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University of Nantes – GeM Laboratory - UMR CNRS 6183 – Nantes 

– France 
____________________________________________________________________ 

This chapter presents the subset simulation (SS) approach and the Polynomial Cha-

os Expansion (PCE) methodology. The SS method is an efficient alternative to the 

well-known Monte Carlo Simulation (MCS) methodology to calculate small failure 

probabilities. The basic idea of the SS approach is that the small failure probability 

can be expressed as a product of larger conditional failure probabilities. On the 

other hand, the PCE methodology allows one to accurately compute the PDF of a 

given system response using a reduced number of calls of the deterministic model 

(as compared to the classical MCS applied on the original complex deterministic 

model). Indeed, the PCE methodology replaces the computationally-expensive de-

terministic model by a meta-model. Once the meta-model is determined, MCS can be 

applied on the obtained PCE to compute the PDF of the system response with a 

quasi-negligible computation time.  

1 Introduction 

The most robust method used for the probabilistic analysis of geotechnical structures 

is the classical well-known Monte Carlo Simulation (���) methodology. It should 

be noted that the probabilistic analysis of an engineering system involves the com-

putation of the PDF of the system response or the calculation of the failure probabil-

ity for a prescribed threshold of this system response.  

 

��� is not suitable for the computation of the small failure probabilities encoun-

tered in the practice of geotechnical engineering (especially when using a computa-

tionally-expensive finite element/finite difference deterministic model) due to the 

large number of simulations required to calculate a small failure probability. As an 

alternative to ��� methodology, [Au01] proposed the subset simulation ��  ap-

proach to calculate small failure probabilities. The basic idea of the �� approach is 

that the small failure probability can be expressed as a product of larger conditional 

failure probabilities. 

 



Similarly, MCS is not suitable for the accurate determination of the PDF of a system 

response because of the great number of calls of the deterministic model, which are 

required for such a computation. The PCE methodology allows one to approximate a 

given system response by a polynomial chaos expansion (PCE) of a suitable order. 

Thus, the PCE methodology replaces the computationally-expensive deterministic 

model by a meta-model (i.e. a simple analytical equation). Once the PCE coeffi-

cients are determined, MCS can be applied on the obtained PCE to compute the PDF 

of the system response (and the corresponding statistical moments) with a quasi-

negligible computation time. 

2 Subset simulation ��  approach 

Subset simulation ��  approach was proposed by [Au01] as alternative to Monte 

Carlo Simulation (���) methodology to compute small failure probabilities. The 

basic idea of the �� approach is that the small failure probability can be expressed as 

a product of larger conditional failure probabilities. In this section, one presents a 

brief description of the steps of �� approach in case of two random variables, the 

extension to the case of several random variables being straightforward. A detailed 

description of the �� approach may be found in [Au01], in the chapters 1 and 4 of 

the book by [Pho08] and in [Ahm12].  

 

The steps of �� approach in case of two random variables �!,�!  can be described 

as follows: 

1. Generate a vector of two random variables �!,�!  according to a target ��� 

using direct Monte Carlo simulation.    

2. Using the deterministic model, calculate the system response corresponding to 

�!,�! .  

3. Repeat steps 1 and 2 until obtaining a prescribed number �! of vectors of ran-

dom variables and the corresponding values of the system response.  

4. Determine the value of the performance function corresponding to each value of 

the system response and then, arrange the values of the performance function in 

an increasing order within a vector �! where �! = �!
!,… ,�!

! ,… ,�
!

!! . Notice 

that the subscripts ‘0’ refer to the first level (level 0) of the subset simulation 

approach.   

5. Prescribe a constant intermediate conditional failure probability �! for the fail-

ure regions �! � = 1,2,… ,� − 1  and evaluate the first failure threshold �! 

which corresponds to the first level of �� approach (see Figure 1). The failure 

threshold �! is equal to the �!×�! + 1
!! value in the increasing list of ele-

ments of the vector �!. This means that the value of the conditional failure 

probability of the first level � �!  will be equal to the prescribed �! value. 

