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Abstract

We study nuclear stopping in central collisions for heavy-ion in-
duced reactions in the Fermi energy domain (15-100 A MeV). Using
the large dataset provided by the 4π array INDRA, we determine
that stopping can be directly related to the transport properties in
the nuclear medium. By looking specifically at protons, we present
a comprehensive body of experimental results concerning the mean
free path, the nucleon-nucleon cross-section and in-medium effects in
nuclear matter.

1 Introduction

Transport properties in nuclear matter contribute to the determination of
the equation of state via the underlying in-medium properties of the nu-
clear interaction [1]- [8] as well as in the description of the supernova core
collapse and the subsequent formation of a neutron star [9]. The knowl-
edge of the dissipation mechanism for nuclear matter in HIC is related to
the properties of the mean-field itself via the 1-body dissipation (nuclear
friction and viscosity) and nucleon-nucleon (NN ) collisions via 2-body dis-
sipation in the nuclear medium [10]. At low incident energy i.e. lower than
the Fermi energy, where mean-field effects prevail, NN collisions are strongly
suppressed due to the fermionic nature of nucleons (Pauli blocking). At high
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incident energy, the mean-field becomes less and less attractive while NN
collisions become important [11–13]. Numerous theoretical approaches show
that the cross section has to be properly renormalized in order to account
for the effective NN collision rate in HIC [11, 12, 14] as depicted in theo-
retical works [15–17]. These latter show that the nucleon mean free path
is large for Einc/A ≤ 100 MeV, and decreases toward a saturation value
λNN = 4 − 5 fm around Einc/A ≈ 100 MeV [17]. In-medium effects and
especially quenching factors for the NN cross section are indeed largely un-
known in the range Einc/A = 10− 100 MeV [18] and have to be constrained
experimentally.

2 Experimental considerations

2.1 INDRA dataset

In this analysis, we use the full INDRA dataset for symmetric or nearly-
symmetric systems recorded at GANIL and GSI facilities. The experimental
data are exclusive and corresponds to a nearly complete detection of all
charged products of the reaction thanks to the powerful INDRA 4π array
[20]. The data cover a broad domain of incident energy, here from 15 up to
100 A MeV, and concern 42 systems with a total mass between 72 and 476
mass units. Isospin is here comprised between N = Z and N/Z ≈ 1.6. This
constitutes, to our knowledge, the largest body of experimental data in the
Fermi energy domain covered with the same setup.

2.2 Event and particle selections

In the following, we want to probe the degree of stopping in central collisions.
We have then chosen to study the very dissipative collisions, that produce
the highest charged particle multiplicities Mch as already done in [10]. The
correlation between the isotropy ratio RE and Mch presents a saturation
at the highest multiplicity values and then allow to define a multiplicity
cut [10]. In order to probe the nucleon properties in nuclear medium, we have
moreover to focus specifically on free nucleons. They indeed carry genuine
information about NN collisions, i.e. out of any coalescence phase nor
clusterization into fragments occuring during the course of the collision [21].
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Figure 1: Mean isotropy ratio for protons Rp
E as a function of energy. The symbols

represent the different studied systems. The lower dashed curve represents the
expected value for the entrance channel (no stopping) and the upper straight line
for the full stopping (color online).

3 Stopping ratio and NN collisions

Applying the protocol presented in the previous section, we compute the
isotropy ratio Rp

E for the 42 symmetric systems recorded with INDRA. The
results are presented in Fig. 1 as a function of the incident energy.

The error bars in Fig. 1 correspond to the statistical errors supplemented
by an estimate of the systematic errors coming from the experimental de-
termination for Rp

E [10]. To get more quantitative values for the stopping,
the isotropy ratio is compared to two extreme values. They are computed
by assuming two Fermi spheres in p-space separated by the relative momen-
tum corresponding to Einc, which is the incident energy and α a parameter
equal to 1 for complete transparency (no dissipation, lower dashed curve in
blue) and 0 for full stopping (upper straight line in red). A straightforward
calculation for the isotropy ratio RE(α) can be obtained analytically [10]
and an estimate for the stopping reached in our dataset of central events
is then given by the normalized quantity S, called hereafter stopping ratio,
and such as: S = Rp

E−RE(α=1)

RE(α=0)−RE(α=1) . Using a simple Monte Carlo simula-
tion describing in a semi-classical way NN collisions, we find that S can be
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related to the ratio of accepted NN collisions C by the following empirical
formula: C ≈ Sβ(Einc) with β = 1.32 at Einc = 30A MeV, and β = 0.74 at
Einc = 110A MeV [23].
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Figure 2: Mean free path for a nucleon in nuclear matter as a function of incident
energy. Symbols are the same as for Fig. 1.

