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1CNRS and ENSICAEN, UMR6534, LPC, 14050 Caen cédex, France
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A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended
Thomas-Fermi (ETF) energy density functional. This allowsto (i) shed a new light on the issue of the sign
of surface symmetry energy in nuclear mass formulas, which is strongly related to the non-uniformity of the
isospin asymmetry in finite nuclei, as well as to (ii) evaluate the in-medium corrections to the nuclear cluster
energies in thermodynamic conditions relevant for the description of the (proto)-neutron star crust. The ground
state configurations of the model are compared to Hartree-Fock calculations in spherical symmetry for some
selected isotopic chains, and systematic errors are quantified. The in-medium modification of the nuclear mass
due to the presence of a gas component is shown to strongly depend both on the density and the asymmetry of
the nucleon gas. This shows the importance of accounting forsuch effects in the realistic modelizations of the
equation of state for core-collapse supernovae and proto-neutron stars.
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I. INTRODUCTION

The semi-classical Thomas Fermi (TF) and Extended-
Thomas-Fermi (ETF) approach to the density functional the-
ory were largely used in the 80’s for nuclear structure ap-
plications [2–4] as well as astrophysical ones [5, 6]. Two
motivations of searching for approximations of the micro-
scopic mean-field theory with effective interactions can bead-
vanced. On one side, this semi-classical quasi-analyticalthe-
ory provides a clear physical insight on the functional depen-
dence of nuclear energies and density profiles which cannot
be achieved with the numerical resolution of HF equations for
single-particle orbitals. On the other side, the computational
ressources at that time made systematic HF calculations very
hard to perform with reliable numerical error bars. The ex-
ponential progress of numerical computing in the next two
decades made this motivation obsolete and we have assisted to
an impressive progress of mean-field and beyond-mean field
large-scale nuclear structure calculations [7]. However in the
recent years, a renewed interest towards the ETF theory has
appeared [8–10]. This is largely due to the new challenges
which are open to the field and the needs for a microscopic
description of the very exotic nuclear species which are ex-
pected to exist in stellar matter. The widely used equation of
state models for supernova matter, neutron stars, and proto-
neutron star typically replace the nuclear distribution instel-
lar matter with a single representative nucleus, and use density
functionals to describe the nucleus as well as the surrounding
nucleon gas [11, 12]. More recent models have replaced the
single nucleus approximation by a statistical distribution of
nuclei, using the experimental information for nuclear masses
and , doing so, do not consider in-medium modifications to
the nuclear cluster energies [13–16]. A complete and micro-
scopic description of stellar matter at finite temperature and at
sub-saturation densities implies the evaluation of an extremely
large data base of ground states and excited nuclear configu-
rations in a dilute light-particles environment which are not

directly accessible to variational HF calculations, or, for some
of them which are accessible, which are computationally too
expensive for large-scale calculations [17].

In this context it is interesting to develop an ETF based for-
malism which would, in a quasi-analytical way, provide nu-
clear clusters energies for ground state and excited state con-
figurations using energy functionals optimized for exotic nu-
clear data as well as neutron matter calculations [18]. In a
recent paper [1], we have proposed a model based on a simple
parameterization of Fermi-Dirac density profiles and on the
zeroth order TF approximation for the kinetic energies and
currents.

Comparing this model to HF ground-state configurations, a
good agreement was reached since the differences between
the model and the HF calculation were found independent
of the gas density and of the order of 0.5-1 MeV/nucleon.
The model has therefore been employed to evaluate the in-
medium energy shifts in a large variety of excited state con-
figurations [1, 19].

In this paper we introduce second orderh̄2-corrections, al-
lowing the introduction of the spin-orbit interaction and an in-
creased precision in the evaluation of the kinetic energy den-
sity. The agreement with HF energies is therefore found to be
better. This improved model is used to obtain the functional
form of the nuclear energies as a function of mass number and
asymmetry, both in the case of ordinary nuclei in the vacuum,
and in the case of nuclei immersed in a nucleon gas.

The paper is organized as follows: In Section II we re-
call the ETF formalism and present two possible modelling of
the nuclear density profiles employed in the variational ETF.
These two parametrizations are critically compared in Sec-
tion III, which presents a comparison of the ETF model to
HF calculations in order to assess the accuracy of the ETF
calculation. It is shown that the inclusion of second order
h̄2-terms considerably improves the predictive power of the
model. Section IV presents an application of the model to the
study of the functional dependence of the symmetry energy
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on the nuclear mass. We analyze the well known problem of
the sign of the surface symmetry energy [20], and show that
an explicit comparison to HF calculations can help to elimi-
nate the ambiguity in the decomposition between surface and
bulk in the two-component nuclear system. Section V reports
detailed results concerning the modification to the nuclearen-
ergy due to the presence of a gas component. The specific
case of a nucleus immersed in a neutron gas, similar to the
ground state of nuclear clusters present in the crust of neutron
stars, is examined. The case where the nucleus is in an ar-
bitrary single-particle excited state configuration, as itis the
case in the finite temperature conditions of supernova matter
and proto-neutron stars, is also considered and shown to lead
to very different energy shifts.

II. THE MODEL

We briefly present the model for nuclei and nuclear matter
which is based on the Skyrme interaction [18] and where the
semi-classical ETF approximation is employed. This approx-
imation requires a parametrization of the nuclear density pro-
files and two types of such parametrizations are investigated
and compared.

A. Skyrme functionals and ETF semi-classical approximation

The Skyrme functional for the time-even energy density is
expressed as [21, 22]

Esky(r) =
h̄2

2m
τ(0)+ ∑

t=0,1
Cρ

t (ρ (0))ρ (t)2+C∆ρ
t ρ (t)∆ρ (t)

+Cτ
t ρ (t)τ(t)+

1
2

CJ
t J(t)2+C∇J

t ρ (t)∇ ·J(t), (1)

where the superscriptst = 0 andt = 1 stand for the isoscalar
and isovector part of the corresponding densities, as for exam-
ple,

ρ (0)(r) = ρn(r)+ρp(r),

ρ (1)(r) = ρn(r)−ρp(r). (2)

The coefficientsC are taken to be constants except forCρ
t

which depends of the isoscalar densityρ (0) according to the
parameterization,

Cρ
t (ρ (0)) =Cρ

t (0)+ (Cρ
t (ρsat)−Cρ

t (0))

(

ρ (0)

ρsat

)α

, (3)

whereρsat is the saturation density in infinite symmetric nu-
clear matter. See Appendix A and Ref. [21] for additional
definitions.

This functional depends on the occupied single particle or-
bitals in a complex way because of the presence of kinetic
densities and currents. A simpler dependence on the single-
particle densitiesρq can be obtained using a semi-classical

Wigner-Kirkwood expansion [2], which is the basis of the so-
called Thomas-Fermi approximation. We will consider an ex-
pansion up to the second̄h2-order. The kinetic densityτ(0)
reads at the zeroth order (Thomas Fermi approximation) [2]

τ(0) = τT F ≡
3
5
(3π2)(2/3)∑

q
ρ5/3

q , (4)

and at the second orderτ(0) = τTF +∑q τL
q,2+ τNL

q,2 where,

τL
q,2 =

1
36

(∇ρq)
2

ρq
+

1
3

∆ρq, (5)

τNL
q,2 =

1
6

∇ρq ·∇ fq
fq

+
1
6

ρq
∆ fq
fq

−
1
12

ρq

(

∇ fq
fq

)2

+
1
2

(

2m

h̄2

)2

ρq

(

Wq

fq

)2

. (6)

Here,τL
q,2 is the second order local term,τNL

q,2 is the second
order non-local term, and the effective mass factorfq = m/m∗

q
is defined as

fq = 1+
2m

h̄2 [(Cτ
0 +Cτ

1)ρq+(Cτ
0 −Cτ

1)ρq̄]. (7)

.
The spin-orbit current obtained at the sameh̄2-order in the

semiclassical expansion is given by [2]

Jq =−
2m

h̄2 fq
ρqWq, (8)

where the spin-orbit potentialWq reads

Wq =−(C∇J
0 +C∇J

1 )∇ρq− (C∇J
0 −C∇J

1 )∇ρq̄

+(CJ
0 +CJ

1)Jq+(CJ
0 −CJ

1)Jq̄. (9)

In asymmetric systems, the relation between the spin cur-
rentsJn andJp and the gradient of the densities is given by the
solution of the 2x2 system of linear equations [22],

(

h̄2

2m
fq+(CJ

0 +CJ
1)ρq

)

Jq+(CJ
0 −CJ

1)ρqJq̄

= (C∇J
0 +C∇J

1 )ρq∇ρq+(C∇J
0 −C∇J

1 )ρq∇ρq̄. (10)

The solutionsJn andJp of this system are injected in Eq. (8)
in order to obtain the expression ofWq in terms of the density
gradients.