6. Among the �! vectors of random variables, there are �!×�!  ones whose val-

ues of the performance function are less than �! (i.e. they are located in the fail-

ure region �!). These vectors are used as ‘mother vectors’ to generate �! new 



vectors of random variables (according to a proposal  �!) using Markov chain 

method based on the modified Metropolis-Hastings algorithm by [San11]. This 

algorithm is presented in Appendix 1. 

7. Using the deterministic model, calculate the values of the system response cor-

responding to the new vectors of random variables (which are located in level 

1). Then, calculate the corresponding values of the performance function. Final-

ly, gather the values of the performance function in an increasing order within a 

vector �! where �! = �!
!,… ,�!

! ,… ,�
!

!! .  

8. Evaluate the second failure threshold �! as the �!×�! + 1
!! value in the 

increasing list of elements of the vector �!.    

9. Repeat steps 6-8 to evaluate the failure thresholds �!,�!,… ,�! corresponding 

to the failure regions �!,�!,… ,�!. Notice that contrary to all other thresholds, 

the last failure threshold �! is negative. Thus, �! is set to zero and the condi-

tional failure probability of the last level � �! �!!!  is calculated as: 

 

� �! �!!! =
1

�!

�!! !!

!!

!!!

 

        

       (1) 

 

where �!! = 1 if the performance function � �!  is negative and �!! = 0 oth-

erwise. 

 

Figure 1: Nested Failure domain. 



Finally, the failure probability � �  is evaluated as follows:  

 

� � = � �! � �! �!!!

!

!!!

 
        

 (2) 

 

It should be mentioned that a normal ��� was used herein as a target probability 

density function �!. However, a uniform ��� was used as a proposal probability 

density function �! (for more details, refer to Appendix 1).  

 

2.1 Example application 
 

In order to illustrate the algorithm of �� methodology in a simple way, a numerical 

example is provided herein. In this example, �� approach was used to calculate the 

failure probability �! against bearing capacity failure of a strip footing of breadth �. 

The footing rests on a �,�  soil and it is subjected to a service vertical load �!. The 

soil cohesion � and the soil angle of internal friction � were considered as random 

variables. The following formula was used for the computation of the ultimate bear-

ing capacity: 

 

�! = �
�

2
�! + ��! + ��! 

        

 (3) 

 

in which: 

�! = 2 �! − 1 ���� 
        

 (4a) 

�! = �
!"#$%

. ���
!
�

4
+
�

2
 

        

 (4b) 

�! =
�! − 1

����
 

        

 (4c) 

 

where �!, �! and �! are the bearing capacity factors due to soil weight, surcharge 

loading and cohesion respectively. These coefficients are function of the soil friction 

angle. On the other hand, � is the soil unit weight and � is the surcharge loading. 

The performance function used in the analysis is:    

� =
�!

�!

− 1 
        

 (5) 

 

where �! is the ultimate footing load and �! is the footing applied load. As men-

tioned previously, only the soil cohesion and friction angle were considered as ran-

dom variables. All the other parameters were considered as deterministic. These 

parameters are given in Table (1).  

 



In this example, the intermediate failure probability �! of a given level � � =

1,2,… ,� − 1  was arbitrary chosen equal to 0.2. A small number of samples per 

level (�! = 10 samples) was used to facilitate the illustration. 
 

Table 1: Data used for the probabilistic analysis of a strip footing against bearing  

capacity failure 

 

Table 2 presents (i) the values of � and � of each sample for the successive levels 

(ii) the corresponding values of the performance function and (iii) the values of the 

failure thresholds �! for the different levels. Notice that only the first two levels and 

the last level for which the failure threshold becomes negative were provided herein 

for illustration. Table (2) indicates that the failure threshold decreases with the suc-

cessive levels until reaching a negative value at the last level. This means that the 

samples generated by the subset simulation successfully progress towards the limit 

state surface � = 0. In order to select the failure threshold of a given level, the cal-

culated values of the performance function of this level were arranged in an increas-

ing order as shown in Table (2). Then, the failure threshold was selected as the 

�!×�! + 1
!! value of the arranged values of the performance function. Since 

�! = 10 and �! = 0.2, the failure threshold is equal to the third value of the ar-

ranged values of the performance function. The �� computation continues until 

reaching a negative value (or a value of zero) of the failure threshold. In this exam-

ple, the negative value was reached in the sixth level (where �! = −0.0936) as 

shown in Table (2). Theoretically, the last failure threshold should be equal to zero. 

