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A modified macroscopic-microscopic nuclear mass formula is presented in which shell and pairing effects
are simultaneously evaluated by a procedure similar to Strutinsky method. The coefficients of the macroscopic-
microscopic mass formula have been adjusted on 2267 experimental atomic masses extracted from the atomic
mass evaluation of 2012 (AME2012). Same as the Weizsäcker-Skyrme (WS) model, the influence of the nuclear
deformation on the macroscopic energy as well as the mirror nuclei constraint are taken into account, and for the
sake of consistency of the model parameters between the macroscopic and the microscopic parts we approximate
the isospin-dependent component of the macroscopic energy to the depth of the Woods-Saxon potential. As a
result, the root-mean square (rms) deviation with respect to 2267 measured nuclear masses is 0.493 MeV. Then
based on the fitted formula we predict the remaining 988 nuclei from the AME2012 for which the masses are
still unknown or not well-known, and calculate theα−decay energies of seven chains in the superheavy nuclei
region withZ =117 and 118.

PACS numbers: 21.10.Dr,21.60.-n

I. INTRODUCTION

The accurate knowledge of nuclear masses is of great im-
portance, since it dramatically confines the development of
many other areas, like the determination of fundamental con-
stants, symmetry violations, metrology, stellar evolution, and
nucleosynthesis [1–4]. Specifically, for example, in nuclear
physics, nuclear mass plays an important role in extracting
symmetry energy [5], and investigating the evolution of shell
closures [6] as well as the limits of nuclear existence [7, 8]. In
addition, direct precise mass measurements of nuclei far away
from theβ−stable line are of critical importance in interpret-
ing the origin of about half of the heavy elements in nuclear
astrophysics [3, 9]. Precise mass values as reliable nuclear
physics inputs, are needed for the nuclei along therp-process
path to compare calculations with observations of the light
curve profiles and to extract quantitative information about the
stellar environments [10, 11].

Theoretically global nuclear mass calculation with increas-
ing precision is always the pursuing aim over the past decades
[12–27], and consequently great improvements have been
made. Some reviews on the developments and current sta-
tus of theoretical nuclear masses formula can be seen from
Ref. [1, 28]. Noticeably, in very recent years some novel ap-
proaches (or models) have been developed and carried out to
reproduce the measured nuclear masses systematically onto
a fairly excellent precision, such as the microscopic self-
consistent mean-field Hartree-Fock-Bogoliubov (HFB) mass
models [19, 20], the finite-range droplet model (FRDM) with
a more accurate adjustment (FRDM-2011a) [24], and a newly
developed mass formula: Weizsäcker-Skyrme (WS) model
[21–23] (which considers many corrections, such as isospin
and mass dependence, deformation influence to the macro-
scopic energy, mirror nuclei constraint, and some residual cor-
rections).

Although the macroscopic-microscopic method is a combi-

nation of liquid drop model and shell correction approach, its
ease of computation as well as its flexibility to choose the nu-
clear potential is still of great advantage. Moreover, the vari-
ous effects of the single-particle orbits can be more directly
studied in the shell correction approach, while in the self-
consistent mean-field models, a clear-cut picture is sometimes
lost because of the complicated self-consistency between the
nuclear mean field and the effective interaction [29]. Thus,
nowadays, despite the great progress of the self-consistent
models, the macroscopic-microscopic method remains in fre-
quent use.

Within the framework of the macroscopic-microscopic
method the nuclear binding energy of the ground state is the
sum of two terms. The well-known macroscopic term is de-
termined by the liquid drop model (LDM) or its variant ver-
sions, which is just able to reproduce the smooth trends of
binding energy but not the local fluctuations. Hence besides
the smooth trend, a microscopic correction term is taken into
account for the local fluctuations of binding energy [30–32].