Let us notice however that in several Skyrme interactions
such as SIII, SLy4, SGII,... the terms inJ(t)2 in the func-
tional (1) are neglected. The spin-orbit potentialWq given in
Eq. (9) is therefore simply related to the gradient densities in
these functionals, and we have

Wq =−(C∇J
0 +C∇J

1 )∇ρq− (C∇J
0 −C∇J

1 )∇ρq̄. (11)

In principle, fourth order̄h4-terms can also be added for
an improved predictive power, as it has already been done in
previous works [2–4].

Hereafter the Skyrme functional with the kinetic energies
and currents approximated within the second order ETF ex-
pansion will be notedE ETF

sky [ρ (0),ρ (1)].
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B. Symmetric nuclei and generalized Fermi function solution

The great advantage of the semi-classical ETF approxima-
tion is that the non-local terms in the energy density func-
tional, see Eqs. (5), (6) and (9), are entirely replaced by local
gradients. As a consequence, the energy functional solely de-
pends on the local particle densities. Thus, the energy of any
arbitrary nuclear configuration can be calculated if the density
profilesρq are given through a parametrized form.

The ground state configuration should in principle be ob-
tained from the variational calculation, which in the single
density case,ρ = ρ (0) andρ (1) = 0, is reduced to single Euler-
Lagrange equation,

∂E
ETF
sky

∂ρ
−∇ ·

∂E
ETF
sky

∂∇ρ
+∆

∂E
ETF
sky

∂∆ρ
= λ , (12)

whereλ is a Lagrange multiplier imposing the correct particle
number. The generalization of Eq. (12) to the two-density case
realized in isospin-asymmetric nuclei is straightforward[2].

Substituting Eq. (1) into the Euler-Lagrange equation, and
using theh̄2-order in the ETF expansion Eqs. (5), (6), (7),
(11), leads to

λ =
dh
dρ

+C∇ (∇ρ)2+C∆∆ρ , (13)

with

C∇(ρ) =
h̄2

2m
1
36

(

1
ρ2 +

3κ2

f 2

)

+
C∇J

0 BJ

2 f 2 ,

C∆(ρ) =
h̄2

2m
1
3

(

−
1

6ρ
+

7
3

κ −
κ
2 f

)

−2C∆ρ
0 +C∇J

0 BJ
ρ
f
,

h(ρ) =
h̄2

2m
f τT F +ρ2Cρ

0 , (14)

where the following quantities have been introduced:κ =
2m/h̄2Cτ

0, BJ = 2m/h̄2C∇J
0 , f = 1+ κρ . This equation was

solved, within a simplified energy functional and in the semi-
infinite slab geometry, in Ref. [3]. A numerical solution of the
Euler-Lagrange equations for finite nuclei, employing more
general density functionals, including the Coulomb interac-
tion and possiblȳh4-terms in the semi-classical expansion,
is as numerical demanding as the resolution of the HF equa-
tions. For this reason, trial density profiles containing only a
few variational parameters are often employed [2–4, 8–10].In
particular, in Ref. [3] it was shown that a trial density present-
ing the correct asymptotic behaviors in the one-dimensional
system, is given by the generalized Fermi-Dirac distribution
(GFD):

ρGFD(r)≡
ρsat

(1+exp(r −Rν)/aν)ν . (15)

The parameterρsat coincides with the solution of the Euler-
Lagrange equation in the limit of infinitely extended nuclei,
which is the saturation density of symmetric nuclear matter.
The other parametersaν , Rν and ν are analytically derived
from the asymptotic solution of the Euler-Lagrange equa-
tion [3]. Details are given in Appendix B.

For the nuclear interactions considered in this work, the
terms inJ(t)2 in the functional (1) are neglected. The cor-
rection to the Euler equation (13) induced by the inclusion of
the spin-orbit current is given in Appendix C.

C. Simple Fermi function model

The variational approach presented in Section II B allows
an analytical determination of the nuclear energy for symmet-
ric N = Z nuclei. Unfortunately, the generalization of these
equations to asymmetric nuclei is highly non-trivial [23] un-
less severe approximations are assumed. Since our aim is to
have a robust model which can be applied for exotic nuclei as
well as for dilute nuclear clusters present in the (proto)neutron
star crust, we shall not consider uncontrolled approximations.
We shall therefore propose a modified functional form, which
is inspired by the solution of the Euler-Lagrange equations,
and is directly optimized on Hartree-Fock calculations.

In Ref. [1] an analytical modelling of the density profile was
proposed, using a simpleν = 1 Fermi-Dirac (FD) functional
form.

ρFD(r)≡
ρsat(δ )

1+exp(r −R)/a
. (16)

Similarly to the previous model given by Eq. (15), the param-
eterρsat(δ ) matches with the limit of infinitely large nuclei,
but this time can be generalized in asymmetric matter. The
asymmetry dependence of the saturation density is well given
by the following form [1],

ρsat(δ ) = ρsat

(

1−
3Lsymδ 2

Ksat+Ksymδ 2

)

, (17)

In this expression,Lsym = 3ρsat∂E
sym
sky /∂ρ (0) and Ksym =

9ρ2
sat∂ 2

E
sym
sky /∂ρ (0)2 are the slope and curvature of the sym-

metry energy at saturation, where we have introduced the
usual definition of the symmetry energy functional:

E
sym
sky (ρ

(0)) =
1
2

ρ (0)2
∂ 2

E
ETF
sky

∂ρ (1)2
|ρ(1)=0. (18)

In Eq. (17), the parameterδ = 1− 2ρsat,p/ρsat is the bulk
asymmetry of the nucleus. The bulk asymmetry differs from
the global asymmetry of the nucleus,I = 1−2Z/A, because of
the presence of a neutron skin and Coulomb effects. The rela-
tion between the bulk asymmetryδ and the global asymmetry
I is given by [24–26]:

δ =
I + 3aC

8Q
Z2

A5/3

1+ 9Esym
4Q

1
A1/3

, (19)

whereEsym= E
sym
sky [ρsat]/ρsat is the symmetry energy at sat-

uration,Q is the surface stiffness coefficient extracted from a
semi-infinite nuclear matter calculation andaC is the Coulomb
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parameter taken equal toaC = 0.69 MeV. The radius parame-
terR entering the density profile (16) is given by

R= RHS

[

1−
π2

3

(

a
RHS

)2
]

, (20)

whereRHS = (3A/4πρsat(δ ))1/3 is the equivalent homoge-
neous sphere radius. Eq. (20) can be deduced from the general
expression given in the appendix Eq. (B13). The diffuseness
parametera of the total density profile is assumed to depend
quadratically onδ , a= α +β δ 2, whereα andβ were fitted
from HF calculations in Ref. [1].

This simple model has the great advantage that its level of
predictivity is the same for symmetric and asymmetric nuclei
[1]. To describe an isospin asymmetric system, we need two
independent density profiles. We will for this purpose use
the total isoscalar densityρ and the proton densityρp as two
FD functions characterized by the corresponding saturation
densitiesρsat, andρsat,p = (1− δ )/2ρsat, diffusenessa(δ ),
ap(δ ) (with parametersα, αp, β , βp governing the diffuse-
ness isospin dependence), and radiiR,Rp as given by Eq. (20)
above.

Moreover, the extension to the physical situation of the in-
ner crust, where nuclei are immersed in a gas of continuum
states, is also relatively straightforward [1]. This pointwill be
discussed in Section V.

III. COMPARISON TO HARTREE-FOCK
CALCULATIONS

Once the parameters of the density profiles are specified,
the nuclear ground state energy is straightforwardly calculated
as

EETF =

∫

d3rE ETF
sky

[

ρ (0),ρ (1)
]

, (21)

where the semi-classical ETF nuclear functionalE
ETF
sky is

given in sec. II A. In this expression, the isoscalar and isovec-
tor densities are calculated imposing FD profiles for the total
isoscalar and proton densitiesρ andρp. For symmetric nuclei
the isovector densityρ (1) vanishes and it becomes possible to
describe the density profile with a GFD profile via Eq. (15),
which in principle should be more correct since it corresponds
to the variational solution of the ETF problem, though usinga
trial density profile.