For this reason, �! was set to zero. This means that the last conditional failure prob-

ability � �! �!  is not equal to �!. In this case, the last conditional failure probabil-

ity � �! �!  is calculated as the ratio between the number of samples for which the 

performance function is negative and the chosen number �! of samples (i.e. 10). 

According to Table (2), � �! �!  is equal to 3 10 = 0.3. Thus, the failure probabil-

ity of the footing under consideration is equal to 0.2!×0.3 = 9.6×10
!!.  

 

Parameter 
Type of parameter 

Mean and coefficient 

of variation of the pa-

rameter 

 Breadth � Deterministic 2m 

Surcharge loading � Deterministic 10kPa 

Soil unit weight � Deterministic 20kN/m
3
 

Service vertical load 

�! 
Deterministic 1000kN/m 

Cohesion � 
Random normal varia-

ble 

�!  = 20kPa 

���!= 0.3 

Friction angle � 
Random normal varia-

ble 

�! = 30° 

���! = 0.1 



Table 2: Results of �� algorithm when �!=10 and �!=0.2 

Level’s 

number � 

Cohesion � 

(kPa) 

Angle of internal 

friction � (deg) 

Performance 

function 

Failure 

threshold 

�! 

1 

23.23 26.0 0.9256 

1.4875 

 

31.00 

 

 

39.1 1.1185 

6.45 32.2 1.4875 

25.17 29.9 1.5598 

21.91 32.1 2.0023 

12.15 29.4 2.6625 

17.40 29.6 3.8598 

22.06 34.5 4.9894 

41.47 34.3 5.3910 

36.62 34.3 9.1912 

2 

25.83 26.5 0.8587 

0.9740 

 

27.29 26.2 0.9411 

25.32 26.8 0.9740 

23.98 25.4 1.0561 

25.92 26.0 1.0842 

14.86 28.0 1.1505 

14.14 28.8 1.1528 

12.27 28.8 1.1747 

13.14 29.4 1.1931 

11.80 30.0 1.2361 

6 

15.17 22.9 -0.1604 

-0.0936 

14.88 23.0 -0.1003 

14.88 23.0 -0.0936 

14.56 22.5 0.0415 

14.56 22.5 0.0718 

15.84 22.5 0.0718 

16.36 21.5 0.1156 

14.53 20.7 0.1420 

12.89 20.6 0.1476 

15.43 20.3 0.1476 

�! 9.6×10
-5 

 

It should be emphasized that the failure probability calculated in Table (2) is not 

accurate due to the small value of �!. For an accurate computation of the failure 

probability, �! should be increased. This number should be greater than 100 to pro-

vide a small bias in the calculated �! value (see chapter 4 by Honjo in [Pho08]).   



In order to determine the optimal number of samples �! to be used per level, differ-

ent values of �! were considered to calculate �! and its coefficient of variation 

���!!
 as shown in Table (3). The thresholds corresponding to each �! value were 

calculated and were shown in this table. Table (3) indicates (as was shown before 

when �! = 10) that for the different values of �!, the failure threshold decreases 

with the successive levels until reaching a negative value at the last level.  

 

Table 3: Evolution of the failure threshold �! with the different levels � and with the 

number of realizations �! when �! = 0.2 

 

Figure (2a) shows the effect of �! on the failure probability. It indicates that for 

small values of �!, the failure probability largely changes with �!.  However, for 

high values of �!, the failure probability converges to an almost constant value. 

