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Abstract A search is conducted for non-resonant new phe-
nomena in dielectron and dimuon final states, originating
from either contact interactions or large extra spatial di-
mensions. The LHC 2012 proton–proton collision dataset
recorded by the ATLAS detector is used, corresponding to
20 fb−1 at

√
s = 8 TeV. The dilepton invariant mass spec-

trum is a discriminating variable in both searches, with the
contact interaction search additionally utilizing the dilep-
ton forward-backward asymmetry. No significant deviations
from the Standard Model expectation are observed. Lower
limits are set on theℓℓqq contact interaction scaleΛ be-
tween 15.4 TeV and 26.3 TeV, at the 95% credibility level.
For large extra spatial dimensions, lower limits are set on the
string scaleMS between 3.2 TeV to 5.0 TeV.

1 Introduction

Many theories beyond the Standard Model (SM) predict new
phenomena which give rise to dilepton final states, such as
new resonances. These have been searched for using the
ATLAS detector at the Large Hadron Collider (LHC) and
are reported elsewhere [1]. In this paper, a complementary
search is performed for new phenomena that appear as broad
deviations from the SM in the dilepton invariant mass distri-
bution or in the angular distribution of the leptons (where the
leptons considered in this analysis are electrons or muons).
The phenomena under investigation are contact interactions
(CI) and large extra dimensions (LED).

2 Theoretical motivation

The presence of a new interaction can be detected at an en-
ergy much lower than that required to produce direct evi-
dence of the existence of a new gauge boson. The charged

weak interaction responsible for nuclearβ decay provides
such an example. A non-renormalizable description of this
process was successfully formulated by Fermi in the form
of a four-fermion contact interaction [2]. A contact inter-
action can also accommodate deviations from the SM in
proton–proton scattering due to quark and lepton compos-
iteness, where a characteristic energy scaleΛ corresponds
to the binding energy between fermion constituents. A new
interaction or compositeness in the processqq → ℓ+ℓ− can
be described by the following four-fermion contact interac-
tion Lagrangian [3, 4]

L = g2

Λ2 [ ηLL (qLγµqL)(ℓLγµℓL)

+ηRR(qRγµqR)(ℓRγµℓR)

+ηLR (qLγµ qL)(ℓRγµℓR)

+ηRL (qRγµqR)(ℓLγµℓL) ] ,

where g is a coupling constant chosen by convention to
satisfy g2/4π = 1, Λ is the contact interaction scale, and
qL,R and ℓL,R are left-handed and right-handed quark and
lepton fields, respectively. The parametersηi j, wherei and
j are L or R (left or right), define the chiral structure of
the new interaction. Different chiral structures are inves-
tigated here, with the left-right model obtained by setting
ηLR = ηRL = ±1 andηLL = ηRR = 0. Likewise, the left-
left and right-right models are obtained by setting the cor-
responding parameters to±1, and the others to zero. The
sign ofηi j determines whether the interference is construc-
tive (ηi j =−1) or destructive (ηi j =+1). The cross-section
for the processqq → ℓ+ℓ− in the presence of these contact
interaction models can be written as:

σtot = σDY −ηi j
FI

Λ2 +
FC

Λ4 , (1)

where the first term accounts for theqq → Z/γ∗ → ℓ+ℓ−

Drell–Yan (DY) process, the second term corresponds to the
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interference between the DY and CI processes, and the third
term describes the pure CI process. These two latter terms
includeFI andFC, respectively, which are functions of the
cross-section, and do not depend onΛ . The relative impact
of the interference and pure CI terms depends on both the
dilepton mass andΛ . For example, the magnitude of the in-
terference term for dilepton masses above 600 GeV is about
twice as large as that of the pure CI term atΛ = 14 TeV;
the interference becomes increasingly dominant for higher
values ofΛ .

There are other models which predict deviations from
the SM in the dilepton mass spectrum, and seek to address
the vast hierarchy between the electroweak (EW) and Planck
scales, such as the solution proposed by Arkani-Hamed, Di-
mopoulos and Dvali (ADD) [5]. In this model, gravity is
allowed to propagate in large flat extra spatial dimensions,
thereby diluting its apparent effect in 3+1 spacetime dimen-
sions. The flatn extra dimensions are of common sizeR
(∼1 µm–1 mm forn = 2) and are compactified on ann-
dimensional torus. The fundamental Planck scale in (4+n)-
dimensions,MD, is related to the Planck scale,MPl, by
Gauss’s lawM2

Pl ∼ Mn+2
D Rn. It is thus possible forMD to

be in the TeV range for sufficiently large volumes (∝ Rn). In
this model, the SM particles and their interactions are con-
fined to a four-dimensional submanifold, whereas gravitons
may also propagate into extra dimensions of sizeR. This
gives rise to a tower of Kaluza–Klein (KK) graviton modes
with a mass spacing inversely proportional toR. Values for
MD at the TeV scale imply very small mass differences be-
tween KK modes and thus an essentially continuous mass
spectrum.

The production of dileptons via virtual KK graviton ex-
change involves a sum over many KK modes that needs to
be cut off at some value. In this paper, the ultraviolet cutoff
is chosen to be the string scale,MS [6], which sets the con-
text in which this search and its results should be interpreted,
and is chosen for consistency with previous searches. This
scale is related toMD via the Gamma function,Γ , by [7]

MS = 2
√

π
[

Γ
(n

2

)]1/(n+2)
MD .

The cross-section forqq/gg → ℓ+ℓ− in the presence of
large extra dimensions can be expressed as

σtot = σDY +F
Fint

M4
S

+F
2 FG

M8
S

, (2)

where σDY is the DY cross-section, andFint and FG are
functions of the cross-sections (they do not depend on
MS) involving the interference and pure KK graviton ef-
fects, respectively. The strength of the interaction is char-
acterized byF /M4

S, where the dimensionless parameterF

varies in the different calculations provided by Giudice–
Rattazzi–Wells (GRW) [8], Hewett [9] and Han–Lykken–
Zhang (HLZ) [10]. The different values are:

F = 1, (GRW)

F =
2λ
π

=
±2
π

, (Hewett)

F = log

(

M2
S

s

)

for n = 2, (HLZ)

F =
2

n−2
for n > 2. (HLZ).