4 In-medium effects

To understand the mass hierarchy observed in Fig. 1, we scale the latter
quantity C by Aγ

tot, Atot being the total mass number of the system, and γ
varying between 1/4−2/3. The results show that for γ ≈ 1

3 , all experimental
points collapse on a single curve for the whole range of incident energy
and for all systems; the agreement is somehow particularly impressive for
incident energies above the Fermi energy [23]. This result suggests to define
a characteristic quantity A

1/3
tot , homogeneous to a length, connected to the

radial extent of the system formed in central collisions. From this, we can
infer that the corresponding reduced value C/A

1/3
tot is related to the associated

mean free path for NN collisions. We postulate that the mean free path
λNN can be simply expressed as the inverse of C: λNN ≈ L/C where L is
a characteristic length proportional to A

1/3
tot [23]. L can be interpreted as a

quantity related to the average distance travelled by a nucleon. Applying
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Figure 3: In-medium factor F = σin−medium
NN /σfree

NN for the nucleon-nucleon cross
section in nuclear matter. The different curves correspond to some parametrizations
used in transport models. Symbols are the same as for Fig. 1.

this, we get the results for λNN in Fig. 2 where we see that λNN is maximum
around Einc = 35 − 40 A MeV, and reaches λNN = 9.5 ± 2 fm.

This depicts the fact that the Pauli principle suppresses to a large extent
NN collisions at low incident energy and consequently increases the mean
free path around the Fermi energy [11]. The decrease observed at lower inci-
dent energy is here attributed to mean-field effects, for which the dissipation
mechanism is mainly provided by 1-body rather than 2-body dissipation ,
i.e. NN collision. If we focus on the high energy domain, i.e. above the
Fermi energy, we note a continuous decrease of λNN , whatever the system
size, toward an asymptotic value corresponding to λNN = 4.5± 1 fm above
100 A MeV. These values are compatible with both experimental data [24,25]
and recent theoretical studies [17] around and above 100 A MeV. This agree-
ment also suggests that the characteristic length L is indeed closely related
to the nuclear radius of the colliding system and justifies a posteriori our
assumption.

From our estimated mean free paths, we can now determine the in-
medium nucleon-nucleon cross section. In the following, we will compare
the extracted in-medium cross-sections to the free values in vacuum. To
disentangle the different in-medium effects, we evaluate the Pauli blocking
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by using the simple prescription of Kikuchi and Kawai [26]. We thus ob-
tain nucleon-nucleon cross sections, out of Pauli effects, which have to be
compared to the standard free values [27]. To get more quantitative results,
we compute the in-medium factor F = σin−medium

NN /σfree
NN . It is displayed in

Fig. 3 where we restrict our discussion to the incident energy range 30−100
A MeV.

The reduction factor F strongly evolves with incident energy, between
0.2 and 0.5 for the incident energy range 35 − 100 A MeV. We also plot in
Fig. 3 some parametrizations taken from recent works and currently used in
transport models [14,28–31]. They give rather different results in the Fermi
energy domain, showing that σin−medium

NN is poorly constrained at present
time. The parametrization of the MSU group [31] is in excellent agreement
-within the error bars- with our experimental findings.