Figure (2a) also indicates that 2200 samples per level are required to accurately 

calculate the failure probability. This is because (i) the �! values corresponding to 

�!=2200 and 2400 samples are quasi similar as it may be seen from Table (3) and 

(ii) the corresponding final �! values are too close (they are respectively equal to 

2.60×10
-3

 and 2.63×10
-3

). 

Figure (2b) shows the effect of �! on the coefficient of variation of the failure prob-

ability ���!!.  As expected, ���!! decreases with the increase of �!. Notice that 

the values of ���!! for �! =2200 and 2400 samples are equal to 12.8% and 12.4% 

which indicates (as expected) that the ���!! decreases with the increase in the 

number of realizations. 

It should be mentioned here that for �! = 0.2, four levels of subset simulation were 

found necessary to reach the limit state surface � = 0 as may be seen from Table 

(3). Therefore, when �!=2200 samples, a total number of �!=2200×4=8800 sam-

ples were required to calculate the final �! value. Remember that in this case, the 

��� of �! was equal to 12.8%. Notice that if the same value of ��� (i.e. 12.8%) is 

�! for level 

� 

Number of samples �! per level 

10 100 200 1000 2000 2200 2400 

�! 1.4875 0.9397 1.0071 1.0638 1.0532 1.0466 1.0803 

�! 0.9740 0.4157 0.3969 0.4916 0.4467 0.4466 0.4942 

�! 0.7391 0.1011 0.1016 0.1513 0.1434 0.1347 0.1549 

�! 0.4007 -0.0491 -0.0437 -0.0307 -0.0616 -0.0536 -0.0564 

�! 0.1573 -------- -------- -------- -------- -------- -------- 

�! -0.0936 -------- -------- -------- -------- -------- -------- 

�! ×10
!!  0.096 2.80 2.72 2.20 2.80 2.60 2.63 

���!!
%  221.4 57.9 42.1 18.7 13.3 12.8 12.4 



desired by ��� to calculate �!, the number of samples would be equal to 20000. 

This means that, for the same accuracy, the �� approach reduces the number of 

realizations by 56%. On the other hand, if one uses ��� with the same number of 

samples (i.e. 8800 realizations), the value of ��� of �! would be equal to 19.6%. 

This means that for the same computational effort, the �� approach provides a 

smaller value of ��� �!  than ���.  

 
(a) 

 
(b) 

 

Figure 2: �! and ���!! versus the number of realizations �!. 

3. Polynomial Chaos Expansion (PCE) methodology 

The basic idea of this method is to approximate a given system response by a poly-

nomial chaos expansion (PCE) of a suitable order. In other words, the PCE method-

ology replaces the computationally-expensive deterministic model by a meta-model. 
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In order to achieve this purpose, all the uncertain parameters (which may have dif-

ferent PDFs) should be represented by a unique chosen PDF. Table (4) presents the 

usual PDFs and their corresponding families of orthogonal polynomials.  

 

Table 4: Usual probability density functions and their corresponding families of 

orthogonal polynomials  

 

Probability density functions Polynomials 

Gaussian Hermite 

Gamma Laguerre 

Beta Jacobi 

Uniform Legendre 

Within the framework of the present methodology, the response of a system that 

involves n random variables can be expressed by a PCE as follows: 

 

Γ!"# = �!Ψ!

!!!

!!!

ξ  

        

 (6) 

 

where ( )ξψ
i

 are multi-dimensional polynomials defined as the product of one-

dimensional polynomials φ
!!

, ξ
!
, ξ
!
,… , ξ

!
 are independent random variables,  

�!, �!,… , �!  are unknown coefficients to be evaluated and P is the size of the 

PCE.   

The size P of the PCE (which is equal to the number of the unknown PCE coeffi-

cients) depends on the number n of random variables and the order p of the PCE. It 

is given as follows: 

( )
!p!n

!pn
P

+
=          

 (7) 

 

It should be mentioned here that in this chapter, the random variables are represent-

ed in the independent standard normal space. Thus, the suitable corresponding bases 

are the multidimensional Hermite polynomials as may be seen from Table (4). The 

expressions of the multi-dimensional Hermite polynomials are given as follows: 

 

∏
=

=

n

1i

i
)(

i

ξφψ αα
 

        

 (8) 

 

where α=[α1, ….., αn] is a sequence of n non-negative integers and )(
ii

ξφα
 are one-

dimensional Hermite polynomials. More details on the one-dimensional Hermite 

polynomials are given in Appendix 2.  