In the Hewett formalism,λ = ±1 is introduced to al-
low for constructive or destructive interference with the DY
process. Unlike the situation with contact interactions de-
scribed above, interference effects between the DY and vir-
tual KK graviton processes are small due to dilepton pro-
duction by virtual KK gravitons being predominantly gluon-
induced rather than quark-induced.

Previous searches for CI have been carried out in
neutrino–nucleus and electron–electron scattering [11], as
well as electron–positron [12, 13], electron–proton [14], and
proton–antiproton colliders [15, 16]. Searches for CI have
also been performed by the ATLAS and CMS Collabora-
tions [17, 18]. The strongest exclusion limits forℓℓqq CI
in which all quark flavours contribute come from the previ-
ous ATLAS non-resonant dilepton analysis conducted us-
ing 5 fb−1 of proton–proton (pp) collision data at

√
s =

7 TeV [17]. That combined analysis of the dielectron and
dimuon channels set lower limits at 95% credibility level
(C.L.) on the left-left model ofΛ > 13.9 TeV andΛ >
10.2 TeV, for constructive and destructive interference, re-
spectively, given a uniform positive 1/Λ2 prior.

Previous searches for evidence of ADD-model extra di-
mensions via virtual KK graviton exchange have been per-
formed at electron–positron [19], electron–proton [20], and
proton–antiproton colliders [16]. Searches have also been
performed at the LHC by the ATLAS and CMS Collabo-
rations [17, 21]. The most stringent results come from the
ATLAS search in the dilepton channel and subsequent com-
bination with the diphoton channel result using 5 fb−1 of pp
collision data at

√
s = 7 TeV [17]. That analysis set lower

limits onMS at 95% C.L. in the GRW formalism of 3.5 TeV
and 3.4 TeV for 1/M4

S and 1/M8
S priors, respectively.

3 The ATLAS detector

The ATLAS detector [22] consists of an Inner Detector (ID)
surrounded by a solenoid magnet for tracking charged par-
ticles, and a calorimeter for capturing particles that inter-
act electromagnetically or hadronically, to measure theiren-
ergy. A Muon Spectrometer (MS) and toroidal magnet sys-
tem provide tracking for muons, which typically escape the
calorimeter.
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The ID is immersed in a 2.0 T axial magnetic field and
provides charged-particle tracking up to|η | of 2.5.1 It is
composed of a pixel detector, a silicon-strip tracker, and a
transition radiation tracker.

The calorimeter system surrounds the solenoid and ex-
tends up to|η | = 4.9. One of its main components is a
lead and liquid-argon electromagnetic sampling calorime-
ter, covering|η | < 3.2 with a fine segmentation varying by
layer. This provides precise energy and position measure-
ments for electrons and photons. Another electromagnetic
calorimeter, in the forward direction up to|η | = 4.9, uses
liquid-argon active elements and copper as an absorber. Fur-
ther from the interaction point lies an iron and scintillator
tile calorimeter up to|η | = 1.7 and a copper and liquid-argon
calorimeter up to|η | = 3.2 for hadronic energy measure-
ments. A hadronic calorimeter in the forward region, up to
|η | = 4.9, uses liquid-argon active elements combined with
tungsten as an absorber.

The outermost detector is the MS, which consists of lay-
ers of precision tracking chambers and trigger chambers to
enable reconstruction of muons with|η | < 2.7. Precision
tracking is provided by monitored drift tube chambers, com-
plemented by a layer of cathode strip chambers in the inner-
most layer in the forward region. Triggering is handled by
resistive plate chambers in the barrel (|η | < 1.05) and thin-
gap chambers in the endcap (1.05< |η | < 2.4). One barrel
and two endcap toroidal magnet systems provide the bend-
ing force to measure muon momentum.

The triggering of events to be recorded by the ATLAS
detector is handled by a three-level system [22] which con-
sists of a level-1 hardware trigger, and the high-level trigger
(HLT). The HLT is made up of the level-2 trigger, which
uses regions of interest, and the event filter, which is based
on standard ATLAS event reconstruction and analysis algo-
rithms.

4 Data and Monte Carlo samples

This search uses the LHC 2012 dataset frompp collisions
at

√
s = 8 TeV, corresponding to an integrated luminosity

of approximately 20 fb−1. The peak luminosity during this
period was 7.7×1033 cm−2s−1, with an average number of
pp interactions per bunch crossing (pile-up) of〈µ〉 = 20.7.

The main background comes from the irreducible DY
process. The photon-induced (PI) process is also an irre-
ducible contribution which produces two leptons, arising

1ATLAS uses a right-handed coordinate system with its originat the
nominal interaction point (IP) in the centre of the detectorand thez-
axis along the beam pipe. Thex-axis points from the IP to the centre
of the LHC ring, and they-axis points upward. Cylindrical coordinates
(r,φ ) are used in the transverse plane,φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
polar angleθ asη = − ln tan(θ/2).

from aγγ initial state viat̂– and ˆu– channel processes. The
PI process is not a major background, although it is impor-
tant in the description of the lepton angular distribution.The
reducible, but non-negligible, backgrounds arett̄ and single
top-quark production, multi-jet,W+jets, and diboson (WW ,
WZ, andZZ) processes. Monte Carlo (MC) simulation is
used to estimate all of these backgrounds, with the excep-
tion of the multi-jet andW+jets backgrounds, which are es-
timated with a data-driven fake-factor method, as described
in Sect.5. The multi-jet andW+jets backgrounds are found
to be negligible in the dimuon channel [1].

All MC samples were passed through a simulation of
the ATLAS detector using GEANT4 [23–25]. The DY back-
ground is generated with POWHEG [26] for the next-to-
leading-order (NLO) matrix elements using the CT10 [27]
parton distribution functions (PDF) and PYTHIA 8.165 [28]
for parton showering and hadronization. To correct the
DY cross-section from NLO to next-to-next-to-leading-
order (NNLO), a dilepton mass-dependent QCD+EWK-
factor is calculated with FEWZ 3.1 [29] using the
MSTW2008NNLO [30, 31] PDF (with CT10 as the base
NLO PDF) to take into account higher-order QCD and EW
corrections. The photon-induced background is generated
with PYTHIA 8.165 at LO using the MRST2004QED [32]
PDF. The top-quark production processes are simulated us-
ing MC@NLO 4.06 [33] with the CT10 PDF to generate the
matrix elements, JIMMY 4.31 [34] to describe multiple par-
ton interactions, and HERWIG 6.520 [35] to describe the re-
maining underlying event and parton showers. Higher-order
corrections are calculated with Top++ 2.0 [36] to derive
a K-factor which scales this background description from
NLO to NNLO in QCD, including resummation of next-to-
next-to-leading-logarithmic (NNLL) soft gluon terms. The
diboson processes are generated with HERWIG 6.520 at
leading-order (LO) using the CTEQ6L1 PDF [37], and these
cross-sections are extrapolated to NLO using dilepton mass-
independentK-factors.