5 Conclusions

We have evaluated nuclear stopping and transport features from measured
isotropy ratio for protons in central collisions for a large body of symmet-
ric systems studied with INDRA array. We have shown that we can get
consistent results by scaling the appropriate stopping ratio by the char-
acteristic size of the system. We have established a relation between the
stopping ratio and the nucleon mean free path in nuclear matter and have
found λNN = 9.5 ± 2 fm at Einc = 40 A MeV and λNN = 4.5 ± 1 fm for
Einc = 100 A MeV, in agreement with theoretical predictions. We have also
estimated in-medium effects for the nucleon-nucleon cross section. The best
parametrization is the one provided by Danielewicz [31]. We conclude that
in-medium effects give a significant reduction of the nucleon-nucleon cross
section, namely 80% at Einc = 35 A MeV and 50% at Einc = 100 A MeV.
This strong energy dependence for the in-medium nucleon-nucleon cross sec-
tion has to be properly taken into account in any transport model based on
Boltzmann equation, where a 2-body collision term is considered.

References

[1] A. Ohnishi and J. Randrup, Phys. Rev. Lett. 75, 596 (1995).

[2] J. Aichelin, Phys. Rep. 202, 233 (1991).

[3] A. Bonasera et al., Phys. Rep. 243, 1 (1994).

EPJ Web of Conferences

00006-p.6



[4] P. Chomaz, M. Colonna, A. Guarnera and J. Randrup, Phys. Rev. Lett.
73, 3512 (1994).

[5] A. Ono, H. Horiuchi, T. Maruyama and A. Ohnishi, Phys. Rev. Lett.
68, 2898 (1992).

[6] T. Gaitanos et al., Phys. Lett. B 609, 241 (2005).

[7] S. Kumar, S. Kumar and R.K. Puri, Phys. Rev. C 81, 014601 (2010).

[8] C. Fuchs and H.H. Wolter, Eur. Phys. J. A 30, 5-21 (2006) and refs.
therein.

[9] J.M. Lattimer and M. Prakash, Science 304, 536 (2004).

[10] G. Lehaut et al. (INDRA collaboration), Phys. Rev. Lett. 104, 232701
(2010).

[11] D. Durand, B. Tamain and E. Suraud, Nuclear Dynamics in the nucle-
onic regime, Institute Of Physics, New York (2001) and refs. therein.

[12] J. Cugnon, Ann. of Phys., Paris, Vol. 11 (1996).

[13] J. Lukasik et al. (INDRA and ALADIN collaboration), Phys. Lett. B
608, 223230 (2005).

[14] G. Q. Li and R. Machleidt, Phys. Rev. C 48, 1702 (1993).

[15] T. Frick, H. Muther, A. Rios, A. Polls and A. Ramos, Phys. Rev. C 71,
014313 (2005).

[16] V. Soma and P. Bozek, Phys. Rev. C 78, 054003 (2008).

[17] A. Rios and V. Soma, Phys. Rev. Lett. 108, 012501 (2012).

[18] G.D. Westfall et al., Phys. Rev. Lett. 71, 1986 (1993).

[19] A. Andronic et al., Eur. Phys. J. A 30, 31 (2006) and refs. therein.

[20] J. Pouthas et al., Nucl. Inst. and Meth. A 357, 418-442 (1995).

[21] G.Q. Zhang et al., Phys. Rev. C 84, 034612 (2011).

[22] S.K. Charagi and S.K. Gupta, Phys. Rev. C 41, 1610-1618 (1990).

[23] O. Lopez et al. (INDRA Collaboration), ArXiv:nucl-ex/1409.0735
(2014), submitted to PRC.

IWM EC 2014-

00006-p.7



[24] P.U. Renberg, D.F. Measday, M. Pepin, P. Schwaller, B. Favier, and C.
Richard-Serre, Nucl. Phys. A 183, 81-104 (1972).

[25] A. Nadasen et al., Phys. Rev. C 23 1023-1044 (1981).

[26] K. Kikuchi and M. Kawai, Nuclear matter and Nuclear Collisions,
North Holland, New York (1968)

[27] N. Metropolis et al., Phys. Rev. 110, 204-220 (1958).

[28] D. Klakow, G. Welke, and W. Bauer, Phys. Rev. C 48, 1982-1987
(1993).

[29] A. Schnell, G. Ropke, U. Lombardo, and H.J. Schulze, Phys. Rev. C
57, 806-810 (1998).

[30] C. Xiangzhou et al., Phys. Rev. C 58, 572-575 (1998).

[31] P. Danielewicz, Acta. Phys. Pol. B 33, 45 (2002).

EPJ Web of Conferences

00006-p.8