For the determination of the PCE unknown coefficients, a non-intrusive technique 

(in which the deterministic model is treated as a black-box) is used (see [Ahm12] 

among others). In this chapter, the regression approach is employed. In this ap-

proach, it is required to compute the system response at a set of collocation points in 

order to perform a fit of the PCE using the obtained system response values.  

As suggested by several authors (e.g. [Hua09]), the collocation points can be chosen 

as the result of all possible combinations of the roots of the one-dimensional Her-

mite polynomial of order (p+1) for each random variable. For example, if a PCE of 

order p=2 is used to approximate the response surface of a system with n=2 random 

variables, the roots of the one-dimensional Hermite Polynomial of order 3 are cho-

sen for each random variable. These roots are (-√3, 0, √3) for the first random varia-

ble and (-√3, 0, √3) for the second random variable. In this case, 9 collocation points 

are available. These collocation points are (-√3, -√3), (-√3, 0), (-√3, √3), (0, -√3), (0, 

0), (0, √3), (√3, -√3), (√3, 0), (√3, √3). In the general case, for a PCE of order p and 

for n random variables, the number N of the available collocation points can be 

obtained using the following formula: 

N=(p+1)
n         

 (9) 

 

Referring to Equations (7 and 9), one can observe that the number of the available 

collocation points is higher than the number of the unknown coefficients. This leads 

to a linear system of equations whose number N of equations is greater than the 

number P of the unknown coefficients. The regression approach is used to solve this 

system. This approach is based on a least square minimization between the exact 

solution Γ and the approximate solution ΓPCE which is based on the PCE. According-

ly, the unknown coefficients of the PCE can be computed using the following equa-

tion: 

 

a = (Ψ
T
Ψ)

-1
. Ψ

T
. Γ 

        

 (10) 

 

in which a is a vector containing the PCE coefficients, Γ is a vector containing the 

system response values as calculated by the deterministic model at the different 

collocation points and Ψ  is a matrix of size N×P whose elements are the multivariate 

Hermite polynomials. It is given as follows:  
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Notice that in order to calculate the system response corresponding to a given collo-

cation point, the standard normal random variables ξi should be expressed in the 

original physical space of random variables as follows: 

 

1
( )

i
i x i
x F ξ−
= Φ⎡ ⎤⎣ ⎦         

 (12) 

 

in which, xi is a physical random variable, Fxi is the CDF of the physical random 

variable and Ф is the CDF of the standard normal random variable. Notice also that 

if the original physical random variables are correlated, the standard normal random 

variables should first be correlated using the following equation: 

 

1 1
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H
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 (13) 

 

in which { }
nccc

ξξξ ...,,,
21

 is the vector of correlated standard normal random varia-

bles,  { }
n

ξξξ ...,,,
21

 is the vector of uncorrelated standard normal random variables 

and H is the Cholesky transformation of the correlation matrix of the physical ran-

dom variables. 

Once the PCE coefficients are determined, MCS can be applied on the obtained PCE 

(called meta-model) to compute the PDF of the system response. This is achieved by 

(i) generating a large number of realizations of the vector (ξ1, ξ2, … ξn) of standard 

normal random variables and (ii) calculating the system response corresponding to 

each realization by substituting the vector (ξ1, ξ2, … ξn) in the meta-model.  

