Exhaustive investigation of the duration of inflation in effective anisotropic loop quantum cosmology
Abstract
This article addresses the issue of estimating the duration in inflation in bouncing cosmology when anisotropies, inevitably playing and important role, are taken into account. It is shown that in Bianchi-I loop quantum cosmology, the higher the shear, the shorter the period of inflation. For a wide range of parameters, the probability distribution function of the duration of inflation is however peaked at values compatible with data, but not much higher. This makes the whole bounce/inflationary scenario consistent and phenomenologically appealing as all the information from the bounce might then not have been fully washed out.