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We generalize the notion of partial dynamical symmetry (PDS) to a system of interacting bosons
and fermions. In a PDS, selected states of the Hamiltonian are solvable and preserve the symmetry
exactly, while other states are mixed. As a first example of such novel symmetry construction,
spectral features of the odd-mass nucleus 195Pt are analyzed.

PACS numbers: 21.60.Fw, 21.10.Re, 21.60.Ev, 27.80+w

During the last several decades, the concept of dynam-
ical symmetry (DS) has become the cornerstone of alge-
braic modeling of dynamical systems. It has been ap-
plied in many branches of physics, such as hadronic [1],
nuclear [2, 3], atomic [4] and molecular physics [5, 6]. Its
basic paradigm is to write the Hamiltonian of the sys-
tem in terms of Casimir operators of a chain of nested
algebras, Gdyn ⊃ G ⊃ · · · ⊃ Gsym, where Gdyn is the dy-
namical algebra, in terms of which any model operator of
a physical observable can be expressed, and Gsym is the
symmetry algebra. A given DS defines a class of many-
body Hamiltonians that admit an analytic solution for
all states, with closed expressions for the energy eigen-
values, quantum numbers for classification and definite
selection rules for transition processes.

An exact DS provides considerable insights into com-
plex dynamics and its merits are self evident. However,
in most applications to realistic systems, its predictions
are rarely fulfilled and one is compelled to break it. The
DS spectrum imposes constraints on the pattern of level-
splitting which many times is at variance with the em-
pirical data. More often one finds that the assumed sym-
metry is not obeyed uniformly, i.e., is fulfilled by some
of the states but not by others. The required symme-
try breaking is achieved by including in the Hamiltonian
terms associated with different subalgebra chains ofGdyn,
resulting in a loss of solvability and pronounced mixing.
The need to address such situations, but still preserve
important symmetry remnants, has led to the introduc-
tion of partial dynamical symmetry (PDS) [7, 8]. The
essential idea is to relax the stringent conditions of com-
plete solvability so that only part of the eigenspectrum
retains analyticity and/or good quantum numbers, in the
spirit of quasi-solvable models [9]. Various types of PDSs
were proposed [8, 10–13] and algorithms for construct-
ing Hamiltonians with such property have been devel-
oped [7, 14]. Bosonic Hamiltonians with PDS have been
applied to nuclear spectroscopy [8, 10–17], where exten-
sive tests provide empirical evidence for their relevance
to a broad range of nuclei. Similar PDS Hamiltonians

have been used in molecular spectroscopy [18] and in the
study of quantum phase transitions [19, 20] and of mixed
regular and chaotic dynamics [20, 21]. Fermionic Hamil-
tonians with PDS have been identified within the nuclear
shell model and applied to light nuclei [22] and senior-
ity isomers [23, 24]. The growing number of empirical
manifestations suggests a more pervasive role of PDSs in
dynamical systems than heretofore realized.

All examples of PDS considered so far, were confined
to systems of a given statistics (bosons or fermions). In
this Rapid Communication, we extend the PDS concept
to mixed systems of bosons and fermions, and present
an empirical example of this novel construction. Sys-
tems with such composition of constituents are of broad
interest and arise, for example, in the study of rotation-
vibration-electronic spectra in molecules, collective states
in odd-mass nuclei, electron-phonon phenomena in crys-
tals, and spin-boson models in quantum optics.

If the separate numbers of bosons N and fermions M
are conserved, the dynamical algebra of a Bose-Fermi
system is of product form

UB(ΩB) ⊗ UF(ΩF)
↓ ↓

[N ] [1M ]
, (1)

where ΩB (ΩF) is the number of states available to a sin-
gle boson (fermion). The statistics among the particles
is imposed by an appropriate choice of irreducible rep-
resentation (irrep), symmetric and anti-symmetric, for
the bosons and fermions, respectively, as indicated in
Eq. (1). There exist several strategies to define DSs with
UB(ΩB)⊗UF(ΩF) as a starting point [3]. They all define
a chain of nested subalgebras, relying on the existence of
isomorphisms between boson and fermion algebras and
ending in the symmetry algebra.