 

3.1. Optimal number of collocation points  

 
The number of the available collocation points significantly increases with the in-

crease in the number of random variables (cf. Eq. 9) and it may be very large with 

respect to the number of the unknown PCE coefficients. This makes it necessary to 

determine the optimal number of collocation points which is needed by the regres-

sion approach to solve the linear system of equations (Eq. 10). Sudret [Sud08] has 

proposed to successively increase the information matrix A [where A=(Ψ
T
Ψ)] until 

it becomes invertible as follows: (a) the N available collocation points are ordered in 

a list according to increasing norm, (b) the information matrix A is constructed using 

the first P collocation points of the ordered list, i.e. the P collocation points that are 

the closest ones to the origin of the standard space of random variables and finally 



(c) this matrix is successively increased (by adding each time the next collocation 

point from the ordered list) until it becomes invertible.  

 

3.2. Accuracy of the obtained PCE  
 

For a given PCE order, the accuracy of the approximation of the system response by 

a PCE can be measured by the coefficient of determination. Two types of coeffi-

cients of determination exist in literature. These are the coefficient of determination 

R
2
 and the leave-one-out coefficient of determination Q

2
.  

Let us consider J realizations of the standard normal random vector ξ as follows: 
( ) ( )( ){ ( )( ( ) )}J

n

J

1

)J(1

n

1

1

)1(
...,,...,,...,, ξξξξξξ == , and let us assume that the vector 

( )( ) ( )( ){ }J1
...,, ξΓξΓΓ =  includes the corresponding values of the system response de-

termined by deterministic calculations. The coefficient of determination R
2
 is calcu-

lated as follows: 

 

PCE
R Δ−=1
2          

 (14) 

 

where 
PCE

Δ  is given by: 

 

( )
( )( ) ( )( )
( )

2

1
1/

J i i

PCEi

PCE

J

Var

ξ ξ
=

⎡ ⎤Γ −Γ
⎣ ⎦Δ =

Γ

∑  
        

 (15) 

 

and 

 

( )
( )( )

2

1

1

1

J i

i
Var

J
ξ

=

⎡ ⎤Γ = Γ −Γ
⎣ ⎦− ∑          

 (16) 

 

Note here that J is the number of collocation points used to evaluate the unknown 

coefficients of the PCE. The value 1R
2

=  indicates a perfect approximation of the 

true system response Γ, whereas 0R
2

=  indicates a nonlinear relationship between 

the true model Γ and the PCE model ΓPCE.  

The coefficient of determination R2
 may be a biased estimate since it does not take 

into account the robustness of the meta-model (i.e. its capability of correctly predict-

ing the model response at any point which does not belong to the collocation points. 

As a consequence, a more reliable and rigorous coefficient of determination, called 

the leave-one-out coefficient of determination, was proposed in literature. This coef-

ficient of determination consists in sequentially removing a point from the J colloca-

tion points. Let Γξ/i be the meta-model that has been built from (J-1) collocation 

points after removing the i
th

 observation from these collocation points and let 

)()(
)i(

/i

)i(i ξΓξΓΔ ξ−=  be the predicted residual between the model evaluation at 



point ξ
(i)

 and its prediction at the same point based on Γξ/i. The empirical error is thus 

given as follows: 

 

* 2

1

1
( )

J

i

PCE

iJ =

Δ = Δ∑
         

 (17) 

 

The corresponding coefficient of determination is often denoted by Q2 and is called 

leave-one-out coefficient of determination. It is given as follows: 

 
*

2
1

( )

PCEQ
Var

Δ
= −

Γ

         

 (18) 

 

3.3. PCE-based Sobol indices 
 

A Sobol index of a given input random variable is a measure by which the contribu-

tion of this input random variable to the variability of the system response can be 

determined. Sobol indices are generally calculated by MCS methodology. This 

method is very time-expensive especially when dealing with a large number of ran-

dom variables. [Sud08] proposed an efficient approach to calculate the Sobol indices 

based on the coefficients of the PCE. This method is based on ranking the different 

terms of the PCE and gathering them into groups where each group contains only 

one random variable or a combination of random variables. For more details on the 

computation of Sobol indices, the reader may refer to [Ahm12] among others. 