The most important of these fluctuations stems from the
shell effects. A very practical and widely used shell correc-
tion method is Strutinsky’s prescription. It consists of ex-
tracting the averaged part of the nuclear binding energy by
means of a smoothed single-particle level density. There-
fore extracting the average energy as exactly as possible is
the central notation for the calculation of the shell correction.
In addition, there exists a conspicuous correlation in nuclear
ground states, involving the tendency of like nucleons in time-
reversed single-particle states to couple to zero total angular
momentum [31], which is the so-called pairing correlation.
Their most obvious manifestation lies in the characteristic
even-odd effect in binding energies. In most of macroscopic-
microscopic models the nuclear pairing correction energy is
usually treated by means of empirical expression (i.e. piece-
wise function defined by even or odd nucleon numbersN,Z),
but here we deal with it by pure microscopic BCS method.
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In fact, both the shell and pair effects associated closely
with the level density near the Fermi surface. Thus one of-
ten employs simplified expressions for average pairing energy
Ēp by assuming that the smoothed levels are uniformly dis-
tributed with the smoothed level density at the Fermi level.
But it does not hold exactly for evaluating the pairing correc-
tion [29]. Here, for the calculation of̄Ep, we give up the sim-
plifications, and directly employ the smoothed level density
determined in the shell correction instead. In our calculation,
the pairing correction for a given nucleus is defined as the dif-
ference between the pairing energyEp and an average value
Ēp, akin to the treatment of Strutinsky shell correction.

It is known that with fewer adjustable parameters as well as
rooting on a more fundamental basis, the range of extrapola-
tions is believed to be wider. Inspired by the spirit of more mi-
croscopic treatment and fewer model parameters, the purpose
of this work is to fit a new mass formula similar to the form of
Ref. [25–27], but in modifying it by considering the deforma-
tion and microscopic pairing correction in terms of BCS ap-
proach. Meanwhile the connection between macroscopic and
microscopic parts is also taken into account in our formula
by assuming that the isospin-asymmetric part of the Woods-
Saxon potential depth approximates to the value of symmetry
energy coefficient.

In section II, we present the formula of binding energy and
give the details about simultaneous evaluation of the shell and
pairing corrections. Then some numerical strategies and de-
tails of the mass fitting are also demonstrated. Finally the re-
sults and discussion are analyzed in section III. The summary
is given in section IV.

II. A MODIFIED NUCLEAR MASS FORMULA

In the macroscopic-microscopic method, the total energy
of a nucleus consists of two parts: the macroscopic energy
(liquid drop energyELDM ) and the microscopic one (Emic).
Taking into account the influence of nuclear deformation on
the macroscopic energy, the expansion of the nuclear binding
energy can be assumed as

E(Z,A, βk) =ELDM

∏

k≥2

(1+ b2
kβ

2
k) + Emic(Z,A, βk) (1)

bk =

(

k
2

)

g1A1/3 +

(

k
2

)2

g2A−1/3, k = 2, 4, 6.

A,Z are nuclear mass number, charge number, andβ k are de-
formation parameters. This parabola approximation to the in-
fluence of nuclear deformation on the macroscopic energy is
verified in terms of Skyrme energy-density functional together
with Thomas-Fermi approximation, and more details can be
seen in Ref. [21]. The optimal values ofg1, g2 are finally
determined by the measured nuclear masses.

The liquid drop energy in powers ofA1/3 and |I | (where

I = (N − Z)/A) [26] is expressed as

ELDM =aν(1− kνI
2)A+ as(1− ksI

2)A
2
3 + c1

2− |I |
2+ |I |A

I2A

+ ac
Z2

A
1
3

(1− 0.76Z−2/3). (2)

Considering the saturation property of nuclear force the vol-
ume energy is given by the first term, withI 2A being the
asymmetry energy of the Bethe-Weizsäker mass formula
[12, 33, 34]. The second term is the surface energy, which
accounts for the deficit of binding energy of nucleons at the
surface. The third term combined withI 2A dependence of
the first two terms consists of the symmetry energy coefficient
aνkν + asks/A1/3 + c1(2− |I |)/(2+ |I |A). Due to the Coulomb
repulsion between protons and diffuseness correction to the
sharp radius Coulomb energy (called also the proton form-
factor correction in Ref. [12]), the fourth term is included.
The detailed evaluations ofEmic are presented in the follow-
ing section.