The CI signal processes are generated using
PYTHIA 8.165 at LO with the MSTW2008LO PDF.
The CI cross-section is scaled from LO to NNLO, again
using FEWZ with the MSTW2008NNLO PDF to calculate
a dilepton mass-dependent QCD+EWK-factor. The ADD
LED signal process is simulated with the multi-leg LO
generator SHERPA 1.3.1 [7] using the CTEQ6L1 PDF.
No higher-order correction is applied to the ADD LED
cross-section.

To ensure adequate modelling of the data by the MC
simulation, data-derived corrections are applied to the simu-
lation. These include electron energy scale corrections [38],
muon momentum corrections [39], and pile-up corrections.
They also include trigger, lepton identification, and recon-
struction scale factors [38, 39], which are all found to be
very close to unity. A summary of the generator, parton
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shower, and PDF information used for all signal and back-
ground MC samples used in this search can be found in Ta-
ble1.

5 Event selection and background estimation

Events in theee channel are required to have passed a two-
object trigger with transverse momentum (pT) thresholds of
35 GeV and 25 GeV. Events in theµµ channel are required
to have passed at least one of two single-object triggers with
pT thresholds of 36 GeV and 24 GeV. The higher thresh-
old trigger is used to recover small efficiency losses due to
the online muon isolation requirement imposed by the lower
threshold trigger. The overall efficiency for dilepton events
to fire either of these triggers is found to be> 99%. In both
channels, events are required to have at least one primary
vertex with more than two tracks.

In the dielectron channel, events are retained if at least
two electrons fulfil the following criteria: the electrons sat-
isfy |η | < 2.47 (excluding the transition region between the
barrel and endcap, 1.37< |η | < 1.52), the leading and sub-
leading electrons havepT > 40 GeV and 30 GeV, respec-
tively, and the electrons satisfy a set of electron identifica-
tion criteria which are designed to reject jets misidentified
as electrons [38]. For the leading and sub-leading electrons,
the calorimeter isolation must be less than(0.007×ET)+

5.0 GeV, and(0.022×ET)+6.0 GeV, respectively (where
ET is the transverse energy in units of GeV). The electron
calorimeter isolation is calculated as the∑ET in a cone
of ∆R =

√

(∆η)2+(∆φ)2 = 0.2, excluding the electron
ET. This measure of isolation is corrected forET-dependent
leakage, and pile-up effects which are parameterised as a
function of the number of primary vertices in the event. If
more than one electron pair exists in the event, the one with
the largest scalar sum ofET is chosen. The two electrons in
the selected pair are then required to have opposite charge
and have dilepton mass greater than 80 GeV.

In the dimuon channel, events are retained if at least two
muons fulfil the following criteria: the muons havepT >

25 GeV, pass track quality requirements, and meet longitu-
dinal (|z0| < 1 mm) and transverse (|d0| < 0.2 mm) track
impact parameter requirements with respect to the primary
vertex. Muons are also required to be isolated: the∑ pT of all
additional tracks within∆R = 0.3 of the muon must be less
than 5% of the muonpT. Muons are reconstructed by com-
bining tracks from both the ID and MS systems. The MS hit
requirements are particularly stringent to improve the mo-
mentum resolution, minimize tails in the dimuon mass dis-
tribution, and improve modelling by the simulation. Muon
tracks are required to include at least three hits in each of
three precision MS chambers and have at least one hit in the
non-bending plane (φ ) of two separate chambers to deter-
mine theφ coordinate and thus a good estimate of the non-

uniform toroidal magnetic field. If those tracks include hits
in precision chambers that have either no alignment or poor
alignment, the tracks are rejected. Finally, the independent
ID and MS trackq/ptrack

T must agree within five standard de-
viations of the standalone measurement uncertainties added
in quadrature. The muon acceptance is highest in the pseu-
dorapidity region up to approximately 2.5. If more than two
muons satisfy these criteria, the pair of oppositely charged
muons with the highest scalar sum ofpT is selected. The
final requirement is that the dimuon mass must be greater
than 80 GeV.

The event selection detailed above is applied to the data
and all MC background samples. The acceptance times effi-
ciency for DY events with dilepton mass of 1 TeV (2 TeV) is
found to be 67% (67%) in the dielectron channel and 47%
(45%) in the dimuon channel. The selection efficiency is
lower for the dimuon channel mainly because of the strict
MS hit requirements.

The dominant DY background, as well as the PI back-
ground,tt̄ and single top-quark production processes, and
diboson processes, are all modelled with MC as described
in Sect.4. The combined multi-jet &W+jets background
which only affects the electron channel is estimated using a
data-driven method designed to describe events which con-
tain a maximum of one real lepton, and one or more jets or
photons which are misidentified as a lepton. The details of
this method are provided in Ref. [1]. For the top and com-
bined multi-jet &W+jets backgrounds, fits are used to de-
scribe the shape of the background dilepton mass distribu-
tion with a phenomenologically motivated three-parameter
(p1, p2, p3) function (y(x)= p1xp2+p3 logx, wherex= mℓℓ) at
high masses, where the statistical uncertainty becomes large.
The fit to the top-quarks background is performed in a sim-
ilar manner to Ref. [1] using the mass range 200–700 GeV
to match the fit to the MC distribution, and the resultant fit
as the extrapolated top background estimate above 500 GeV.
The choice of extrapolation point is found to have a negli-
gible effect on the fit; however, the range of the fit and the
uncertainty on the fit parameters are included in the system-
atic uncertainty. For the fit describing the combined multi-
jet & W+jets background at high mass, the lower edge of
the fit range is varied from 425 GeV to 600 GeV and the up-
per edge from 700 GeV to 1200 GeV, with the extrapolation
point fixed to 500 GeV. The uncertainty on this fit is negli-
gible compared to the systematic uncertainty assigned to the
data-driven method, as described in Sect.7.