4. Conclusion 

This chapter first presented the subset simulation approach which is an efficient 

alternative to ��� for the computation of a small failure probability. An example 

application was provided. It aims at showing the practical implementation of the �� 

approach. It was found that for a prescribed accuracy, the �� approach significantly 

reduces the number of realizations as compared to Monte Carlo simulations meth-

odology (the reduction was found equal to 93.3% in the present chapter). In other 

words, for the same computational effort, the �� approach provides a smaller value 

of the coefficient of variation of �!  than ���. It should be mentioned that the 

Matlab code used for the example application is provided in http://www.univ-

nantes.fr/soubra-ah for practical use. 

 

In a second stage, the Polynomial Chaos Expansion methodology was presented. It 

was shown that the PCE method replaces the computationally-expensive determinis-

tic model by a meta-model (i.e. a simple analytical equation). Once the PCE coeffi-

cients are determined, MCS can be applied on the obtained PCE to easily compute 

the PDF of the system response with a quasi-negligible computation time. 



APPENDIX 1  

Modified METROPOLIS-HASTINGS algorithm 

The Metropolis–Hastings algorithm is a Markov chain Monte Carlo (����) meth-

od. It is used to generate a sequence of new realizations from existing realizations 

(that follow a target ��� called ‘�!’). Refer to Figure (1) and let �! ∈ �!

 

be a current 

realization which follows a target ��� ‘�!’. Using a proposal ��� ‘�!’, a next real-

ization �!!! ∈ �!

 

that follows the target ��� ‘�!’ can be simulated from the current 

realization �!  as follows: 

a. A candidate realization � is generated using the proposal ��� (�!). The 

candidate realization � is centered at the current realization �!. 

b. Using the deterministic model, evaluate the value of the performance func-

tion � �  corresponding to the candidate realization �. If � � < �! (i.e. � 

is located in the failure region �!), set �!!! = �; otherwise, reject � and set 

�!!! = �! (i.e. the current realization �! is repeated).       

c. If � � < �!  in the preceding step, calculate the ratio �!=�! � �! �!  and 

the ratio �!=�! �! � �! � �! , then compute the value � = �!�!. 

d. If � ≥ 1 (i.e. � is distributed according to the �!), one continues to retain 

the realization �!!! obtained in step b; otherwise, reject � and set �!!! = �! 

(i.e. the current realization �! is repeated). 

 

Notice that in step �, if the candidate realization � does not satisfy the condition 

� � < �!, it is rejected and the current realization �! is repeated. Also in step �, if 

the candidate realization � does not satisfy the condition � ≥ 1 (i.e. � is not distrib-

uted according to the �!), it is rejected and the current realization �! is repeated. The 

presence of several repeated realizations is not desired as it leads to high probability 

that the chain of realizations remains in the current state. This means that there is 

high probability that the next failure threshold �!!! is equal to the current failure 

threshold �!. This decreases the efficiency of the subset simulation approach. To 

overcome this inconvenience, Santoso et al. (2011) proposed to modify the classical 

M-H algorithm as follows:  

a. A candidate realization � is generated using the proposal  �! . The candidate 

realization � is centered at the current realization �!. 

b. Calculate the ratio �!=�! � �! �!  and the ratio �!=�! �! � �! � �! , 

then compute the value � = �!�!. 

c. If � ≥ 1, set �!!! = �; otherwise, another candidate realization is generated. 

Candidate realizations are generated randomly until the condition � ≥ 1 is 

satisfied. 

d. Using the deterministic model, evaluate the value of the performance func-

tion � �!!!  of the candidate realization that satisfies the condition � ≥ 1. 

If � �!!! < �! (i.e. �!!! is located in the failure region �!), one continues 



to retain the realization �!!! obtained in step �; otherwise, reject � and set 

�!!! = �!  (i.e. the current realization �! is repeated).       

 

These modifications reduce the repeated realizations and allow one to avoid the 

computation of the system response of the rejected realizations. This becomes of 

great importance when the time cost for the computation of the system response is 

expensive (i.e. for the finite element or finite difference models).  

APPENDIX 2  

The one-dimensional Hermite polynomials of orders 0, 1, 2, 3, …, p+1 are given by: 
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where ξ is a standard normal random variable. 
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