A. Single-particle potential in microscopic part

The first step in the calculation of microscopic correction
is to take a single-particle Hamiltonian. A regular routine is
to diagonalize the Hamiltonian in axially deformed harmonic
oscillator bases. In order to achieve the diagonalization, we
execute a computer code WSBETA [35]. The single-particle
Hamiltonian in the program is written as

H = T + V + Vso, (3)

with the spin-orbit potential

Vso = λ

(

�

2Mc

)2

× ∇V · (�σ × �p), (4)

whereλ denotes the strength of the spin-orbit potential, and
taking into account the isospin-dependence there are some
modifications, i.e. for neutronλ = λ0(1+N/A) and for proton
λ = λ0(1+ Z/A). The Woods-Saxon potential takes the form
of

V =
Vdepth

1+ exp
(

r−R
a

) , (5)

wherea is the diffuseness parameter of the central potential,
andRdenotes the distance from the pointr to the nuclear sur-
face. And the depth of the central potentialVdepth can be ex-
pressed as

Vdepth= V0 ± VsI (6)

with the plus sign for neutrons and the minus sign for protons.
Vs is the isospin-asymmetry part of the potential depth. In or-
der to reduce the credibility of extrapolations in the macro-
microscopic approach, we assume thatVs approximates to
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asym, which bridges up the relationship between the macro-
scopic and microscopic parts. In this work the relation can be
specified as

Vs ≈ −asym = −
(

aνkν + asks/A
1/3 + c1

2− |I |
2+ |I |A

)

, (7)

and the values ofaν, kν, as, ks, c1 are the same as those in
Eq.(2).

B. Simultaneous calculation of the shell and pairing correction

The standard Strutinsky shell correction starts from the
Dirac generalized single-particle level density (SPLD)

g(ε) =
M
∑

i=1

diδ(ε − εi), (8)

whereεi , di are single-particle energy and its degeneracy re-
spectively, andM is the number of the single-particle lev-
els. Then in terms of convolution the corresponding smoothed
SPLD is

ḡ(ε) =
1
γ

M
∑

i=1

diK

(

ε − εi
γ

)

, (9)

where the functionK(x) is a bell-shaped kernel one to smear
out an arbitrary oscillatory function. In standard Strutinsky
method theK(x) often takes the Gauss-Hermit polynomials
with the orderp = 6. The smoothing widthγ = 1.2�ω0,
and�ω0 = 41A−1/3 MeV which is the mean distance between
the gross shell. Since the shell spacings are�ω0, the shell
corrections are calculated only whenγ > �ω0; otherwise, the
effect of shells can be noticed in the smooth SPLD [36].

For the pairing correction we consider the simplest
seniority-type pairing force and assume the pairing interaction
Vpair:

Vpair = −Ga†i a†
ī
a j̄a j . (10)

k̄ (for k = i, j) represents the label for the time-reversal partner
of the k−th eigenstate of the single-particle Hamiltonian. It
holds thatǫk̄ = ǫk. G is the pairing force strength.

Regardless of quantum SPLD [Diracδ−type, i.e. Eq.(8)] or
smoothed SPLD we take a general formg(ǫ) and perform the
BCS treatment. Therefore the energy of the BCS method can
be written as [29, 37]

EBCS = 2
∫ ∞

−∞
ǫv2(ǫ)g(ǫ)dǫ − ∆

2

G
, (11)

where the pairing gap∆ is given by

∆ = G
∫ ∞

−∞
u(ǫ)v(ǫ)g(ǫ)dǫ. (12)

The constraint on the expectation value of the number of par-
ticles is expressed as

N = 2
∫ ∞

−∞
v2(ǫ)g(ǫ)dǫ. (13)

where theu2(ǫ) andv2(ǫ) denote the empty and occupied prob-
ability of the single-particle levelǫ, respectively.

By considering only values at discrete points [Eq.(8),d i =

2], i.e. inserting Eq.(8) into Eqs.(11), (12) and (13), we can
get the following standard gap equations,

2
G
=

M
∑

i=1

1
√

(ǫi − λBCS)2 + ∆2
, (14)

N =
M
∑

i=1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1− ǫi − λBCS
√

(ǫi − λBCS)2 + ∆2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (15)

and the corresponding BCS energy

EBCS =

M
∑

i=1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1− ǫi − λBCS
√

(ǫi − λBCS)2 + ∆2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

ǫi −
∆2

G
, (16)

where the pairing gap∆ and the chemical potentialλBCS are
determined by the two coupled equations for a given force
strengthG. The pairing energy becomes

Ep = EBCS− Es.p. = EBCS− 2
NF
∑

i=1

ǫi , (17)

whereEs.p. is the sum of all occupied single-particle level en-
ergies,NF is the number of occupied energy levels. It should
be noted that for the last odd nucleon the blocking effects are
considered.