In this analysis, the normalization, control, and search
regions are defined based on the dilepton mass. In the nor-
malization region with mass between 80 GeV and 120 GeV,
the total background estimate is scaled to data. This pro-
tects the analysis against mass-independent systematic un-
certainties. The control region, defined by the mass range
from 120 GeV to 400 GeV, is used to check the quality of
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Table 1 Summary of MC sample information for signal and background processes used in this search. The columns from left to right give the
process of interest, generator, matrix-element order, parton shower program, and PDF utilized.

Process Generator Order Parton Shower / Hadronization PDF

qq̄ → Z/γ∗ → ℓ+ℓ− POWHEG [26] NLO PYTHIA 8.165 [28] CT10 [27]
γγ/γq/γ q̄ → ℓ+ℓ− PYTHIA 8.165 [28] LO PYTHIA 8.165 [28] MRST2004QED [32]
tt̄ → ℓX , Wt → X MC@NLO 4.06 [33] NLO JIMMY 4.31 [34] + HERWIG 6.520 [35] CT10 [27]

WW,W Z,ZZ → ℓX/ℓν/ℓℓ HERWIG 6.520 [35] LO HERWIG 6.520 [35] CTEQ6L1 [37]

CI: qq̄ → ℓ+ℓ− PYTHIA 8.165 [28] LO PYTHIA 8.165 [28] MSTW2008LO [30, 31]
ADD: qq̄/gg → G∗ → ℓ+ℓ− SHERPA1.3.1 [7] LO (multi-leg) SHERPA1.3.1 [7] CTEQ6L1 [37]

the background modelling since the signal contribution is
negligible in this region. After the normalization procedure,
good agreement is found in the control region, as displayed
in Fig. 1. The small deviation observed in the first bin of
the dielectron mass distribution (Fig.1) corresponds to an
effect that is less than 0.2% of the total number of events in
the normalization region. Thus it has a negligible effect. The
search is then conducted in the mass region 400–4500 GeV.

6 Event yields

In the CI search, six broad dilepton mass bins are used in
the search region from 400 GeV to 4500 GeV. For the ADD
search region, a single dilepton mass bin is employed in the
range 1900–4500 GeV, where the lower mass boundary is
optimized based on the strongest expected exclusion limit.

The dielectron (dimuon) channel event yields are pre-
sented in Table2 (Table3) for the CI search and both chan-
nels are presented in Table4 for the ADD LED search.
Dilepton mass distributions for data and the predicted back-
ground are shown in Fig.1 for both channels, along with a
few benchmark CI and ADD signals overlaid.

The dilepton invariant mass is commonly used as the dis-
criminating variable for a CI search. However, the lepton
decay angle also has high discriminating power from DY
events in certain cases such as the left-right model. There-
fore, the dilepton decay angle,θ ∗, is also used as a discrim-
inating variable in the CI search. The angleθ ∗ is defined
in the Collins–Soper (CS) frame [40], which is constructed
with thez-axis bisecting the angle between the two incoming
parton momenta, and thex-axis perpendicular to the incom-
ing parton momentum plane. As the incoming parton infor-
mation frompp collisions is unknown, the direction of the
dilepton system is taken to be the direction of the incoming
quark (as opposed to anti-quark). This introduces a dilution
of any asymmetry in the cosθ ∗ distribution (leading to de-
rived angular variables being described as “uncorrected”).
The angleθ ∗ is then taken as the angle between thisz-axis
and the outgoing negatively charged lepton, using the for-
mula

E
ve

nt
s

-110

1

10

210

310

410

510

610

710
Data 2012

*γZ/

Photon-Induced

Top quarks

Multi-Jet & W+Jets

Diboson

 = 14 TeVLL
-Λ

 = 14 TeVLL
+Λ
 = 3.5 TeV (GRW)sM

        ATLAS
-1 L dt = 20.3 fb∫ee: 

 = 8 TeVs    

 [TeV]eem
0.1 0.2 0.3 0.4 1 2 3 4

D
at

a 
/ B

kg
 

0.6
0.8

1
1.2
1.4

90100 200 1000 2000

E
ve

nt
s

-110

1

10

210

310

410

510

610

710
Data 2012

*γZ/

Photon-Induced

Top quarks

Diboson

 = 14 TeVLL
-Λ

 = 14 TeVLL
+Λ

 = 3.5 TeV (GRW)SM

        ATLAS
-1 L dt = 20.5 fb∫: µµ

 = 8 TeVs    

 [TeV]µµm
0.1 0.2 0.3 0.4 1 2 3 4

D
at

a 
/ B

kg
 

0.6
0.8

1
1.2
1.4

Fig. 1 Reconstructed dielectron (top) and dimuon (bottom) mass dis-
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Table 2 Expected and observed event yields in the dielectron channel. The predicted yields are shown for SM background as well asfor SM+CI
for several CI signal scenarios. The quoted errors consist of both the statistical and systematic uncertainties added in quadrature.

Process
mee [GeV]

400–550 550–800 800–1200 1200–1800 1800–3000 3000–4500

Drell–Yan 910± 70 302± 25 63± 6 8.2± 1.2 0.64± 0.17 0.006± 0.004
Top quarks 153± 13 35.2± 2.7 3.06± 0.18 0.140± 0.008 < 0.004 < 0.001

Multi-Jet & W+Jets 88± 18 27± 5 5.8± 1.2 0.87± 0.17 0.11± 0.02 0.0058± 0.0012
Diboson 62.2± 3.5 22.3± 1.3 5.4± 0.4 0.83± 0.05 0.075± 0.006 < 0.001