The quality of the models given by Eqs. (15) and (16) can
be judged by comparing the ansatz density profiles and the as-
sociated energies to HF calculations performed with the same
nuclear effective interaction. For these numerical applica-
tions, we will systematically use the SLy4 Skyrme nuclear
interaction [18]. We first compare the GFD (15) and FD (16)
ansatz density profiles forN = Z nuclei, showing the minor
role of the parameterν as well as the limitations of the varia-
tional approach.
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FIG. 1. (Color online) Density profiles (upper panel), corresponding
particle numbers (central panel) and density derivative profile times
r2 (lower panel) of different magic (left side,40Ca,56Ni and100Sn)
and open-shell (right side,48Cr, 68Se, 88Ru) even-even symmetric
nuclei. Symbols: spherical HF calculations. Dashed lines:GFD
model Eq. (15). Full lines: FD model Eq. (16). A vertical shift of
δρ = 0.02(0.04) fm−3 is applied to the density profiles of56Ni, 68Se
(100Sn,88Ru) to better separate the different curves.

A. Comparison between FD and GFD ETF in symmetric
nuclei

Figure 1 shows the density profiles, as well as the density
multiplied byr2 and the gradient of the density×r2 for some
chosen representativeN= Z nuclei. In all cases, the GFD (16)
and FD (15) ansatz density profiles are compared to Hartree-
Fock calculation in spherical symmetry. Double magic nuclei
are considered in the left part of the figure, while open shells
ones are plotted in the right part.

We can see that both the FD and the GFD ansatz can re-
produce the HF density profiles with the same accuracy and,
quite interestingly, the diffuseness of the nuclear surface is
equally well reproduced by the two ansatz. Microscopic den-
sity profiles exhibit ripples in the central density which are not
accessible to a simple (G)FD shape. However, these structures
are not expected to influence the energetics of the system in
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FIG. 2. (Color online) Energy per nucleon ofN = Z nuclei as a
function of the mass number. squares: HF calculations. circles: ex-
perimental data from [27]. Full blue line: FD model. Dashed red
line: GFD model. Dotted black line: results from ref. [28].

an important way, because of the volume element in the en-
ergy integral. Moreover, it is known that they are to a large
extent artefacts of the mean-field approach and are expected
to be washed out by correlations. For these reasons, the den-
sities and the gradient of the densities are multiplied byr2

in the lower panels of Fig. 1. Interesting enough, the GFD
functional form, even multiplied byr2, does not give a better
reproduction of the microscopic calculations than the simpler
FD one. It is clear from this figure that the FD profile is flexi-
ble enough to reproduce the gross features of the microscopic
calculation. In particular we can see that the fall-off of the
density in the HF calculation is very well described by an ex-
ponential behavior. Conversely, it was shown in Ref. [4] that
the variational ETF solution exhibits a slower polynomial de-
crease when thēh4-terms are included. This is again an argu-
ment suggesting that we can safely neglect these higher order
terms. It is also important to remark that the Coulomb inter-
action is known to affect the density profile, though it can be
considered as a second order effect. The Coulomb effects are
implicitly included in the FD model of section II C, while both
the direct and exchange term of the Coulomb energy density
should be included in the Euler-Lagrange equations for a cor-
rect derivation of the density profile if we use the variational
strategy of section II B.

The satisfactory performance of the FD model is confirmed
and quantified by Fig. 2, which displays the energy per parti-
cle of N = Z nuclei as a function of their mass number. Only
the nuclear part of the HF energy is considered in this fig-
ure. For consistency, the same Coulomb energy, as obtained
in HF, is subtracted from the experimental nuclear masses,
taken from [27].

We can see that the GFD profiles systematically produce
more binding than the FD ones, as expected from the wider
variational space associated to this functional form. The re-
sulting energies are in good agreement with both the micro-
scopically calculated and measured masses for the magic nu-
clei represented in Fig. 1 above. However, the other nuclei

 0

 0.05

 0.1

 0.15

 0.2

 0  2  4  6  8  10
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ρFD,p 150
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FIG. 3. (Color online) Total (upper curves) and proton (lower curves)
density profiles of different Sn isotopes. Symbols: spherical HF
calculations. Full lines: FD model Eq. (16). A vertical shift of
δρ = 0.02(0.04) fm−3 is applied to the density profiles of132Sn
(150Sn), to better separate the different curves.

are overbound. This overbinding is known to be due to the
absence of fourth-order terms in the ETF functional [4]. The
simpler FD model with no variationally determined parame-
ter underbinds magic nuclei, but it leads to an overall good
agreement with the microscopic calculations. These results
are consistent with previous findings comparing FD and GDF
ansatz profiles [4].

A liquid-drop-like parametrization for the nuclear masses
in the framework of mean-field Skyrme models was recently
proposed in Ref. [28]. In this reference, the authors propose
the following functional form for the nuclear energy

ELDM = avA−asA
2/3−

aa
v

1+ aa
v

aa
sA1/3

AI2, (22)

and have extracted the parametersav, as, aa
v, aa

s from a fit
of HF calculations in an uncharged semi-infinite geometry,
as well as from the neutron-proton radii differences. The
isoscalar part of Eq. (22) contains bulk and surface contribu-
tions only while the isovector part contains additionally cur-
vature and beyond contributions. The result of Eq. (22), using
the same SLy4 functional [18], is also displayed in Fig. 2.
We can see that the variational ETF calculation correctly con-
verges towards the slab estimation (22) for very large mass
numbers, where curvature corrections to the surface energies
due to the spherical geometry are becoming negligible. The
functional form given by Eq. (21) naturally contains curvature
effects, in the isoscalar and isovector channel. The difference
between Eq. (21) and Eq. (22) is mostly due to the missing
curvature term in the isoscalar channel in Eq. (22). For light
nuclei Eq. (22) therefore tends to overestimate the binding.

From the ensemble of results presented in Fig. 2 we can
conclude that the ansatz densities FD and GFD reproduces
equally well the microscopic HF calculations, and that the
biggest source of discrepancy is mainly due to the lack of
shell effects in the ETF approach. We therefore stick to the
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FIG. 4. (Color online) Difference between the energy per particle
calculated in the ETF model and in the HF for the isotopic chain of
Ca (red symbols), Sn (green symbols), and Pb (black symbols). Full
squares: zeroth order TF approximation. Empty squares: second
orderh̄ expansion. Full circles: experimental data.

FD parametrization, and turn to test its predictivity in asym-
metric nuclei, where a direct analytical solution of the Euler-
Lagrange equations does not exist with any trial density pro-
file.

B. Comparison between HF and FD ETF in asymmetric nuclei

Some representative microscopic HF density profiles are
compared to the FD ansatz (16) in Fig. 3. We can see that the
level of agreement with the microscopic calculation is com-
parable to the case of symmetric nuclei. It does not depend
on the exoticity of the nucleus but mostly on the size of the
system. The larger the system, the better the FD model. This
statement is better quantified in Fig. 4, which shows the en-
ergy difference between the ETF calculation and the micro-
scopic one as a function of the neutron number, for some se-
lected isotopic chains. In this figure, the filled symbols cor-
respond to the Thomas-Fermi or local density approximation,
consisting in truncating the kinetic energy density expansion
to the zero order in̄h, see Eq. (4). In this approximation,
which was used in a previous work [1], the spin-orbit term
vanishes and the local kinetic energy density at a positionr is
the same as for infinite nuclear matter at the local densityρ(r),
ρp(r). We can see that the inclusion of second order terms in
the functional (open symbols in Fig. 3) considerably improves
the description. In particular, for the heaviest isotopic chain
considered, the average ETF energy very well reproduces the
average HF energy. The deviations are comparable to the dif-
ference between the HF model and the experimental data (full
circles), and can be fully ascribed to the missing shell effects.
These effects, which cannot be accounted by a semiclassical
model as ETF, could in principle be included with Strutinsky
smoothing techniques [8]. For the application to the proto-
neutron star crust that we are interested in, we however do not
expect this to be an important point, as shell effects are known
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FIG. 5. (Color online) Total (upper panel) and bulk (centralpanel)
energy per nucleon and surface energy per surface nucleon (lower
panel) along the isobaric chainA= 200. Red circles: ETF calculation
including the neutron skin effect Eq. (23) (see text). Greensquares:
ETF calculation neglecting the neutron skin effect Eq. (25). Black
diamonds: estimation from Eq. (24).

to rapidly wash out with increasing temperature.
To conclude, the use of the simple FD ansatz in the ETF

approach at second order in̄h has been found to reproduce
with a good accuracy the microscopic HF density profiles as
well as the HF binding energies, with an accuracy of the order
of 300 keV/nucleon for the lighter nuclei, and which does not
exceed 150 keV/nucleon for the heavy ones. A significant
improvement is found with respect to the previous work [1].