The continuous version of the gap equations take form

2
G
=

1
2

∫ ∞

−∞

1
√

(ǫ − λ̄BCS)2 + ∆̄2
ḡ(ǫ)dǫ, (18)

N =
1
2

∫ ∞

−∞

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1− ǫ − λ̄BCS
√

(ǫ − λ̄BCS)2 + ∆̄2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

ḡ(ǫ)dǫ. (19)

By substituting∆̄ with a value from some empirical formula
for the pairing gap, one can determine the Fermi levelλ̄BCS

from Eq.(19) and then the force strengthG from Eq.(18). The
smoothed BCS energy can be evaluated by

ĒBCS =
1
2

∫ ∞

−∞

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1− ǫ − λ̄BCS
√

(ǫ − λ̄BCS)2 + ∆̄2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

ǫḡ(ǫ)dǫ − ∆̄
2

G
. (20)

Here∆̄ = (−12| N−Z
A | + 7.5)/A1/3 in Ref. [38] is adopted. Sim-

ilarly the final average value of pairing energy may be written
as

Ēp = ĒBCS− Ēs.p., (21)

whereĒs.p. is the smooth ofEs.p., which can be obtained by
the standard Strutinsky method.

The pairing correction is defined as the difference between
the pairing energyEp of the considered nucleus and that of an
averaged valuēEp for the same nucleus. Let us consider the
difference [29, 30]:

Epair = Ep − Ēp, (22)
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TABLE I: The model parameters of our mass formula. The present
rms deviationσ=0.493 MeV, and the average deviation isδ̄ =
−0.0108 MeV.

aν kν as ks ac c1 g1

15.4654 -1.8391 -17.1929 -2.0516 -0.7082 -28.2525 0.0093
g2 V0 r0 a λ0 f1

-0.4015 -44.9430 1.3880 0.7765 27.8003 0.8557

then we substitute Eqs.(17) and (21) into Eq.(23) and imme-
diately get

Epair =(EBCS− ĒBCS) − (Es.p. − Ēs.p.)

=(EBCS− ĒBCS) − Eshell. (23)

As a result the microscopic correction can be casted into

Emic = Epair+ Eshell

= EBCS− ĒBCS. (24)

Taking into account the mirror nuclei constraint and the
isospin-symmetry-breaking effect [22], we can further mod-
ify the microscopic correction energy by

Emic = f1Emic + |I |E′shell, (25)

where f1 is a scale factor, because the rms deviation of the fit
with the scale factorsf1 can be somewhat reduced. TheE′shell
is the shell correction energy of mirror nuclei.

C. Numerical details and model parameters

The masses of the 2267 selected nuclei verifying the two
conditions:N andZ larger than 7 and the one standard devi-
ation uncertainty on the mass lower than or equal to 150 keV
[39] are used.

The macroscopic and microscopic parts of binding energy
formula are closely connected by an approximate coefficient
asym of the symmetry energy and other isospin-dependent
model parameters. The advantages are that it not only can
reduce the number of model parameters, but also can augment
the credibility of extrapolations of our mass formula.

Here we have 13 independent adjustable parameters. In the
microscopic part, we assume and set the radius and diffuse-
ness of the single-particle potential of protons equal to those
of neutrons for simplicity, thus there are only 5 adjustable pa-
rameters:V0 in Eq.(6), diffuseness parametera, radius param-
eterr0, the strength of the spin-orbit potentialλ0, scale factor
f1. In the macroscopic part, there are 8 adjustable parameters:
aν, kν, as, ks, g1, g2, ac, c1. These coefficients are obtained by
a nonlinear least squares fitting procedure. By varying these
adjustable parameters and searching for the minimal deviation
of the 2267 nuclear masses from experimental data, we finally
obtained the optimal model parameters listed in Table I.