Let us for the sake of concreteness consider a particu-
lar example while emphasizing that results of this Rapid
Communication are of a generic nature that apply to any
quantum-mechanical problem of interacting bosons and
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fermions, as long as it can be formulated in an algebraic
language. We consider N bosons with angular momen-
tum ` = 0 (s) or ` = 2 (d) coupled to a single (M = 1)

fermion with angular momentum j = 1/2, 3/2, or 5/2.
This corresponds to the choice ΩB = 6 and ΩF = 12, and
a possible classification is as follows:

UB(6) ⊗ UF(12) ⊃
(

UBF(6) ⊃ SOBF(6) ⊃ SOBF(5) ⊃ SOBF(3)
)
⊗ SUF(2) ⊃ SpinBF(3)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[N ] [1M ] [N1, N2] 〈σ1, σ2〉 (τ1, τ2) L s̃ J

, (2)

where underneath each algebra the associated irrep la-
bels are indicated, and GBF is the direct sum of GB and
GF. For M = 0, the classification (2) reduces to the
SO(6) limit of the interacting boson model [25] which
is of relevance for the even-even platinum isotopes [26].
For M = 1, the classification (2) is proposed in the con-
text of the interacting boson-fermion model (IBFM) [3]
to describe odd-mass isotopes of platinum with the odd
neutron in the orbits 3p1/2, 3p3/2, and 2f5/2, which are
dominant for these isotopes [27, 28]. Since we are inter-
ested here in Bose-Fermi systems, we apply the classifi-
cation (2) for M = 1, which implies s̃ = 1/2, and refer

to it as the SOBF(6) limit.
The eigenstates (2) are obtained with a Hamiltonian

that is a combination of Casimir operators Ĉn[G] of or-
der n of an algebra G appearing in the chain. Up to a
constant energy, this Hamiltonian is of the form

ĤDS = a Ĉ2[UBF(6)] + b Ĉ2[SOBF(6)] + c Ĉ2[SOBF(5)]

+d Ĉ2[SOBF(3)] + d′Ĉ2[SpinBF(3)]. (3)

The associated eigenvalue problem is analytically solv-
able, leading to the energy expression

EDS = a f5(N1, N2) + b f4(σ1, σ2) + c f3(τ1, τ2)

+dL(L+ 1) + d′J(J + 1), (4)

with fi(s1, s2) ≡ s1(s1 + i) + s2(s2 + i− 2). The energy
spectrum of the Hamiltonian (3) is then determined once
the allowed values of [N1, N2], 〈σ1, σ2〉, (τ1, τ2), L, and
J for a given N and M = 1 are found. Such branching
rules can be obtained with standard group-theoretical
techniques [29]. While ĤDS (3) is completely solvable, the
question arises whether terms can be added that preserve
solvability for part of its spectrum. This can be achieved
by the construction of a PDS.

The algorithm to construct a PDS [14] starts from the
character under the classification (2) of the boson and

fermion creation operators b†`m`
and a†jmj

[3]. Annihi-

lation operators b`m`
and ajmj

transform in the same
manner under orthogonal algebras if they are modi-
fied according to b̃`m`

≡ (−)`+m`b`,−m`
and ãjmj

≡
(−)j+mjaj,−mj . The single-fermion angular momentum
(j = 1/2, 3/2, 5/2) can be divided into a pseudo-orbital

angular momentum (˜̀= 0, 2) coupled to a pseudo-spin

(s̃= 1/2). The resulting ˜̀-s̃ basis is given by c†˜̀m̃`;s̃m̃s
=∑

j,m(˜̀, m̃`; s̃, m̃s|j,m) a†jm.
Composite operators with definite tensor character un-

der the classification (2) can be constructed by use of
generalized coupling coefficients which can be written
as a product of U(6) ⊃ SO(6), SO(6) ⊃ SO(5), and
SO(5) ⊃ SO(3) isoscalar factors [29]. For the two-particle
operators (needed for the construction of a two-body in-
teraction) the tensor character is uniquely specified by
the SO(6) and SO(5) labels 〈σ1, σ2〉 and (τ1, τ2), together
with the SOBF(3) and SpinBF(3) labels L and J . For ex-
ample, operators that create a boson and a fermion with
tensor character [N1, N2] 〈σ1, σ2〉 (τ1, τ2) LJ are

∑
ττ̃

〈
〈1〉 〈1〉 〈σ1, σ2〉
(τ) (τ̃) (τ1, τ2)

〉∑
j

L̄̄
{
` ˜̀ L
s̃ J j

}
(b†`a

†
j)

(J )
MJ

,

with (`, ˜̀) = 0, 2, for (τ, τ̃) = 0, 1, respectively, j= ˜̀±1/2,
x̄ ≡
√

2x+ 1 and the symbol 〈: : | :〉 is an SO(6) ⊃ SO(5)
isoscalar factor, tabulated in Ref. [3]. Expressions for
the two-particle creation operators of interest here are
given in Table I. The corresponding annihilation op-
erators with the correct tensor properties follow from

T̃ L(J )
−,MJ

=(−)J+MJ
(
T L(J )
+,−MJ

)†
, where T =U or V.