Photon-Induced 40± 40 17± 17 4± 4 0.7± 0.7 0.08± 0.08 0.0016± 0.0016

Total SM 1260± 100 404± 35 82± 9 10.8± 1.6 0.91± 0.21 0.014± 0.005

Data 1262 388 84 7 0 0

SM+CI (Λ−
LL = 14 TeV) 1310± 110 440± 40 108± 10 20.9± 1.9 4.2± 0.4 0.141± 0.028

SM+CI (Λ−
LL = 20 TeV) 1290± 110 430± 40 90± 10 14.4± 1.7 2.01± 0.25 0.045± 0.012

SM+CI (Λ−
LR = 14 TeV) 1340± 110 460± 40 118± 10 26.3± 2.1 6.0± 0.5 0.28± 0.05

SM+CI (Λ−
LR = 20 TeV) 1290± 110 420± 40 98± 10 15.7± 1.7 2.58± 0.28 0.078± 0.018

SM+CI (Λ−
RR = 14 TeV) 1310± 110 440± 40 108± 10 20.8± 1.9 3.78± 0.34 0.23± 0.04

SM+CI (Λ−
RR = 20 TeV) 1290± 110 430± 40 91± 10 14.3± 1.7 1.86± 0.24 0.072± 0.015

SM+CI (Λ+
LL = 14 TeV) 1230± 110 380± 40 79± 9 12.2± 1.7 2.08± 0.25 0.075± 0.015

SM+CI (Λ+
LL = 20 TeV) 1230± 110 390± 40 77± 9 10.0± 1.6 0.95± 0.22 0.029± 0.008

SM+CI (Λ+
LR = 14 TeV) 1200± 110 400± 40 88± 10 18.9± 1.8 4.2± 0.4 0.191± 0.034

SM+CI (Λ+
LR = 20 TeV) 1210± 110 390± 40 81± 9 11.5± 1.6 1.65± 0.24 0.058± 0.013

SM+CI (Λ+
RR = 14 TeV) 1230± 110 380± 40 79± 9 12.1± 1.7 2.26± 0.26 0.098± 0.018

SM+CI (Λ+
RR = 20 TeV) 1230± 110 390± 40 77± 9 10.2± 1.6 1.06± 0.22 0.036± 0.009

Table 3 Expected and observed event yields in the dimuon channel. The predicted yields are shown for SM background as well as for SM+CI for
several CI signal scenarios. The quoted errors consist of both the statistical and systematic uncertainties added in quadrature.

Process
mµµ [GeV]

400–550 550–800 800–1200 1200–1800 1800–3000 3000–4500

Drell–Yan 670±50 217±18 45±5 5.9±0.8 0.58±0.12 0.027±0.008
Top quarks 128±10 16.3±1.4 1.66±0.11 0.103±0.007 < 0.005 < 0.002
Diboson 47.6±2.7 15.3±0.9 3.75±0.26 0.556±0.030 0.056±0.005 < 0.003

Photon-Induced 34±34 13±13 3.3±3.3 0.5±0.5 0.07±0.07 < 0.006

Total SM 880±60 261±22 54±6 7.2±1.0 0.71±0.14 0.032±0.009

Data 814 265 47 7 1 0

SM+CI (Λ−
LL = 14 TeV) 900±60 285±23 70±6 14.4±1.2 2.89±0.33 0.18±0.04

SM+CI (Λ−
LL = 20 TeV) 870±60 265±23 58±6 10.0±1.1 1.49±0.18 0.103±0.022

SM+CI (Λ−
LR = 14 TeV) 930±60 292±23 79±6 16.9±1.4 3.9±0.4 0.38±0.08

SM+CI (Λ−
LR = 20 TeV) 910±60 281±23 61±6 10.7±1.1 1.76±0.20 0.139±0.029

SM+CI (Λ−
RR = 14 TeV) 900±60 285±23 70±6 13.8±1.2 2.80±0.32 0.20±0.04

SM+CI (Λ−
RR = 20 TeV) 870±60 265±23 58±6 10.1±1.1 1.29±0.17 0.09±0.02

SM+CI (Λ+
LL = 14 TeV) 870±60 252±23 51±6 7.5±1.0 1.45±0.18 0.113±0.023

SM+CI (Λ+
LL = 20 TeV) 890±60 247±23 50±6 6.4±1.0 0.74±0.15 0.048±0.013

SM+CI (Λ+
LR = 14 TeV) 860±60 256±23 57±6 12.2±1.1 2.79±0.31 0.28±0.06

SM+CI (Λ+
LR = 20 TeV) 880±60 252±23 50±6 7.5±1.0 1.15±0.16 0.092±0.019

SM+CI (Λ+
RR = 14 TeV) 870±60 252±23 51±6 8.0±1.0 1.36±0.18 0.138±0.026

SM+CI (Λ+
RR = 20 TeV) 890±60 247±23 50±6 6.5±1.0 0.70±0.15 0.052±0.013
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cosθ ∗ =
pz(ℓ

+ℓ−)
|pz(ℓ+ℓ−)|

2(p+1 p−2 − p−1 p+2 )

m(ℓ+ℓ−)
√

m(ℓ+ℓ−)2+ pT (ℓ+ℓ−)2
,

wherep±n denotes 1√
2
(E ± pz) andn = 1 or 2 corresponds

to the negatively charged or positively charged leptons, re-
spectively. From this angle, a forward-backward asymmetry,
which is sensitive to the chiral structure of the interaction, is
defined as follows:

AFB =
NF−NB

NF+NB
,

whereNF (NB) is the number of events with cosθ ∗ greater
(smaller) than zero. The discrimination between CI+SM and
the SM-only background is due to the couplings of the CI
model, which predicts a largerAFB than the SM background
for the CI signal in the left-left and right-right model, andan
equally large but opposite-signAFB for the left-right model.
If a CI signal were present in nature this would therefore
lead to a modest increase in the total measuredAFB as a func-
tion of dilepton mass for the left-left and right-right model,
and a substantial decrease in the measuredAFB for the left-
right model. Therefore in the CI search, each dilepton mass
bin is further divided into forward and backward events for
the statistical interpretation of the results. Figures2 and3
present the data and background for cosθ ∗ and AFB as a
function of dilepton mass, respectively, in both channels.
These distributions also display CI signal predictions.

Good agreement is observed between the data and the
background model in both the dilepton mass andAFB distri-
butions.

Table 4 Expected and observed event yields in the dielectron (second
column) and dimuon (third column) channels in the ADD searchfor
large extra dimensions. The expected yields for the SM plus two GRW
ADD parameter points are also shown. The quoted errors consist of
both the statistical and systematic uncertainties added inquadrature.