III. RESULTS AND DISCUSSION

The optimal parameters are listed in Table I, and the corre-
sponding rms deviation between the calculated nuclear bind-
ing energies and the experimental ones is 0.493 MeV, and the
average discrepancy is -0.0108 MeV. Fig.??(a) shows the
deviations as a function of neutron number. Here the maxi-
mal deviation (absolute value) is about 3.72 MeV atA = 16
(N = Z = 8). In this figure we can also see that the deviations
for light nuclei are greatly larger than those for heavy ones,
and verify the shortage of LDM in describing the properties
of light nuclei, mainly due to the significant structure effect
which is much more distinct for light nucleus. For the sake of
a statistic understanding of our results, Fig.??(b) shows the
the statistic behaviors of the deviations from the experimen-
tal data. In this figure the solid curve denotes the Gaussian
statistic fittings as

y = y0 +
D

ω
√
π/2

e−2 (x−xc)2

ω2 , (26)

wherey0 is the minimum counts,D represents the area of the
Gaussian distribution, andxc andω denote the statistic aver-
ages (ideally zero) and errors. The deviations of binding en-
ergies from the data perfectly obey the Gaussian statistic be-
haviors withy0 = 1.98843,D = 441.07249,xc = −0.00794,
ω = 0.907. The results of the analysis provide that for 72.21%
of nuclei the difference (absolute value) is lower than 0.5 MeV
(approximates toσ), and for 99.18% of nuclei the difference
(absolute value) is lower than 1.49 MeV (equals to 3σ).

Very recently Sobiczewskiet al. pointed out that only to
supply the rms value of the mass for the global region of nuclei
is far from sufficient, because the accuracy of a model strongly
depends on the region of nuclei considered [40]. This sug-
gests us to divided the whole region of nuclei under consid-
eration into five subregions [global (all nuclei withZ,N ≥8)
(labeled by G), light (8≤ Z < 28) (labeled by L), medium-I
(28 ≤ Z < 50) (labeled by M-I), medium-II (50≤ Z < 82)
(labeled by M-II), and heavy (Z ≥ 82) (labeled by H)]. Then
the dependence of the accuracy on this five subregions is il-
lustrated in Fig. ?? with five other models for comparison.
One can see that the dependence of the rms on the region
of nuclei is very strong, especially for the FRDM, Lublin-
Strasbourg drop (LSD) model [41], Hartree-Fock-Bogliubov
mean field model with the D1M Gogny interaction (GHFB)
[18], and the one carried out by Kouraet al. (KTUY) [15].
For the four solid line+symbols curves, the trends of the de-
pendence are very similar to each other, i.e. the accuracy
of the masses systematically increases when one passes from
lighter to heavier nuclei, reflecting the fact that the natures of
these macroscopic-microscopic models are very similar (the
dashed+symbols showing a different trend denote the accu-
racy of GHFB and KTUY models which are not macroscopic-
microscopic models). Moreover, among all the models the
dependence as well as the rms of our formula is relatively the
closest one to those of WS3.6 [23].

If only the nuclei verifyingA ≥ 50 are taken into account,
i.e. our formula is refitted by a new set of 2051 experimental
data, as a result the rms deviation reduces to only 0.437 MeV
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for these 2051 nuclei. This might implicit that the assumption
of a good mean field on which all the models are based, is
better fulfilled for heavier nuclei [40].

It should point out that our formula is very similar to that
of WS model in Ref. [22], but there also exist a little differ-
ence. In the WS model, the pairing correction simulated by a
piecewise function [42], is expressed as

δnp =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2− |I |, N andZ even
|I |, N andZ odd

1− |I |, N even,Z odd, andN > Z
1− |I |, N odd,Z even, andN < Z

1, N even,Z odd, andN < Z
1, N odd,Z even, andN > Z,

Epair = apairA
−1/3δnp, (27)

whereZ, N, A andI are proton number, neutron number, mass
number and relative neutron excess, respectively.apair is one
of its adjustable model parameters. In our formula the pairing
correction is treated in a pure microscopic way as mentioned
in Sec.II B, and especially we do not introduce additional ad-
justable model parameters. To some extent our formula is
more concise and microscopic.