IV. SYMMETRY ENERGY FROM ETF

Let us now turn to a first application of the model. Given
the reasonably good reproduction of the smooth part of the
microscopic nuclear density, the ETF description can be used
to explore the functional form of the nuclear mass, and in par-
ticular the separation in a bulk and surface term of its isovector
and isoscalar parts.

Such a separation is important for the extraction of the
largely unknow density behavior of the symmetry energy from
nuclear data [29]. Indeed it has been proposed in the lit-
erature [30] that the symmetry energy can be strongly con-
strained from the measurement of nuclear masses. These
estimations give the experimental constraints on the sym-
metry energy which have at present the smallest uncertain-
ties [31]. The determination of the symmetry energy from
nuclear mass implies that the surface and bulk component of
the isospin dependence can be unambiguously distinguished.
However, very different values are reported in the literature for
the surface symmetry energy coefficient [32–35]. In a two-
component system, there are two possible definitions of the
surface energy which depend on the definition of the bulk en-
ergy in the cluster [20, 36, 37]: the first one corresponds to
identifying the bulk energy of a system ofN neutrons andZ
protons to the energy of an equivalent piece of nuclear mat-
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ter ES = Sγe ≡ E − eA, whereA = N + Z and e is the en-
ergy per nucleon of uniform matter. The second definition
ES = Sγµ ≡ E− µnN− µpZ+ pV corresponds to the grand-
canonical thermodynamical Gibbs definition. The first defini-
tion is the standard surface energy of the droplet model [38],
while the second one gives the quantity to be minimized in the
variational calculation conserving proton and neutron num-
ber. It was shown that the sign of the surface symmetry
energy depends on the choice between these two possibili-
ties [20, 36, 37]. Moreover it was argued [20] that the case of
liquid drop model (LDM) mass formulas, where the bulk en-
ergy is a function of the total mass numberA and of the global
asymmetryI = (N−Z)/A only, is closer (though not equal)
to the Gibbs definition. This can explain why LDM mass for-
mulas systematically obtain negative (though widely varying)
surface symmetry energy coefficients [32–35].

If the total energyE is exactly known, the two decomposi-
tions are in principle exactly equivalent, meaning that thesur-
face symmetry energy is ill-defined. However, the total energy
is never exactly known. In the case of empirical mass formu-
las, it is given by a fit of experimental data. In the case of
ETF based functionals, as in the present study, we are seeking
for the best possible approximation to the complete variational
HF problem within a given effective interaction. Thereforeit
is important to determine if there is a decomposition which is
best suited to reproduce the Hartree-Fock energy. The varia-
tional ETF theory imposes the use of local quantities instead
of global ones, and it therefore naturally leads to the use ofthe
local asymmetry parameterδ instead ofI . This choice implies
that the surface symmetry energy shall be positive as we will
show hereafter.

A. Surface symmetry energy

In our model, the neutron and proton density profiles are
fully defined by the FD ansatz, which conserves the particle
numbers by construction and contains no variational param-
eters. For this reason we do not need to introduce the Gibbs
surface tension [20], and will only refer to the definition ofthe
surface energy as the quantity deduced from the total energy
after subtraction of the energy the system would have in the
absence of the surface:

ES= EETF −
E

ETF
sky

[

ρ (0) = ρsat(δ ),ρ (1) = ρsat(δ )δ
]

ρsat(δ )
A.

(23)
As we have already observed, because of the presence of

the neutron skin, the isospin asymmetry distribution is not
uniform in the nuclear system. As a consequence, the bulk
asymmetryδ does not coincide with the global asymmetry
I = (N−Z)/A, see Eq. (19). It is clear that the symmetry en-
ergy obtained from Eq. (23) will be different if one replace
the subtracted bulk component evaluated at the bulk asymme-
try δ by the one evaluated at the global symmetryI . Most
mass formulas, both phenomenological [24, 30] and micro-
scopically motivated [32–35], assume however that the bulk
isospin dependence is given by the the global asymmetry vari-

able I = (N−Z)/A. This is for instance the case of the re-
ported Eq. (22) where the surface energy is defined as [28],

ELDM
S = ELDM −

(

av−aa
vI

2)A. (24)

In Fig. 5 are compared, as a function of the global asym-
metry I , the energy and the symmetry energy obtained from
Eqs. (21) and (23), referred to as ETF(δ ), the same energies
but replacingδ by I ,

E′
S= EETF−

E
ETF
sky [ρsat(I),ρsat(I)I ]

ρsat(I)
A, (25)

referred to as ETF(I), and the ones obtained from Eqs. (22)
and (24), referred to as Ref.[28]. This comparison is per-
formed for a representative isobaric chainA= 200. For such
heavy nuclei, the curvature terms play a minor role and the
liquid-drop formula (24) referred as Ref.[28] leads to a nu-
clear energy very close to the ETF model. However, because
of the very different partition between bulk and surface in the
models EFT(δ ) and LDM (24), the surface symmetry energy
shows an opposite behavior in the two models. As a conse-
quence, the surface energy, and more specifically the surface
symmetry energy, depends on the prescription employed to
remove the bulk component, cf Eqs. (23) and (25).

It is interesting to notice the very close behavior of the sur-
face energies given by ETF(I) and LDM (24) in Fig. 5. This
very similar behavior assets the important role of the asymme-
try parametersδ andI . Specifically, the isospin dependence
of the symmetry energy shown also in Fig. 5 is found the be-
have in a opposite way between the models EFT(δ ) and the
two other models ETF(I) and LDM (24). Consistently with
Ref. [20], it can be deduced from the curvature of the curves
represented in the bottom panel of Fig. 5 that the choice of
the asymmetry variable have an important consequence on the
sign of the surface symmetry energy.

This effect is easy to understand analytically. Let us start
from the relation between the bulk asymmetryδ and the
global asymmetryI previously given by Eq. (19). In the limit
of small asymmetries, neglecting the Coulomb correction and
fixing x = 3aC/8Q andy = 9Esym/4Q, we can make the ap-
proximation

δ 2 =

(

I + xA1/3(1− I)2

1+ yA−1/3

)2

≈ I2
(

1−2yA−1/3+g(A, I)
)

,

(26)
where the residual termg(A, I) contains terms of orderx,y2

or smaller, which can be viewed as a correction with respect
to the previous term. We can see that the replacement of the
asymmetry parameterδ by I in eq. (26), induces a correction
to the LDM which is proportional toA−1/3. It means that the
ambiguity in defining the proper asymmetry parameter in the
bulk term of the LDM propagates to the surface term. More-
over, replacingδ by I in the LDM induce an extra surface
symmetry term with a negative sign, cf Eq. (26). Since the
surface symmetry term is positive in ETF(δ ), the change of
sign in ETF(I) can be related to the negative extra term in
Eq. (26). In order to set this argument straight, let us now
be more quantitative.
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tion of the nucleus mass. Red circles: ETF calculation including the
neutron skin effect Eq. (23) (see text). Green squares: ETF calcu-
lation neglecting the neutron skin effect Eq. (25). Black diamonds:
estimation from Eq. (24).