Process
mee [GeV] mµµ [GeV]

1900–4500 1900–4500

Drell–Yan 0.43± 0.12 0.44± 0.09

Top quarks < 0.002 < 0.006

Multi-Jet & W+Jets 0.062± 0.012 < 0.001

Diboson 0.053± 0.005 0.047± 0.005

Photon-Induced 0.06± 0.06 0.05± 0.05

Total SM 0.61± 0.13 0.54± 0.09

Data 0 0

SM+ADD (MS = 3.5 TeV) 5.8± 0.5 3.9± 0.4

SM+ADD (MS = 4.0 TeV) 2.56± 0.24 1.69± 0.14
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Fig. 2 Reconstructed cosθ ∗ distributions for data and the SM back-
ground estimate in the dielectron (top) and dimuon (bottom)channels.
Results are shown for the contact interaction signal regionfor dilepton
masses between 400 GeV and 4500 GeV. Also shown are the predic-
tions for a benchmarkΛ value in the LR contact interaction model.
The ratio is presented with the total systematic uncertainty overlaid as
a band.

7 Systematic uncertainties

The total background estimate is normalized by scaling to
data in the dilepton mass region 80–120 GeV. This protects
the analysis against mass-independent systematic uncertain-
ties (such as the luminosity uncertainty), as any constant
scale factor cancels. However, mass-dependent systematic
uncertainties affect the shape of the discriminating variables
and are therefore considered as nuisance parameters in the
statistical interpretation.

Experimental uncertainties originate from the follow-
ing sources: lepton trigger and reconstruction efficiencies,
lepton energy and momentum scale and resolution, lepton
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Fig. 3 ReconstructedAFB distributions for data and the SM back-
ground estimate as a function of dielectron (top) and dimuon(bottom)
mass. Also shown are the predictions of different benchmarkΛ values
for the LL and LR contact interaction model (the RR model is very
similar to the LL case). The ratio displays the background-subtracted
data (∆ ) divided by the total uncertainty (σ ) in each bin.

charge misidentification, multi-jet &W+jets background es-
timate (in theee channel), beam energy scale, and MC statis-
tics.

It is important to control the lepton momentum uncer-
tainty, as mismodelling of the resolution could result in a
broad signal-like excess (or deficit) in the dilepton mass
distribution. The muon momentum resolution depends crit-
ically on the quality of the MS chamber alignment. Resolu-
tion uncertainties are determined from dedicated data-taking
periods with no magnetic field in the MS and from studies
of muon tracks passing through the overlap region between
chambers in the small and large sectors of the MS where the
independent track momenta reconstructed from these adja-

cent sectors can be compared directly. The electron momen-
tum uncertainty is negligible.

Another important experimental uncertainty is the
charge misidentification which can arise from two main
sources: track curvature and “trident” events. The latter oc-
curs when a hard bremsstrahlung is emitted by a high-
momentum lepton, and a subsequent photon conversion
gives rise to a high-momentum track with a charge opposite
to that of the initial lepton, but which is selected erroneously.
To study the trident source of charge misidentification, ded-
icated MC samples were generated with the amount of de-
tector material varied by up to 20% of a radiation length. To
study the track curvature source, various investigations were
carried out wherein additional charge misidentification isin-
jected into the simulation to ascertain its effect, and the ID
track resolution inq/p is varied to assess the probability of a
change of charge sign. As these systematic uncertainty stud-
ies found a negligible change in charge misidentification, a
conservative uncertainty of 20% with respect to the mea-
sured charge misidentification rate in Drell–Yan MC sim-
ulation was applied. For the dielectron channel, the charge
misidentification systematic uncertainty can be as large as
3%. For the dimuon channel, this is covered by the resolu-
tion uncertainty and is negligible.

The uncertainty on the data-driven estimate of the com-
bined multi-jet & W+jets background is assessed by com-
paring complementary estimation methods (giving a maxi-
mum deviation of 18% from the nominal method) and varia-
tions of the real-electron contamination suppression require-
ments in the nominal method (resulting in deviations of up to
5%). The addition of these effects in quadrature gives a total
systematic uncertainty on the data-driven estimate of 20%.
A detailed description of this procedure is given in Ref. [1].

A systematic uncertainty on the LHC beam energy of
0.65% [41] is assessed for both the signal and background
processes.

The statistical uncertainty of the MC samples is included
as a systematic uncertainty for both the signal and the back-
ground. This includes the fit uncertainty due to the high-
mass extrapolation of the top-quarks background, which is
described in Sect.5.

The theoretical uncertainties are the variations among
the PDF eigenvector sets, the effect of PDF choice, the
PDFαS scale, the EW higher-order corrections, the photon-
induced contributions, and the DY cross-section uncertainty.
The effect of these uncertainties on the background yield are
taken into account with a standard procedure where event
weights are used to create systematically shifted distribu-
tions, which are then used as nuisance parameters in the
statistical interpretation. However, for the signal yields one
does not want to introduce a bias via the specific theoretical
uncertainty choices, and therefore these are only taken into
account by the effect that they have on the signal acceptance
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times efficiency. This effect was found to be negligible in
all cases except for the PDF variation in the ADD search,
where an additional uncertainty of 6% (3%) is included in
the dielectron (dimuon) channel as a nuisance parameter in
the statistical interpretation. For the CI search, systematic
uncertainties are taken into account as a function of dilep-
ton mass for forward and backward events separately, to ac-
count for any variation in the uncertainty which might affect
the expected asymmetry. For example, the largest systematic
uncertainty in this search is the background PDF variation,
which has an effect in the dielectron (dimuon) channel of
11% (12%) at a mass of 2 TeV. When separated into for-
ward and backward regions at the same dielectron (dimuon)
mass, this uncertainty is 10% (8.5%) and 16% (15%), re-
spectively. Likewise the PI uncertainty in the dielectron
(dimuon) channel of 12% (9.5%) at a mass of 2 TeV, be-
comes 10% (7.5%) and 16% (13%), when separated into for-
ward and backward regions, respectively. The other sources
of systematic uncertainty were found to not have a strong
dependence between forward and backward events. The
different sources of PDF uncertainty are assessed by uti-
lizing the MSTW2008NNLO PDF error set (90% C.L.)
and by following the procedure detailed in Ref. [1, 42].
The uncertainty due to the choice of PDF is investigated
by comparing the central values of various PDFs, namely
MSTW2008NNLO, CT10NNLO [43], NNPDF2.3 [44],
ABM11 [45], and HERAPDF1.5 [46]. All except for
ABM11 are found to be within the MSTW2008NNLO 90%
C.L. uncertainty, and so the variation from ABM11 with re-
spect to the MSTW2008NNLO central value, outside of the
MSTW2008NNLO 90% C.L. uncertainty, is taken as a sep-
arate systematic uncertainty due to PDF choice. VRAP [47]
is used to assess theαS systematic uncertainty, along with
scale uncertainties which are estimated by varying the nom-
inal renormalization and factorization scales simultaneously
by a factor of two. A study to ascertain the photon-induced
background estimate uncertainty was performed in Ref. [1],
and found that the nominal MRST2004QED PDF gives an
upper estimate of the PI contribution. Varying the assumed
quark masses showed that the lower bound of this estimate
gives fairly small PI contributions. Therefore the PI back-
ground estimate is assigned a conservative uncertainty of
100%. A uniform uncertainty of 4% due to the uncertainty
on the Z/γ∗ NNLO cross-section (using MSTW2008NNLO
90% C.L.) in the normalization region was determined in
Ref. [1] and is applied to signal event yields due to the nor-
malization procedure. The variation due to the cross-section
uncertainty in the other background MC samples was found
to be negligible. All systematic uncertainties are treatedas
uncorrelated, and a summary of the systematic uncertainties
at dilepton masses of 1 and 2 TeV is presented in Table5.