In the following we compare our results in several aspects
with those of some other models to test our formula and fit-
ting procedure. Firstly, Fig.?? shows the calculated micro-
scopic corrections of nuclei with our formula [i.e. Eq.(25)]
and those obtained by the FRDM. Our results as well as
FRDM reproduce the position of the magic number (N =

20, 28, 50, 82, 126) and they both give the equivalent magni-
tude. The deviations are larger for light nuclei and mid-shell
nuclei (in the middle of two magic numbers), and our calcu-
lations give much larger values (in absolute value) than those
of FRDM. For example the microscopic correction of24O has
a value of -8.47 MeV with our formula, while it is 0.32 MeV
from FRDM and -4.6 MeV from WS. Experimentally, it is as-
sumed that24O is a doubly magic nucleus from the observed
decay energy spectrum and the high-lying first excited 2+ state
(above 4.7 MeV) [43, 44], which is consistent with our eval-
uations. It is known that the microscopic energy strongly de-
pends on the single-particle potential employed. Therefore it
is the isotopic dependence of the spin-orbit strength and the
symmetry potential adopted in our formula that make the mi-
croscopic energies different from those of FRDM [21].

The ground state deformation is a very important factor in
the description of nuclear mass. A deformed shape weakens
the Coulomb energy and enhances the nuclear surface energy
relative to a spherical one. In Fig.?? we show the calcu-
lated deformations of each nucleus with our formula for all
the 3255 nuclei from Ref. [39]. We obtain the similar results
as WS* model [22]. Obviously, the calculated structure of the
known magic nuclei is spherical or nearly spherical in shape
and the overall amplitudes ofβ4, β6 are indeed relative small
versus those ofβ2. In addition, for the light nuclei, theβ6

deformations of nuclei are not very obvious, compared to the
intermediate and heavy nuclei.

Fig. ?? shows the neutron pairing force strengthGn and
the pairing gap∆n, and takes Er isotopes chain as an exam-

ple. In Fig. ??(a), the neutron pairing force strengthGn de-
termined by Eq.(18) are systematically lower than an empir-
ical trendG = 20/A. In Fig. ??(b) we compare the pair-
ing gap∆ obtained by Eqs.(14) and (15) to empirical trend
∆̄ = 12/

√
A (dash curve),̄∆ = −12|N−Z

A |+7.5 (dash dot curve),
and the experimental values which are extracted by means of
the three-point indicators∆(3) [45–47] of the odd-even stag-
gering on nuclear binding energies (OESs). It can be seen that
the pairing gap∆n calculated by our formula agree well with
the experimental OESs. AtN = 82 the calculated pairing gap
∆n = 0 is reasonable, since the large shell gap at magic num-
ber 82 dramatically depresses the pairing effect. The method
which can simultaneously calculate of the shell and pairing
correction is reasonable for calculating the microscopic en-
ergy.

In addition, in recent decades, the symmetry energy has
been one of the hottest topics of nuclear physics owing to
its crucial role in understanding a variety of issues in nuclear
physics [5? ? ? ?].

Mass predictions by using the parameters in Table I (not
readjusted) for the remaining 988 nuclei from the AME2012
with Z,N > 7 for which the mass is still unknown or known
with an uncertainty higher than 150 keV are compared with
the extrapolated values in the AME2012 [39]. As a result the
rms deviation is 0.847 MeV which is better than 1.35 MeV in
Ref. [48] which uses a simplest approach with less adjustable
parameters. For about 55% of nuclei the difference is lower
than 0.5 MeV and for 81% of nuclei the difference is lower
than 1 MeV.