In the parabolic approximation [1], the bulk part of the ETF
energy (21) is quadratic inδ :

EETF ≈
(

λsat+Esymδ 2)A+ES(A, I), (27)

whereλsat= E
ETF
sky (ρsat,0)/ρsat, see Eq. (B4) in the appendix,

andES is the surface energy as in Eq. (23), limA→∞ ES/A= 0.
If the same parabolic approximation is employed for the bulk
term of Eq. (25) as it is customary done, see Eq. (24),

EETF ≈
(

λsat+EsymI2)A+E′
S(A, I). (28)

Comparing Eqs. (27) and (28), and using Eq. (26), we im-
mediately get the following relation between the two surface
energies,

E′
S≈ ES−

(

9E2
sym

2Q
A2/3−Ag(A, I)

)

I2. (29)

It is interesting to remark that this same equation was derived
in Ref. [20] as the difference between the microcanonical (γe)
and grandcanonical (γµ ) surface energies, in the limit of small
asymmetries. This equation shows that the surface energy
E′

S contains an extra negative symmetry term due to the non-
uniformity of the isospin distribution. As a result, the surface
symmetry energy can change from positive to negative, as it
is shown in Fig. 5.

B. Curvature symmetry energy

In spherical symmetry it is well known that the surface en-
ergy obtained from Eq. (23) does not exactly scale asA2/3,
but it contains slower varying terms, the dominant one being
a curvature term, proportional toA1/3. In Fig. 6 is displayed
the behavior with the mass numberA of the surface energy di-
vided byA2/3, where the surface energy is obtained in various

ways: the red circles represent the surface energy defined by
Eq. (23), where the bulk asymmetry parameterδ is employed
taking into account the non-uniformity of the isospin asym-
metry distribution in nuclei due to the presence of a neutron
skin ; the green squares are obtained from Eq. (25), where the
bulk asymmetry is approximated by the global asymmetry pa-
rameterI ; and the black diamonds stand for surface energy
deduced from the LDM (24). The left panel of Fig. 6 shows
the isoscalar behavior of the surface energy, where the global
asymmetry is fixed to beI = 0, while the right panel shows
the result by fixing the asymmetry parameter to a finite value
I = 0.4. Apart from the LDM (24) in the isoscalar case, it is
observed that the surface energy is not constant, revealingthe
presence of a curvature energy in the considered models.

We can see from the left panel of Fig. 6 that the isoscalar
curvature energy is positive for the ETF models (23) and (25),
and zero for the LDM (24). The absence of the curvature en-
ergy in the isoscalar part of the functional (24) is due to the
fact that this LDM formula was motivated by one-dimensional
slab calculations [28] which by definition do not contain this
term. The absence of a curvature energy is at the origin of the
poorer reproduction of nuclear masses for symmetric nuclei,
as observed in Figure 2.

For the isoscalar case, there is almost no difference between
the asymmetry parametersI andδ , therefore the surface en-
ergies (23) and (25) overlap on the left panel of Fig. 6. On
the right panel of Fig. 6 whereI = 0.4 the symmetry energy
(23) is shifted up, and the symmetry energies (25) and (24)
are shifted down, as expected from Fig. 5. The curvature in
the caseI = 0.4 is however given by a mixture of isoscalar
and isovector contributions. The effect of the isovector term
in the case of the surface energy (23) is however sufficiently
negative to overcome the isoscalar contribution. We can there-
fore deduce from Fig. 6 that the curvature energy is positive
and the asymmetry curvature energy is negative in the case of
Eq. (23). In the case of the model (25), the isovector term goes
in the same direction as the isoscalar term, and the trend of the
surface symmetry is similar to the one from the LDM (24).
We can see from Figure 6 that again the sign of the surface
symmetry term is opposite in the ETF models (23) and (25),
and that the ETF model neglecting the neutron skin effect (25)
have the same behavior as the mass formula (24).

This is again coming from the bulk contribution subtracted
in the two ETF models (23) and (25). Indeed Eq. (29) shows
that the difference between bulkδ and globalI isospin param-
eters induces an extra mass dependent term, which contributes
negatively to the curvature surface symmetry energy. Neglect-
ing the non-uniform isospin density distribution, inducedby
neutron skin and Coulomb repulsion, a positive symmetry cur-
vature energy is obtained, while taking into account the non-
uniformity of the isospin density distribution, a negativesign
is found.

C. Hints from Hartree-Fock

According to the discussion in Sections IV A, IV B, an am-
biguity exists in the definition and in the sign of the surface
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TABLE I. Comparison between HF and ETF along the Pb isotopic
chain. The different columns give, from left to right: the mass num-
ber of the isotope, the average isospin asymmetry, the bulk isospin
asymmetry (Eq. (19)), the mean HF proton radius, the percentage
deviation in the mean proton radius between HF and the ETF(I)and
the ETF(δ ) models, the HF energy per nucleon, the percentage devi-
ation in the energy per nucleon between HF and the ETF(I) and the
ETF(δ ) model. The last line gives the arithmetic average along the
isotopic chain.

A I δ r p(HF) %(I) %(δ ) EHF/A %(I) %(δ )
180 0.09 0.08 5.31 -0.5 -1.1 -12.25 -0.3 -0.4
196 0.16 0.13 5.40 +0.8 -0.5 -11.93 +0.4 -0.1
216 0.24 0.19 5.50 +2.7 +0.4 -11.34 +1.8 +0.5
236 0.31 0.25 5.67 +3.4 +0.0 -10.51 +1.8 -0.2
256 0.36 0.29 5.77 +5.0 +0.6 -9.81 +3.6 +0.7
〈〉 0.23 0.19 5.53 +2.3 -0.1 -11.17 +1.4 +0.1

symmetry energy, as well as of the curvature symmetry en-
ergy. This ambiguity arises from the fact that the bulk asym-
metry of nucleiδ differs from their global asymmetryI be-
cause of the presence of a neutron skin and, to a minor extent,
to the distortion of the density profile due to the Coulomb in-
teraction. SinceI = δ at the thermodynamic bulk limit, a pri-
ori both Eq. (23) and Eq. (25) can be proposed as a definition
of the surface energy, and one may conclude that the surface
symmetry energy is ill-defined.

At the level of the ETF approximation however, these two
equations are not equivalent and only Eq. (23) is theoretically
justified. Indeed, as we have discussed in Section II B, if we
consider only ground state configurations, the ETF approxi-
mation is equivalent to the solution of a set of coupled local
Euler-Lagrange equations. In the idealized situation of a sys-
tem with a locally constant density profile (ρ ′

q(r) = ρ ′′
q (r) = 0

for a given value ofr = r0), these equations simply read

λq =
∂h
∂ρq

(r0). (30)

This equation admits the simple local bulk solutionρq(r0) =
ρsat,q, where the saturation densityρsat,q has to be calculated
at the asymmetryδ (r0) = 1−2ρp(r0)/ρ(r0), that is the local
asymmetry. This reasoning implies that the bulk energy has to
be calculated with the local bulk asymmetryδ .

Another argument going in the same direction comes from
a comparison to HF calculations. Indeed, for the quantity de-
fined in Eq. (25) to vanish at the bulk limit, theρsat,q parame-
ters entering the proton and neutron density profiles shouldbe
identified withρsat,q = (1± I)/2ρsat(I), and the one entering
the total isoscalar density should readρsat = ρsat(I). Replac-
ing these quantities in Eq. (16) leads to a different model both
for the density profiles and for the ETF energy according to
Eq. (21). This alternative model, noted ETF(I) to distinguish
it from the ETF(δ ) proposed in Section II C, can be compared
to HF calculations using the same Skyrme functional. This
comparison in shown in table I for the representative case of
the total energy per nucleon and proton mean radius along the
Pb isotopic chain.

We can see that the ETF(δ ) model systematically gives a
better reproduction of HF results, and the deviation between
ETF(δ ) and ETF(I) increases with increasing difference be-
tween bulkδ and globalI asymmetry parameters. The HF
result supports the intuitive idea behind Eq. (16) which is re-
lated to the local character of the Euler-Lagrange variational
equations: the density in the bulk of a heavy nucleus is re-
lated to the saturation density corresponding to the local bulk
asymmetry, and not to the global asymmetry of the nucleus.

In conclusion, these two arguments shows that the model
EFT(δ ) is better justified both from a theoretical point of view
and from a comparison to HF calculations. The bulk energy
shall therefore be parameterized in terms of the bulk asym-
metry, and the surface symmetry energy in the corresponding
LDM shall be positive.