8 Statistical interpretation

A Bayesian approach is used for the statistical interpretation
of the results, using a uniform positive prior as a function of
the parameter of interest to quantify any observed excess. In
the absence of a signal, 95% C.L. lower exclusion limits are
set on that parameter. The total number of expected events
µ in each search region can be expressed as

µ = ns(Θ ,Ω )+ nb(Ω),

wherens(Θ ,Ω) is the number of events predicted by the
CI or ADD signal for a particular choice of model param-
eter Θ . The quantitynb(Ω ) is the total number of back-
ground events, and in both casesΩ represents the set of
Gaussian nuisance parameters that account for systematic
uncertainties on the number of respective signal and back-
ground events. The parameterΘ corresponds to a choice of
contact interaction scaleΛ and interference parameterηi j in
the case of the CI interpretation, and a choice of string scale
MS and specific formalism (GRW, Hewett, or HLZ) in the
case of the ADD interpretation.

The likelihood of observingn events given the new
physics parameterΘ and nuisance parametersΩ is then the
product of Poisson probabilities for each mass–cosθ ∗ bin k:

L (n |Θ ,Ω) =
Nchannel

∏
l=1

Nbin

∏
k=1

µnlk
lk e−µlk

nlk!
,

wherenlk is the number of events observed in data, andµlk

is the total number of expected events (signal plus back-
ground), both in mass–cosθ ∗ bin k and channell (where the
channel can be dielectron or dimuon). According to Bayes’
theorem, the posterior probability for the parameterΘ , given
n observed events, is then

P(Θ | n) =
1
Z

LM (n |Θ)P(Θ),

whereZ is a normalization constant and the marginalized
likelihood LM corresponds to the likelihood after all nui-
sance parameters are integrated out. This integration is per-
formed assuming that the nuisance parameters are correlated
across all dilepton mass–cosθ ∗ bins. The nuisance parame-
ters that are treated as correlated between both channels are:
PDF uncertainties, EW corrections, photon-induced, beam
energy, and normalization. All other sources are treated as
uncorrelated. Table5 shows which nuisance parameters are
taken into account for the signal and background expecta-
tions. The prior probabilityP(Θ) is chosen to be uniform
and positive in either 1/Λ2 or 1/Λ4 for the CI analysis, and
either 1/M4

S or 1/M8
S for the ADD analysis. These choices

are motivated by the form of Eqs. (1) and (2), to give the
reader a sense of how the interplay in these forms can affect
the result. The 95% C.L. limit is then obtained by finding the
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Table 5 Summary of the systematic uncertainties taken into accountfor the total expected number of events. Values are providedat mℓℓ = 1 TeV
(2 TeV) to give representative estimates relevant to this search. The PDF variation values shown for signal are based on CI. For the ADD signal
they are uniform at 6% and 3% in the dielectron and dimuon channels, respectively. Signal systematic uncertainties are assessed as a function of
the corresponding parameter of interest but are not found tovary greatly. N/A indicates that the uncertainty is not applicable.

Source
Dielectrons Dimuons

Signal Background Signal Background

Normalization 4.0% (4.0%) N/A 4.0% (4.0%) N/A
PDF Variation < 0.1% (0.2%) 5.0% (11.0%) < 0.1% (< 0.1%) 5.0% (12.0%)
PDF Choice N/A 1.0% (7.0%) N/A 1.0% (6.0%)

αS N/A 1.0% (3.0%) N/A 1.0% (3.0%)
EW Corrections N/A 1.0% (2.0%) N/A 1.0% (3.0%)
Photon-Induced N/A 7.0% (12.0%) N/A 6.5% (9.5%)

Efficiency 1.0% (2.0%) 1.0% (2.0%) 3.0% (6.0%) 3.0% (6.0%)
Scale & Resolution 1.2% (2.4%) 1.2% (2.4%) 1.0% (4.0%) 1.0% (4.0%)

Electron Charge Misident. 1.2% (2.0%) 1.2% (2.0%) N/A N/A
Multi-Jet & W+Jets N/A 3.0% (5.0%) N/A N/A

Beam Energy 1.0% (3.0%) 1.0% (3.0%) 1.0% (3.0%) 2.0% (3.0%)
MC Statistics 3.0% (3.0%) 0.5% (0.5%) 3.0% (3.0%) 0.5% (0.5%)

Total 5.5% (6.9%) 9.5% (19.4%) 6.0% (9.3%) 9.2% (18.7%)

valueΘlim satisfying
∫Θlim

0 P(Θ | n)dΘ = 0.95, whereΘ is
chosen to be 1/Λ2, 1/Λ4, 1/M4

S or 1/M8
S.

The calculations are performed with the Bayesian Anal-
ysis Toolkit [48], which uses a Markov Chain Monte Carlo
technique to integrate over the nuisance parameters. For
each physics model, 1000 pseudo-experiments (PEs) are run
to obtain an adequate SM-only expected distribution; the PE
with the median parameter of interest value provides the ex-
pected limit, with±1σ and±2σ intervals also obtained
from this set of 1000 PEs correspondingly. In order to quan-
tify the consistency between the data and the background
expectation, the likelihood ratio is computed for the signal-
plus-background and background-only hypotheses, where
the signal-plus-background likelihood (given the prior) is
evaluated at theΘ value that maximizes the likelihood. The
distribution of negative log-likelihood-ratio (LLR) values is
then used to compute thep-value by calculating the frac-
tion of PEs that have a more signal-like LLR value than the
observed LLR value in data. Thep-value is the probability
of observing an excess, at least as signal-like as the one ob-
served in data, given that only background exists.

