precessing IMRPhenom models
produce consistent results, with an error budget dominated
by statistical uncertainty and not systematic errors as
evaluated from the physics encoded in these two models.
It is, however, important to consider whether additional
systematics produced by physics not captured by these
models could have affected the results. To this extent, we
collected existing numerical waveforms and generated
targeted new simulations [130–135]. The simulations were
generated with multiple independent codes and sample
the posterior region for masses and spins inferred for
GW150914. We have added these NR waveforms as mock
signals to the data in the neighborhood of GW150914 and
to synthetic data sets representative of LIGO’s sensitivity
and noise properties at the time of GW150914, with SNRs
consistent with the one reported for the actual detection.
We then carried out exactly the same analysis applied to the
actual data.
For signals from nonprecessing binaries, we recover

parameters that are consistent with those describing the
mock source. The results obtained with the EOBNR and
IMRPhenom model are consistent, which further confirms
previous comparison studies of nonprecessing models with
NR waveforms [54,58,136]. For signals that describe
precessing binaries, but with orbital angular momentum
orientation consistent with the most likely geometry
inferred for GW150914, i.e., orbital angular momentum
close to aligned or antialigned with the line of sight, we find
again that the PDFs are consistent across the models and
with the true values of the parameters used for the numerical
simulation. For the same physical parameters, but a total
angular momentum orientated to give the largest amount of
signal modulations at the instrument output, i.e., J approx-
imately perpendicular to the line of sight, the results using
the EOBNR and IMRPhenom models do differ from each
other. They yield biased and statistically inconsistent PDFs,
depending on the specific NR configuration used as the
mock signal. This is partly due to the fact that not all
physical effects are captured by the models (as in the case of
the nonprecessing EOBNR model) and partly due to
systematic inaccuracies of the models. However, we stress
that this is not the configuration we find for GW150914.
The outcome of these studies suggests that for

GW150914, the results reported here are not appreciably
affected by additional waveform systematics beyond those
quantified in Table I. A detailed analysis will be presented
in a forthcoming paper. In addition, we are currently
carrying out an analysis using generalized, precessing
EOBNR waveforms [55], which depend on the full 15
independent parameters of a coalescing binary in circular

orbit. Preliminary investigations give results that are
broadly consistent with those presented here based on
the precessing IMRPhenom model, and full details will be
reported in the future.
Throughout this work we have considered a model for

the binary evolution in the LIGO sensitivity band that
assumes a circular orbit. The posterior waveforms accord-
ing to this model are consistent with minimal-assumption
reconstructed waveforms, which make no assumption
about eccentricity. Preliminary investigations suggest that
eccentricities of e≲ 0.1 at 10 Hz would not introduce
measurable deviations from a circular-orbit signal; how-
ever, even larger eccentricities may have negligible effects
on the recovered source parameters. At this time, the lack
of a model that consistently accounts for the presence of
spins and eccentricity throughout the full coalescence
prevents us from placing more stringent constraints. We
plan to report improved limits in the future.
The analysis reported here is carried out under the

assumption that general relativity is correct. The results
presented in Fig. 6 show no evidence for deviations from
the null hypothesis general-relativity model. However,
GW150914 provides a new arena for tests of Einstein’s
theory in unexplored regimes; these are discussed in detail
in Ref. [96].

V. SUMMARY

We have reported the properties of GW150914 derived
from a coherent analysis of data from the two LIGO
detectors, based on accurate modeling of the coalescence
signal as predicted by general relativity. We have shown
that GW150914 originates from a BBH system with
component masses 36þ5

−4M⊙ and 29þ4
−4M⊙ at redshift

0.09þ0.03
−0.04 that merges to form a BH of mass 62þ4

−4M⊙
and spin 0.67þ0.05

−0.07 . The final BH is more massive than any
other found in the stellar-mass range. We bound the spin
magnitude of the binary’s primary BH to <0.7 (at 90%
probability), and measure the effective spin parameter
along the direction of the orbital angular momentum to
be−0.07þ0.16

−0.17 , but we cannot place meaningful limits on the
precession effects. Further implications stemming from our
findings for tests of general relativity, the rate of BBH
mergers, and the astrophysics of the BBHs are reported in
Refs. [96,129], and [97], respectively. These results herald
the beginning of GW astronomy and provide the first
observational insights into the physics of BBHs.
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