V. NUCLEI IMMERSED IN A NUCLEON GAS

We now turn to the second application of this model, which
concerns the evaluation of the in-medium modification of the
nuclear ground-state energy due to the presence of a surround-
ing nuclear gas of unbound nucleons. Having in mind the
evaluation of the equation of state and structure of supernova
matter [19], we have to consider excited states of arbitrarily
high energy. Above the particle separation threshold, vibra-
tions and deformations can be neglected and the excited con-
figurations essentially correspond to the coexistence of nuclei
of arbitrary isospin with a uniform neutron gas composed both
of protons and neutrons. The extension of the formalism pre-
sented in Section II C to this situation was already presented in
Ref. [1]. Here we give only the main points of the model, and
address the reader to Ref. [1] for further details. In a Wigner-
Seitz cell occupied by a uniform nucleon gas with densities
ρg,q, the total density profile of protons and neutrons in the
cell can be decomposed into a cluster and a gas component.
Due to the high nuclear incompressibility, we assume that the
bulk density of the clusters is not modified by the occupation
of unbound particle states [1]. Eq. (16) is then replaced by a
more general ansatz, including the uniform gas, and given by

ρFD,q(r) ≡
ρsat,q(δ )−ρg,q

1+exp(r −Rq)/aq
+ρg,q. (31)

The bulk asymmetryδ of the cluster has also to be modified
from the vacuum expression Eq. (19) in order to include the
overlap of the cluster with the uniform gas. Indeed Eq. (19),
being an equation for a bound nucleus, applies only to the
bound part of the clusterAe. In the spirit of the independent
particle model, this bound part can be defined as the ensemble
of bound states, obtained from the total number of particles
with the subtraction of the gas contribution,

Ae = [1−ρg/ρsat(δ )]A ; Ze = [1−ρg,p/ρsat,p(δ )]Z (32)

whereρg = ρg,n+ρg,p is the total isoscalar gas density.
The bulk asymmetryδe of the ensemble of bound cluster

states is given by Eq. (19) withA = Ae, Z = Ze andI = 1−
2Ze/Ae, while the local asymmetry in the bulk of the cluster is
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estimated as a linear combination of the asymmetries coming
from the bound and the unbound components:

δ =

(

1−
ρg

ρsat(δ )

)

δe+
ρg

ρsat(δ )
δg, (33)

whereδg = 1−2ρg,p/ρg is the gas asymmetry.
The total energy in the presence of a gas is still given by

Eq. (21), but it now depends both on the cluster and on the gas
density profiles through Eq. (31):

Etot
ETF =

∫

E
ETF
sky [ρFD,n+ρFD,p,ρFD,n−ρFD,p]d

3r (34)

= Etot
ETF(A,δ ,ρg,δg).,

For an application to the equation of state at finite tempera-
ture for supernovae matter [13–16], all the possible valuesof
A,δ ,ρg, andδg have to be considered, and the relative weight
of the different configurations is given by the Boltzmann fac-
tor. If we limit ourselves to a neutron rich nuclear cluster em-
bedded in a pure neutron gas, the quality of the model can
again be judged in comparison to HF calculations. In Ref. [1],
it was shown that the quality of reproduction of complete HF
results of this model is almost independent of the presence of
an external gas.

The presence of a nucleon gas obviously modifies the en-
ergy of the nuclear cluster. The in-medium modification of the
cluster energyδEm can be computed by subtracting to the to-
tal energy the contribution of the gas alone and of the nucleus
alone, according to [1, 19]:

δEm = Etot
ETF −EETF(A,Z)−VWSE

ETF
sky [ρg,ρgδg] , (35)

whereVWS is the total volume of the Wigner-Seitz cell, and
EETF(A,Z) is the energy of a nucleus(A,Z) in the vacuum
defined by Eq. (21). We can also expressEETF(A,Z) from
Eq. (23) as,

EETF(A,Z) =
E

ETF
sky [ρsat(δ ),ρsat(δ )δ ]

ρsat(δ )
A+ES. (36)

Finally the total ETF energy can be decomposed as:

Etot
ETF =

∫ RHS

0
E

ETF
sky

[

ρ (0),ρ (1)
]

d3r

+

∫ RWS

RHS

E
ETF
sky

[

ρ (0),ρ (1)
]

d3r

= E
ETF
sky [ρsat,ρsatδsat]VHS+E

ETF
sky [ρg,ρgδg] (VWS−VHS)

+ES,m. (37)

and, as shown in Ref. [1, 19], the total ETF energy is con-
stituted of both a bulk and a surface term. In Eq. (37),
VHS= A/ρsat the hard-sphere volume of the cluster, andES,m
represents a surface term since the bulk parts have been high-
lighted.

Using Eqs. (35), (36) and (37), we can express the total
in-medium modificationδEm = δEB + δES as a bulk and a
surface term, with

δEB =−A
E

ETF
sky [ρg,ρgδg]

ρsat(δ )
; δES= ES,m−ES. (38)

SinceδES is proportional to two surface terms deduced from
Eqs. (36) and (37), we can expect the following relation to
hold: δES = csA2/3, where the parametercs should have a
weak dependence onA, revealing the small effect of the cur-
vature terms. The validity of this decomposition will be ex-
plicitly tested below.

Finally the in-medium modified cluster energy, including
both the bulk and the surface energy shift, is given by:

Em(A,Z) = EETF(A,Z)+ δEm = EB,m+ES,m, (39)

where

EB,m =
(

E
ETF
sky [ρsat(δ ),ρsat(δ )δ ]−E

ETF
sky [ρg,ρgδg]

) A
ρsat(δ )

(40)

and

ES,m = ES+ δES. (41)

In the next section, the medium modification of the bulk
and surface energies are studied. In practice, a large set of
calculations is performed, varying the cluster size and isospin
asymmetry over a large domain ofN andZ covering the whole
periodic table well beyond the neutron dripline. Preliminary
results with a simpler TF functional (zero order in̄h) were
already presented in ref. [1, 19]. As we show in the next sec-
tions, the inclusion of higher order terms slightly modifiesthe
absolute values of the energy shifts, but does not modify the
general trends reported in ref. [1, 19].

A. Medium modifications of the bulk energy

The in-medium bulk energy per nucleonEB,m/A, defined by
Eq. (40), and computed with the SLy4 interaction is displayed
in Fig. 7 as a function of the gas density (left side) for differ-
ent bulk asymmetries of the nucleus, and as a function of the
bulk asymmetry (right side) for different gas densities. Two
representative cases are considered: a gas asymmetry equalto
the cluster oneδg = δ (lower panels) and a pure neutron gas
δg = 1 (upper panels).

For very neutron rich clusters withδ ≈ 1, the caseδg = 1
is relevant both for the ground state of the neutron star in-
ner crust, and for the most representative configurations of
neutron rich matter at finite temperature. For nuclei close
to isospin symmetry,δ ≈ 0, the caseδg = δ corresponds to
the most probable configurations at finite temperature. In all
cases, increasing gas density corresponds to physical situa-
tions at higher density and/or temperature.

Imposing the gas asymmetry to be strictly equal to the clus-
ter asymmetry, amounts to disregard isospin effects (isospin
fractionation) in the equilibrium. In this case we recover the
well known result that the cluster energy is reduced by the
presence of the surrounding medium, leading to the dissolu-
tion of clusters at the critical Mott density [39, 40]. The crit-
ical Mott density can be defined as the density corresponding
to vanishing bulk binding, and is given by the ending point
of each curve in Fig. 7(c). It is by construction the saturation
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FIG. 7. (Color online) In-medium bulk energyEB,m/A, defined by
Eq. (40), as a function of the gas density for a fixed bulk asymmetry
(left side) and as a function of the bulk asymmetry for a fixed gas
density (right side). Upper panels: pure neutron gas (δg = 1). Lower
panels: gas asymmetry equal to the bulk asymmetry (δg = δ ). (a)
and (c):δ = 0.0 (full red), δ = 0.2 (dashed green),δ = 0.4 (dotted
blue),δ = 0.6 (dash-dotted black). (b) and (d):ρg = 0.01 (full red),
ρg = 0.04 (dashed green),ρg = 0.06 (dotted blue),ρg = 0.08 (dash-
dotted black).

densityρsat(δ ) and we recover that it monotonically decreases
with increasing cluster asymmetry [1].