9 Results

Good agreement is observed between the data and expected
background yields. The most significant deviation from the
expected background is seen in the dimuon channel for the
CI search, with ap-value of 8% in the LL model with

destructive interference given the 1/Λ2 prior. In the ADD
search, the most significant excess is also observed in the
dimuon channel, with ap-value of 6% in the GRW formal-
ism for the 1/M4

S prior. In neither case is the deviation signif-
icant. The expected and observed 95% C.L. lower exclusion
limits are set on the parameter of interest in each search,
with the resulting limits for the CI and ADD search pre-
sented in Tables6 and7 respectively, including conversions
to other formalisms. These results are also displayed graph-
ically in Figure4 for the CI search given the 1/Λ2 prior and
Figure5 for the ADD search given the 1/M8

S prior. In the
case of the ADD interpretation, the limits obtained with a
prior uniform and positive in signal cross-section are found
to be consistent with those obtained with the uniform posi-
tive 1/M8

S prior.

For the ADD search results, the similar expected and ob-
served exclusion limits within the separate channels are due
to the small number of expected SM background events,
which arise from the high mass threshold chosen for that
search. This leads a large fraction of the PEs to return a re-
sult of zero expected events, and the median value of the
ensemble (taken as the expected limit) to therefore also be
zero expected events. For the combined dilepton channel,
the total number of expected SM background events is large
enough that a wider range of limits is obtained in the ensem-
ble of PEs and the slight data deficit translates into stronger
observed limits than expected.
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Table 6 Expected and observed 95% C.L. lower exclusion limits onΛ for the LL, LR, and RR contact interaction search using a uniform
positive prior in 1/Λ2 or 1/Λ4. The dielectron, dimuon, and combined dilepton channel limits are shown for both the constructive and destructive
interference cases.

Expected and observed lower limits onΛ [TeV]

Channel Prior
Left-Left Left-Right Right-Right

Const. Destr. Const. Destr. Const. Destr.

Exp:ee
1/Λ2 19.1 14.0 22.0 17.4 19.0 14.2

Obs:ee 20.7 16.4 25.2 19.2 20.2 16.6

Exp:ee
1/Λ4 17.4 13.0 20.1 16.3 17.2 13.1

Obs:ee 18.6 14.7 22.2 17.7 18.3 14.9

Exp: µµ
1/Λ2 18.0 12.7 21.6 16.3 17.7 13.0

Obs:µµ 16.7 12.5 20.5 14.9 16.5 12.7

Exp: µµ
1/Λ4 16.2 12.0 19.8 15.3 16.2 12.1

Obs:µµ 15.6 11.8 19.0 14.3 15.4 11.9

Exp:ℓℓ
1/Λ2 21.4 14.7 24.8 18.5 21.0 15.0

Obs:ℓℓ 21.6 17.2 26.3 19.0 21.1 17.5

Exp:ℓℓ
1/Λ4 19.1 13.8 23.1 17.6 19.1 14.2

Obs:ℓℓ 19.6 15.4 23.8 17.8 19.3 15.6

Table 7 Expected and observed 95% C.L. lower exclusion limits onMS, using a uniform positive prior in 1/M4
S or 1/M8

S. The dielectron, dimuon,
and combined dilepton channel limits are shown for ADD signal in the GRW, Hewett and HLZ formalisms.

Expected and observed lower limits onMS [TeV]

Channel Prior GRW Hewett
HLZ

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Exp:ee
1/M4

S
4.0 3.5 3.6 4.7 4.0 3.6 3.3 3.1

Obs:ee 4.0 3.5 3.6 4.7 4.0 3.6 3.3 3.1

Exp:ee
1/M8

S
3.7 3.3 3.1 4.4 3.7 3.4 3.1 3.0

Obs:ee 3.7 3.3 3.1 4.4 3.7 3.4 3.1 3.0

Exp: µµ
1/M4

S
3.7 3.3 3.4 4.4 3.7 3.4 3.1 3.0

Obs:µµ 3.7 3.3 3.4 4.4 3.7 3.4 3.1 3.0

Exp: µµ
1/M8

S
3.5 3.1 3.1 4.2 3.5 3.2 3.0 2.8

Obs:µµ 3.5 3.1 3.1 4.2 3.5 3.2 3.0 2.8

Exp:ℓℓ
1/M4

S
4.0 3.6 3.9 4.8 4.0 3.6 3.4 3.2

Obs:ℓℓ 4.2 3.8 4.2 5.0 4.2 3.8 3.6 3.4

Exp:ℓℓ
1/M8

S
3.8 3.4 3.5 4.6 3.8 3.5 3.2 3.1

Obs:ℓℓ 4.0 3.6 3.7 4.7 4.0 3.6 3.4 3.2
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Fig. 4 Summary of 95% C.L. lower exclusion limits onΛ for the combined dilepton contact interaction search, using a uniform positive prior in
1/Λ2. Previous ATLAS search results [17, 49] are also presented for comparison. Exclusion limits were previously only set on the LL model.
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Fig. 5 Summary of 95% C.L. lower exclusion limits onMS for the combined dilepton ADD large extra dimensions search, using a uniform positive
prior in 1/M8

S. Previous ATLAS search results [17] are also presented for comparison. Exclusion limits were not previously set on the HLZn = 2
ADD model.
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10 Conclusions

A search for non-resonant new phenomena in the dilepton
channel has been carried out using the 2012 LHC proton–
proton collision dataset of 20 fb−1 at

√
s= 8 TeV. This study

builds upon previous ATLAS searches, using both dilep-
ton invariant mass and the lepton cosθ ∗ distribution (and
by proxyAFB) as search variables. No significant deviations
from the Standard Model predictions are observed and lower
limits are placed on the scale of contact interactions and
large extra dimensions. The most restrictive 95% C.L. limits
are obtained by combining the dielectron and dimuon chan-
nels, yieldingΛ > 26.3 TeV for the left-right contact inter-
action model with constructive interference and a prior flat
in 1/Λ2, andMS > 5.0 TeV for the HLZn = 3 ADD model
with a prior flat in 1/M4

S.
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