The lowest-lying states in the spectrum of an odd-mass
nucleus, described in terms of N bosons and one fermion,
can be written as |[N + 1]〈N + 1〉(τ)LJMJ〉; the next
class of states belongs to |[N, 1]〈N, 1〉(τ1, τ2)LJMJ〉 while
there is also some evidence from one-neutron transfer for
|[N, 1]〈N−1〉(τ)LJMJ〉 states [30]. All two-particle oper-
ators listed in Table I annihilate particular states, hence
lead to a PDS of some kind. For example, the operators
with UBF(6) labels [N1, N2] = [1, 1] satisfy

ŨL(J )
−,MJ

|[N + 1]〈σ〉(τ)LJMJ〉 = 0, (5)

for all permissible (στLJMJ). This is so because a state
with N − 1 bosons and no fermion has the UBF(6) label
[N−1]. Given the multiplication [N−1]⊗[1, 1] = [N, 1]⊕
[N−1, 1, 1], the action of a UL(J )

+,−MJ
operator on an (N−

1)-boson state can never yield a boson-fermion state with
the UBF(6) labels [N + 1]. Similar arguments involving
SO(6) multiplication lead to the following properties for



3

TABLE I: Two-particle tensor operators in the SOBF(6) limit. The superscript L(J ) stands for the coupling J = L ± 1/2.

N M [N1, N2] 〈σ1, σ2〉 (τ1, τ2) L J Tensor operator T L(J )
+,MJ

2 0 [2, 0] 〈0, 0〉 (0, 0) 0 0 V0(0)
+ ≡

√
5
12

(d†d†)
(0)
0 −

√
1
12

(s†s†)
(0)
0

1 1 [2, 0] 〈0, 0〉 (0, 0) 0 1/2 V0(1/2)
+,µ ≡ −

√
1
6
(s†a†1/2)

(1/2)
µ −

√
1
3
(d†a†3/2)

(1/2)
µ +

√
1
2
(d†a†5/2)

(1/2)
µ

1 1 [1, 1] 〈1, 1〉 (1, 1) 1 1/2 U1(1/2)
+,µ ≡

√
3
5
(d†a†3/2)

(1/2)
µ +

√
2
5
(d†a†5/2)

(1/2)
µ

1 1 [1, 1] 〈1, 1〉 (1, 1) 1 3/2 U1(3/2)
+,µ ≡ −

√
3
10

(d†a†3/2)
(3/2)
µ +

√
7
10

(d†a†5/2)
(3/2)
µ

1 1 [1, 1] 〈1, 1〉 (1, 0) 2 3/2 U2(3/2)
+,µ ≡

√
1
2
(s†a†3/2)

(3/2)
µ −

√
1
2
(d†a†1/2)

(3/2)
µ

1 1 [1, 1] 〈1, 1〉 (1, 0) 2 5/2 U2(5/2)
+,µ ≡

√
1
2
(s†a†5/2)

(5/2)
µ −

√
1
2
(d†a†1/2)

(5/2)
µ

1 1 [1, 1] 〈1, 1〉 (1, 1) 3 5/2 U3(5/2)
+,µ ≡

√
4
5
(d†a†3/2)

(5/2)
µ +

√
1
5
(d†a†5/2)

(5/2)
µ

1 1 [1, 1] 〈1, 1〉 (1, 1) 3 7/2 U3(7/2)
+,µ ≡ −

√
1
10

(d†a†3/2)
(7/2)
µ +

√
9
10

(d†a†5/2)
(7/2)
µ

the V operators which have SO(6) tensor character 〈0, 0〉:

Ṽ0(J )
−,MJ

|[N + 1]〈N + 1〉(τ)LJMJ〉 = 0, (6a)

Ṽ0(J )
−,MJ

|[N, 1]〈N, 1〉(τ1, τ2)LJMJ〉 = 0. (6b)

An alternative way of constructing Hamiltonians with
PDS for an algebra G, is to identify n-particle operators
which annihilate a lowest-weight state of a prescribed G-
irrep [7]. In the IBFM, such a state, which transforms as