In the case of stellar matter atβ -equilibrium the fraction-
ation effect cannot be neglected, and the gas is systemati-
cally more neutron-rich than the clusters. In particular, in
the specific case of cold neutron star crust, the uniform gas
is uniquely constituted of neutrons [42]. The limiting case
δg = 1 is thus close to the physical condition of the low tem-
perature stellar environment. In this case the trend with re-
spect to the density (at fixed asymmetryδ ) is reversed.

The reduction of the in-medium bulk energy with respect
to the density at fixedδ is simple to understand: the first term
in Eq. (40) is constant at fixedδ , as well as the common fac-
tor A/ρsat(δ ), while the second term in Eq. (40) is increasing
with the gas density at fixedδg = 1. While this effect seems a
bit academic in panel (a), the consequence of the shift is more
interesting to comment in panel (b). It is known that in the
sequence of nuclei predicted in the crust of neutron stars [42],
as the density increases, the asymmetry in the bulk of the nu-
clear clustersδ also increases. This sequence can be under-
stood in part from Fig. 7(b) since asρg increases, the constant
bulk energy path is going towards more and more asymmetric
clusters. Taking the sequence of ground state nuclei predicted
in the crust of neutron stars [42], the bulk energy departs from
a quadratic behavior with respect of the bulk asymmetryδ [1]
since increasing the gas density shifts down the bulk energy, as
shown in Figs. 7(a) and (b). This simple mechanism explains
why clusters can survive in environment extremely neutron
rich as neutron star crusts.

It is however surprising that for the gas densities consid-
ered in Fig. 7, the medium modifications to the bulk energy
remain mostly quadratic with respect toδ at fixedρg. Non-
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FIG. 8. (Color online) In-medium surface energy (see Eq. (41)) as
a function of the gas density for a fixed bulk asymmetry (left part)
and as a function of the bulk asymmetry for a fixed gas density (right
part) (see text). Upper panels: pure neutron gas. Lower panels: gas
asymmetry equal to the bulk asymmetry. (a) and (c):δ = 0.0 (full
red),δ = 0.2 (dashed green),δ = 0.4 (dotted blue),δ = 0.6 (dash-
dotted black). (b) and (d):ρg = 0.01 (full red), ρg = 0.04 (dashed
green),ρg = 0.06 (dotted blue),ρg = 0.08 (dashed-dotted black).

quadraticities inδ are only observed forδ ≥ 0.6, with or with-
out gas. (right part of Fig. 7). The quadratic dependence of
the bulk energy with respect toδ is therefore a robust predic-
tion which goes beyond the case of isolated nuclei and can be
generalized to dilute nuclei to a large extent.

B. Medium modification of the surface energy

Fig. 8 illustrates the surface tension, defined as the scaled
in-medium surface energyES,m/A2/3, cf Eq. (41), as a func-
tion of the gas densityρg and of the bulk asymmetryδ for the
same gas compositions as for Figure 7. The almost perfect
scaling withA2/3 shows that indeed the in-medium modifica-
tion of the binding energy is mainly a surface effect. There are
only few cases where the curves acquire a finite width, reflect-
ing a small contributions from curvature terms: In Fig. 8(a)
whereδg = 1 and for the most neutron rich clusters (black
curves), and in Fig. 8(c) whereδg = δ and here also for the
most neutron rich curves (for e.g. black curves atρg = 0).
The curvature terms have been discussed in Sec. IV B, and are
observed here to be maximal in the most asymmetric clusters
as the gas density increases.

Neglecting fractionation effects in Fig. 8(c), the surfaceen-
ergy is reduced as the gas density increases and whatever the
cluster asymmetry. It vanishes at the corresponding saturation
densityρsat(δ ), showing again the dissolution of clusters in
the dense medium. In Fig. 8(d), the dependence of the surface
energy withδ is mostly quadratic, even for the largest den-
sities considered here. The quadratic behavior of the surface
energy is well satisfied up toδ ≥ 0.6, as in the case of the bulk
energy.

It is quite surprising to find in the case of pure neutron gas,
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TABLE II. Bulk nuclear properties for the different Skyrme interac-
tions examined in this paper.

NN-potential ρsat K Lsym Ksym Esym

(fm−3) (MeV) (MeV) (MeV) (MeV)

SLY4 0.159 230.0 46.0 -119.8 32.00
SGI 0.154 261.8 63.9 -52.0 28.33
SkI3 0.158 258.2 100.5 73.0 34.83
LNS 0.175 210.8 61.5 -127.4 33.43

Figs. 8(a) and (b), that the surface energy not only decreases
as the gas density increases, but can even become negative.
This can be understood from the fact that the surface energy
as defined by Eq. (37) represents the interface contribution
between the cluster and the gas. At finite gas density, this
interface energy contains contributions from both the cluster
and the gas. The contribution of the pure neutron gas to the
interface region is largely negative, since the interface region
is more symmetric than the gas. The negative contribution
of the gas dominates as the gas density increases, leading to
negative surface energy as shown in Fig. 8(a). This effect is
lowered when the cluster is more neutron rich, see Fig. 8(b).

It should also be remarked that the density as which the
surface energy becomes negative increases as the bulk asym-
metry increases. Since the ground state configurations pre-
dicted for the crust of neutron stars [42], have increasingδ for
increasingρg, these configurations always correspond to sys-
tems where the surface energy is positive[1, 19]. Concerning
the dependence of the surface energy onδ in Fig. 8(b), we
can see a very different behavior compared with the previous
cases: the quadratic approximation inδ is completely lost due
to the contribution of the gas, which is not quadratic inδ , but
in δg.

C. Dependence on the effective interaction

In this section, we show that the qualitative behaviors that
we have discussed in this paper are not modified if a differ-
ent Skyrme interaction is employed. In particular, the positive
sign of the surface symmetry energy that we have discussed in
Sec. IV A does not depend on the particular effective interac-
tion. However the quantitative values of the clusters bulk and
surface energies obviously depend on the effective interaction
parameters, and for a realistic treatment of the stellar matter
equation of state it is very important to consistently treatwith-
ing the same effective interaction both the cluster and the free
gas [1, 19].

To study how the in-medium effects depend on the model,
we represent in Fig. 9 two representative situations of a sym-
metric nucleus in a symmetric gas, and a neutron rich nucleus
in a pure neutron gas, with different Skyrme models. We have
chosen these specific interactions in order to span the present
uncertainties in the bulk parameters. These latter are reported
in Table II.

We can see that the qualitative behavior of the different
models is the same. A more complete study of the effective
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FIG. 9. (Color online) In-medium bulk (left) and surface (right) en-
ergy as a function of the gas density (see text). (a): clusters with
bulk asymmetryδ = 0 immersed in a symmetric gas. (b): clusters
with δ = 0.3 immersed in a pure neutron gas. Different models are
considered: Sly4 [18] (full red), SkI3 [43] (dashed green),SGI [44]
(dotted blue), LNS [45] (dash-dotted black).

interactions parameter space is needed to reach sound con-
clusions on the quantitative model dependence, but from the
representative chosen interactions we can dress some tenta-
tive partial interpretation. The differences in bulk energy di-
rectly reflect the uncertainties in present models of the bulk
properties of matter. These uncertainties are very small inthe
isoscalar part, and the curves of the bulk symmetric systems,
see curves labelled (a) on the left panel, are indistinguishable
except LNS (dashed-dotted black lines). The LNS Skyrme
model is known to have a saturation density larger that the ex-
pected one, see Tab. II, which is reflected in the fact that at
ρg = 0 fm−3, the LNS bulk energy is different from the oth-
ers. It also leads to slightly reduced in-medium modification,
as observed in Fig. 9. Concerning medium modifications to
the bulk energy in the neutron rich system, see curves labelled
(b) on the left panel, it is observed that SLy4 Skyrme interac-
tion (full red) leads to slightly more important binding energy
shift. This is due to a non-trivial interplay of slightly different
values ofEsym, Lsym, Ksym. Concerning the surface energies,
the behavior appears very stable. The only exception is the
gas density behavior of the neutron rich system, curves (b)
in the right panel, calculated with SkI3 (dashed green). This
steep in medium modification is probably due to the very stiff
isovector properties of this effective interaction.