The α emission is one of the decay modes of the heavy
nuclei. Measurements on theα decay can provide reliable
information on the nuclear structure such as the ground-state
energy, the ground-state half-life, the nuclear spin and par-
ity, the nuclear deformation, the nuclear clustering, the shell
effects, and the nuclear interaction [49–54]. Theoretically,
the precise calculation of the properties of superheavy nu-
clei could supply important theoretical reference for SHN in
experiment. One of the most important applications of the
nuclear mass formula is to investigate and predict the prop-
erties of superheavy nuclei (SHN), such as the Q-value of
α−decay and cluster emission. Based on our fitted formula
we calculate theα−decay energies of sevenα−decay chains
which are isotopes of superheavy nuclei withZ =117 and
118 at the end of the AME2012 masses table. The exper-
imental data ofα−decay energies are extracted from Ref.
[55–57] and references therein. There are 26 experimental
data listed in third and seventh columns of Table II. On the
whole, we can see from the table that the calculated values
agree well with the experimental ones. The rms deviation

σ =

√

∑N
i

[

Qα,i(Expt.)− Qα,i(Cal.)
]2/(N − 1) of theα−decay

energies is 0.6 MeV.

IV. SUMMARY

The coefficients of a modified macroscopic-microscopic
nuclear mass formula considering the isospin dependence
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TABLE II: The α−decay energiesQα (in MeV) calculated with
our formula [Qα(Cal.)] are compared wit experimental values
[Qα(Expt.)]. The experimental data are taken from Ref. [55–57].

A Z Qα(Expt.) Qα(Cal.) A Z Qα(Expt.) Qα(Cal.)
295 118 - 11.81 294 118 11.81(6) 11.95
291 116 10.89(7) 10.77 290 116 11.00(8) 10.86
287 114 10.14(6) 10.08 286 114 10.33(6) 10.46
283 112 9.67(6) 10.75 282 112 - 11.08
279 110 9.84(6) 10.23 278 110 - 10.39
275 108 9.44(7) 9.22 274 108 - 9.31

293 118 - 12.00
289 116 - 10.96
285 114 - 10.99
281 112 - 11.29
277 110 - 10.56
273 108 - 9.50

294 117 10.96(10) 11.26 293 117 11.18(8) 11.40
290 115 10.09(40) 10.01 289 115 10.45(9) 10.10
286 113 9.77(10) 9.97 285 113 9.88(9) 10.52
282 111 9.13(10) 10.47 281 111 - 10.73
278 109 9.69(19) 9.46 277 109 - 9.55
274 107 8.93(10) 8.54 273 107 - 8.65

292 117 - 11.53 291 117 - 11.56
288 115 10.61(6) 10.18 287 115 10.74(9) 10.42
284 113 10.15(6) 11.13 283 113 10.26(9) 11.56
280 111 9.87(6) 10.90 279 111 10.52(16) 11.08
276 109 9.85(6) 9.70 275 109 10.48(9) 9.81
272 107 9.15(6) 8.88 271 107 - 8.76

and microscopic corrections have been determined by an ad-
justment to 2267 experimental measured masses given in
AME2012. For the microscopic correction, without introduc-

ing additional parameters, the pairing and shell corrections are
simultaneously treated by the Strutinsky prescription.

After a least square fitting procedure for 2267 experimental
measured masses, a rms deviation of 0.493 MeV is reached.
Moreover, the microscopic corrections and the deformations
of every nucleus are also obtained self-consistently in this fit-
ting. From the analysis of the fit results we conclude that: (1)
for light nuclei the microscopic corrections in our formula are
systematically larger than those from the FRDM model; (2)
the deviations of binding energies from the experimental data
perfectly obey the Gaussian statistical behaviors; (3) the ac-
curacy of a model depends on the region of nuclei considered;
(4) around the known magic nuclei the calculated shapes of
them are spherical or nearly spherical, and the overall ampli-
tudes ofβ4, β6 are relative small versus those ofβ2.

In addition, if we exclude theA < 50 nuclei from 2267 ex-
perimental measured ones, i.e. only 2051 experimental data,
and refit the parameters, then the rms deviation reduces to only
0.437 MeV for these 2051 nuclei.

Utilizing the optimal parameters listed in Table I we eval-
uate the neutron pairing force strengthGn’s and the pairing
gap∆n’s of Er isotopes as an example. As a results the pair-
ing gap∆n’s calculated by our formula agree well with the
experimental OESs. Finally predictions of the remaining 988
nuclei from the AME2012 withZ,N > 7 for which the mass
is still unknown or known with an uncertainty higher than
150 keV are compared with the extrapolated values in the
AME2012. Moreover, we calculate theα−decay energies of
sevenα−decay chains, and the results agree well with the ex-
perimental data.
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