[N + 1] and s̃ = 1/2 under UBF(6)⊗ SUF(2), is given by

|Ψg〉 ∝ [b†c(β)]Nf†m̃s
(β)|0〉, (7)

where b†c(β) ∝ (β d†0 + s†) and f†m̃s
(β) ∝ (β c†2,0;1/2,m̃s

+

c†0,0;1/2,m̃s
) in the ˜̀-s̃ basis defined above. |Ψg〉 is a con-

densate of N bosons and a single fermion, and represents
an intrinsic state for the ground band with deformation
β. The Hermitian conjugate of the following two-particle
operators

V0(0)
+ =

√
5
12 (d†d†)

(0)
0 −

β2

√
12

(s†s†)
(0)
0 , (8a)

V0(1/2)
+,µ =

√
5
6 (d†c†2;1/2)0(1/2)µ − β2

√
6
(s†c†0;1/2)0(1/2)µ , (8b)

UL(J )
+,µ = (d†c†2;1/2)L(J )

µ , L = 1, 3, (8c)

U2(J )
+,µ = (s†c†2;1/2)2(J )

µ − (d†c†0;1/2)2(J )
µ , (8d)

satisfy T̃ L(J )
−,µ |Ψg〉 = 0. The V operators of Eqs. (8a)-

(8b) satisfy also Ṽ0(J )
−,µ |Ψe〉 = 0, where

|Ψe〉 ∝ [b†c(β) c†2,1;1/2,m̃s
− d†1 f

†
m̃s

(β)][b†c(β)]N−1|0〉 (9)

is an intrinsic state, with UBF(6) label [N, 1], represent-
ing an excited band in the odd-mass nucleus. For β = 1,
|Ψg〉 and |Ψe〉 become the lowest-weight states in the

SOBF(6) irreps 〈N + 1〉 and 〈N, 1〉, respectively, from
which the |(τ1, τ2)LJMJ〉 states of Eq. (6) can be ob-

tained by SOBF(5) projection, and the operators (8) co-
incide with those listed in Table I.

The combined effect of normal-ordered interactions
constructed out of the T operators in Table I added to
the DS Hamiltonian (3), gives rise to a rich variety of
possible PDSs. In the current application to 195Pt we
take a restricted Hamiltonian of the form

ĤPDS = ĤDS + a0V̂
1/2
0 + a′1(2Û

1/2
1 − Û3/2

1 ) +

a2(Û
3/2
2 + Û

5/2
2 ) + a3(Û

5/2
3 + Û

7/2
3 ), (10)

in terms of the interactions T̂JL ≡ J̄ (T L(J )
+ T̃ L(J )

− )
(0)
0 ,

where T = U or V and T = U or V . These interactions
can be transcribed as tensors with total pseudo-orbital L̃
and pseudo-spin S̃ coupled to zero total angular momen-
tum. In particular, the a′1 term in Eq. (10) has L̃= S̃=1,

while the a0, a2 and a3 terms have L̃= S̃=0.
The experimental spectrum of 195Pt is shown in Fig. 1,

compared with the DS and PDS calculations. The coeffi-
cients c, d, and d′ in ĤDS (3) are adjusted to the excita-
tion energies of the [7, 0]〈7, 0〉 levels which are reproduced
with a root-mean-square (rms) deviation of 12 keV. The
remaining two coefficients a and b are obtained from
an overall fit. The resulting (DS) values are (in keV):
a = 45.3, b = −41.5, c = 49.1, d = 1.7, and d′ = 5.6. The
fit for the PDS calculation proceeds in stages. First, the
parameters c, d, and d′ in Eq. (3) are taken at their DS
values. This ensures the same spectrum for the [7, 0]〈7, 0〉
levels (drawn in black in Fig. 1) which remain eigenstates

of ĤPDS (10). Next, one considers the [6, 1]〈6, 1〉 levels
and improves their description by adding the three PDS
U interactions. The resulting coefficients are (in keV):
a′1 = 10, a2 = −97, and a3 = 112. Eq. (5) ensures that
the energies of the [7, 0]〈7, 0〉 levels do not change while
the agreement for the [6, 1]〈6, 1〉 levels is improved (blue
levels in Fig. 1). The rms deviation for both classes of
levels is 20 keV. In particular, unlike in the DS calcu-
lation, it is possible to reproduce the observed inversion
of the 1/2−-3/2− doublets without changing the order of
other doublets. The additional PDS terms necessitate a
readjustment of the a coefficient in Eq. (3), for which the
final (PDS) value is a = 37.7 keV, while the coefficient b
is kept unchanged. Finally, the position of the [6, 1]〈5, 0〉
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FIG. 1: (Color online). Left panel: Observed and calculated energy spectrum of 195Pt. The levels in black are the solvable

[7, 0]〈7, 0〉 eigenstates of ĤDS (3), whose structure and energy remain unaffected by the added PDS interactions in Eq. (10).