To conclude, we can see that, independent of the model, the
in-medium modification are not negligible and should be ac-
counted for in a realistic equation of state. Due to the simple
expression (37), these corrections can be tabulated as a func-
tion of (A, I ,ρg,n,ρg,p) and straightforwardly introduced in the
equation of state calculations [1, 19] as a modification of the
cluster energy functional with no extra computational cost.
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VI. CONCLUSIONS

In this paper we have considered a simple analytical mod-
elling of the nuclear density profiles allowing to calculatenu-
clear binding energies within the Extended Thomas Fermi ap-
proximation at the second order in̄h. Through a comparison
to HF calculations for some representative nuclei, we have
shown that a simple Fermi-Dirac profile is sufficiently flexi-
ble to reach a precision in the energy of the order of a 100-200
keV/nucleon, and the widening of the variational space con-
sidering FGD trial densities does not introduce any sizeable
improvement of the predictive power of the model.

Two different applications of the model were presented.
The first one concerns the definition of the bulk and surface
part of the symmetry energy of finite nuclei, which is impor-
tant for the extraction of equation of state parameters for as-
trophysical applications. We have shown that the variational
character of the ETF formalism suggests that the bulk part
of the nuclear energy depends on the central bulk asymme-
try δ rather than on the global asymmetry of the nucleusI
which is usually considered in LDM. This statement, which
is confirmed by a detailed comparison to HF calculations, im-
plies that the surface symmetry energy contributes positively
to the total symmetry energy of the nucleus. The choice of the
global asymmetry parameterI considered in LDM, while not
consistent with ETF, explains the ambiguities reported in the
literature concerning the sign of the surface symmetry energy.

The second application concern the evaluation of the in-
medium energy shift which is experienced by a nucleus im-
mersed in the gas of its continuum states, as it is the case
in supernova matter and in the inner crust of (proto)-neutron
stars. We have shown that the presence of an external gas
induces both a bulk and a surface energy shift, which de-
pend in a highly complex and non-linear way on the asym-
metry of the cluster, and the asymmetry and density of the
gas. The absolute values of these energy shift can be compa-
rable or higher than the nuclear binding energy, meaning that
the coexistence of nuclei and free particles in stellar matter
cannot be modelized as a mixture of non-interacting nuclear
species as it is done in the current models of stellar equation
of state [13, 15, 19].
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Appendix A: Coefficients of the Skyrme functional

Here we write the coefficients of the Skyrme functional as
given by Ref. [21],

Cρ
0 =

3
8

t0+
3
48

t3ρ (0)α(r) (A1)

Cρ
1 =−

1
8

t0(2x0+1)−
1
48

t3(2x3+1)ρ (0)α(r) (A2)

C∆ρ
0 =

1
64

[−9t1+ t2(4x2+5)] (A3)

C∆ρ
1 =

1
64

[3t1(2x1+1)+ t2(2x2+1)] (A4)

Cτ
0 =

1
16

[3t1+ t2(4x2+5)] (A5)

Cτ
1 =

1
16

[−t1(2x1+1)+ t2(2x2+1)] (A6)

C∇J
0 =−

3
4

W0 (A7)

C∇J
1 =−

1
4

W0 (A8)

CJ
0 =−

1
16

[t1(2x1−1)+ t2(2x2+1)] (A9)

CJ
1 =−

1
16

[−t1+ t2] (A10)

Appendix B: Analytical density profile for symmetric nuclei in
spherical symmetry

Following the derivation of Ref. [3]. our starting point is
the one-dimensional Euler equation given by Eq. (13),

λ =
dh
dρ

+C∇ (∇ρ)2+C∆∆ρ , (B1)

In the limit of very larger, this equation simplifies to:

λ =
1
36

h̄2

2m

[

(

ρ ′

ρ

)2

−2
ρ ′′

ρ

]

, (B2)

which gives

ρ(r) ∝ e−r/aout with aout =

√

−
h̄2

2m
1

36λ
(B3)

The value ofλ is obtained by considering the bulk limit of
Eq. (B1). In this limit we have:

λ =
∂E

ETF
sky

∂ρ

∣

∣

∣

∣

∣

ρsat

=
E

ETF
sky

ρ

∣

∣

∣

∣

∣

ρsat

≡ λsat, (B4)

where we can recognizeλsat as the chemical potential of sym-
metric nuclear matter at saturation.

Close to the bulk limit, that is forr → 0 andRν → ∞, lin-
earizing Eq. (B1) introducingρ(r) = ρsat+ δρ gives

λsat =
dh
dρ

(ρsat)+
d2h
dρ2 (ρsat)δρ +C∆(ρsat)δρ ′′, (B5)



14

where we have definedfsat = f (ρsat) = 1+ κρsat. Solving
equation (B5) leads to

δρ(r) ∝ e(r−Rν )/ain (B6)

with

Ksat

9
a2

in =
h̄2

2m
1
3

[

1
6
−

7
3

κρsat+
κρsat

2 fsat

]

(B7)

−C∇J
0 BJ

ρ2
sat

fsat
+2C∆ρ

0 ρsat,

whereKsat = 9ρsat∂ 2
E

ETF
sky /∂ρ2|ρ=ρsat is the nuclear matter

incompressibility. To achieve the two asymptotic behaviors,
the density profile can be represented as a generalized Fermi
function (GFD)ρ = ρGFD = ρsatFν with:

Fν(r) =
(

1+e(r−Rν )/aν
)−ν

(B8)

Comparing equations (B3) and (B6) with (B8), we have

aν = ain ; ν =
ain

aout
=

6aν

h̄

√

−2mλsat, (B9)

The link between the parameterRν and the particle num-
ber is deduced from the leptodermous series developement of
aν/Rν of the integral giving the particle number:

A= 4π
∫ ∞

0
drρGFD(r)r

2. (B10)

The momentsIm
ν of the GFD ansatz have been calculated in

Ref. [46], as,

Im
ν =

∫ +∞

0
drFν(r)r

m (B11)

≃
Rm+1

ν
m+1

[

1+(m+1)
m

∑
n=0

(

m
n

)

η(n)
ν

(

aν
Rν

)n+1
]

,

where:

η(n)
ν = (−1)n

∫ ∞

0
du

[

1+(−1)ne−νu

(1+e−u)ν −1

]

un, (B12)

Replacing in Eq. (B10) gives:

A=
4
3

πρsatR
3
ν

[

1+3η(0)
ν

aν
Rν

+6η(1)
ν

(

aν
Rν

)2

+3η(2)
ν

(

aν
Rν

)3
]

.

If aν ≪Rν this expression can be inverted giving at third order
in the leptodermous expansion:

Rν
RHS

≃ 1−η(0)
ν

a
RHS

+

[

(

η(0)
ν

)2
−2η(1)

ν

](

a
RHS

)2

−

[

2
3

(

η(0)
ν

)3
−2η(0)

ν η(1)
ν +η(2)

ν

](

a
RHS

)3

, (B13)

whereRHS = (3A/4πρsat)
1/3 is the equivalent homogeneous

sphere radius.

In conclusion, the parameters of the GFD ansatz given by
the parametric form (15) and (B6) can be determined in the
following way: ρsat is the saturation density of nuclear matter,
aν is given by Eq. (B8),ν is given by Eq. (B9) andRν is given
by Eq. (B13).
Appendix C: Inclusion of the spin-orbit current for symmetr ic

nuclei in spherical symmetry

The nuclear interactions considered in this work neglect the
contribution of the spin-orbit currentJ(t)2 in the functional (1).
In this section, we give the corrections to be applied to the
Euler equation without neglecting the spin-orbit current.

In symmetric nuclei, the spin-orbit potentialW (9) reduces
to the simpler form,

W =CJ
0J−C∇J

0 ∇ρ . (C1)

Injecting Eq. (C1) into Eq. (8) gives

J = BJ(ρ)
ρ∇ρ

f
, (C2)

with

BJ(ρ) =
2m

h̄2

C∇J
0

1+ 2m
h̄2 CJ

0
ρ
f

. (C3)

SettingCJ
0 = 0 in Eq. (C3) allows to recover the definition

of the constantBJ used in this work. Now the coefficient
BJ (C3) is a function of the density, and it will modify the
Euler-Lagrange equation (12).

The correction to Eq. (13) induced by the spin-orbit current
is given by the modification of only two terms:

C∇(ρ)→C∇(ρ)+
1
2

C∇J
0

dBJ(ρ)
dρ

ρ
f

(C4)

dh
dρ

→
dh
dρ

−CJ2
0 BJ(ρ)

dBJ(ρ)
dρ

ρ . (C5)
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