The levels in blue (red) are the [6, 1]〈6, 1〉 ([6, 1]〈5, 0〉) eigenstates of ĤDS (3) and are subsequently perturbed by the PDS

interactions in Eq. (10). Right panel: SOBF(6) decomposition of the eigenstates of ĤPDS (10), shown in red on the left panel.

TABLE II: Observed B(E2; Ji → Jf) values between negative-
parity states in 195Pt compared with the DS and PDS predic-
tions of the SOBF(6) limit. The solvable (mixed) states are
members of the ground (excited) bands shown in Fig. 1. The
E2 operator employed is defined in the text.

Ei Ji Ef Jf B(E2; Ji → Jf) (10−3 e2b2)
(keV) (keV) Exp DS PDS

Solvable → solvable

212 3/2 0 1/2 190(10) 179 179
239 5/2 0 1/2 170(10) 179 179
525 3/2 0 1/2 17(1) 0 0
525 3/2 239 5/2 ≤ 19 72 72
544 5/2 0 1/2 8(4) 0 0
612 7/2 212 3/2 170(70) 215 215
667 9/2 239 5/2 200(40) 239 239

Solvable → mixed

239 5/2 99 3/2 60(20) 0 0
525 3/2 99 3/2 ≤ 33 7 3
525 3/2 130 5/2 9(5) 3 2
612 7/2 99 3/2 5(3) 9 11
667 9/2 130 5/2 12(3) 10 12

Mixed → solvable

99 3/2 0 1/2 38(6) 35 34
130 5/2 0 1/2 66(4) 35 33
420 3/2 0 1/2 15(1) 0 0
456 5/2 0 1/2 ≤ 0.04 0 0
508 7/2 212 3/2 55(17) 20 18
563 9/2 239 5/2 91(22) 22 22
199 3/2 0 1/2 25(2) 0 0
390 5/2 0 1/2 7(1) 0 0

Mixed → mixed

420 3/2 99 3/2 5(4) 177 165
508 7/2 99 3/2 240(50) 228 263
563 9/2 130 5/2 240(40) 253 284
390 5/2 99 3/2 200(70) 219 179
390 5/2 130 5/2 ≤ 14 55 35

levels (red levels in Fig. 1) is corrected by considering
the PDS V interaction with a0 = 306 keV which, due to
Eq. (6), has a marginal effect on lower bands. The rms
deviation for all levels shown in Fig. 1 is 23 keV. While
the states [7, 0]〈7, 0〉 of the ground band are pure, other

eigenstates of ĤPDS in excited bands can have substantial
SOBF(6) mixing (see right panel of Fig. 1).

A large amount of information also exists on electro-
magnetic transition rates and spectroscopic strengths. In
Table II, 25 measured B(E2) values in 195Pt are com-
pared with the DS and PDS predictions. The same E2
operator is used as in previous studies [31, 32] of the

SOBF(6) limit, T̂µ(E2) = ebQ̂
B
µ + efQ̂

F
µ, where Q̂B

µ =

s†d̃µ + d†µs is the boson quadrupole operator, Q̂F
µ is its

fermion analogue [3], and eb and ef are effective bo-
son and fermion charges, with the values eb = −ef =
0.151 eb. Table II is subdivided in four parts according
to whether the initial and/or final state in the transition
has a DS structure (as in Refs. [31, 32]) or whether it is
mixed by the PDS interaction. It is seen that when both
have a DS structure the B(E2) value does not change,
only slight differences occur when either the initial or
the final state is mixed, and the biggest changes arise
when both are mixed.

In summary, we have proposed a novel extension of the
PDS notion to Bose-Fermi systems and exemplified it in
195Pt. The analysis highlights the ability of a PDS to
select and add to the Hamiltonian, in a controlled fash-
ion, required symmetry-breaking terms, yet retain a good
DS for a segment of the spectrum. These virtues greatly
enhance the scope of applications of algebraic modeling
of complex systems. The operators (8) with β 6= 1, can
be used to explore additional PDSs in odd-mass nuclei.
Partial supersymmetry, of relevance to nuclei [33], can be
studied by embedding the algebras of Eq. (1) in a graded
Lie algebra. Work in these directions is in progress.
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