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We establish a link between two distinct symmetry concepts, partial dynamical symmetry (PDS)
and quasi dynamical symmetry (QDS). The connection is illustrated in the framework of the inter-
acting boson model of nuclei. Quantum-number fluctuations reveal a previously unrecognized region
of Hamiltonians that have both O(6) PDS (purity) and SU(3) QDS (coherence) in the ground band.
Many rare-earth nuclei can be identified approximately satisfying both symmetry requirements.

PACS numbers: 21.60.Fw, 21.10.Re, 21.60.Ev, 27.70.+q

Understanding the structure and dynamics of complex
many-body systems can often be obtained from the ob-
servation and analysis of symmetries. Symmetry consid-
erations are particularly significant for addressing a key
question in such systems, namely, how do simple features
emerge within a complicated environment. A notable
example is the collective behavior of nuclei which stems
from the complex interactions among the constituent nu-
cleons. Despite the complex nature of the low-energy
effective forces at work and the large number of partic-
ipating particles, collective nuclei give rise to strikingly
regular excitation spectra, signaling the presence of un-
derlying symmetries [1]. The theme of “simplicity out of
complexity” and the understanding of simple emergent
behavior are major challenges facing the study of almost
any many-body system, from atomic nuclei to nanoscale
and macroscopic systems [2].

Although, usually, a many-body Hamiltonian does not
conform to a dynamical symmetry (DS) limit [3], the pos-
sibility exists that certain symmetries are obeyed by only
a subset of its eigenstates. This situation, referred to as
partial dynamical symmetry (PDS) [4], was shown to be
relevant to specific nuclei and molecules [4–13]. In paral-
lel, the notion of quasi dynamical symmetry (QDS) was
introduced and discussed in the context of nuclear mod-
els [14–21]. While QDS can be defined mathematically
in terms of embedded representations [22, 23], its physi-
cal meaning is that several observables associated with a
particular subset of eigenstates, may be consistent with
a certain symmetry which in fact is broken in the Hamil-
tonian. This typically occurs for a Hamiltonian transi-
tional between two DS limits which retains, for a certain
range of its parameters, the characteristics of one of those
limits. This “apparent” symmetry is due to a coherent
mixing of representations in selected states, imprinting
an adiabatic motion and increased regularity [19–21].

PDS and QDS are applicable to any many-body prob-
lem (bosonic and fermionic) endowed with an algebraic
structure. They play a role in diverse phenomena includ-
ing nuclear and molecular spectroscopy, quantum phase

transitions and mixed regular and chaotic dynamics. In
this Letter, a hitherto unnoticed link is established be-
tween these two different symmetry concepts and it is
shown that coherent mixing of one symmetry (QDS) can
result in the partial conservation of a different, incom-
patible symmetry (PDS). An empirical manifestation of
such a linkage is presented.
Algebraic models provide a convenient framework for

exploring the role of symmetries [24]. One such frame-
work is the interacting boson model (IBM) [25], which
has been widely used to describe quadrupole collec-
tive states in nuclei in terms of N monopole (s†) and
quadrupole (d†) bosons, representing valence nucleon
pairs. The model has U(6) as a spectrum generating alge-
bra and exhibits three DS limits, associated with chains
of nested subalgebras, starting with U(5), O(6), and
SU(3), respectively. These solvable limits correspond to
known benchmarks of the geometric description of nu-
clei [26], involving vibrational [U(5)], γ-soft [O(6)], and
rotational [SU(3)] types of dynamics. In what follows we
employ the IBM as test ground for connecting the PDS
and QDS notions. The particular example considered,
namely, SU(3) QDS as an emanation of O(6) PDS, is
shown to have approximate validity in many deformed
rare-earth nuclei.
One particularly successful approach within the IBM

is the extended consistent-Q formalism (ECQF) [27, 28],
which is frequently used for the interpretation and clas-
sification of nuclear data. It uses the same quadrupole
operator, Q̂χ = d†s + s†d̃ + χ (d†d̃)(2), in the E2 tran-
sition operator and in the Hamiltonian, the latter being
written as

ĤECQF = ω

[

(1− ξ) n̂d −
ξ

4N
Q̂χ · Q̂χ

]

, (1)

where n̂d is the d-boson number operator, Q̂χ · Q̂χ is
the quadrupole interaction, and the dot implies a scalar
product. The parameters ω, ξ, and χ are fitted to empir-
ical data or calculated microscopically if possible; ξ and
χ are the sole structural parameters of the model since ω
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is a scaling factor. The parameter ranges 0 ≤ ξ ≤ 1 and

−
√
7
2 ≤ χ ≤ 0 interpolate between the U(5), O(6), and

SU(3) DS limits, which are reached for (ξ, χ) = (0, χ),

(1, 0), and (1,−
√
7
2 ), respectively. It is customary to rep-

resent the parameter space by a symmetry triangle [29],
whose vertices correspond to these limits. The ECQF
has been used extensively for the description of nuclear
properties (see, e.g., Ref. [30]) and it was found that ro-
tational nuclei are best described by ECQF parameters
in the interior of the triangle, away from the naively ex-
pected SU(3) DS limit. The SU(3) mixing was found to
be strong and coherent, i.e., the same for all rotational
states in a band, exemplifying a SU(3)-QDS [19–21]. In
what follows we examine the O(6) symmetry properties
of ground-band states in such nuclei, in the rare-earth
region, using the ECQF of the IBM.
The O(6) DS basis states are specified by quantum

numbers N , σ, τ , and L, related to the algebras in the
chain U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) [31]. Given an eigen-
state Ψ of the ECQF Hamiltonian (1), its expansion in
the O(6) basis reads

|Ψ(ξ, χ)〉 =
∑

i

αi(ξ, χ) |N, σi, τi, L〉 , (2)

where the sum is over all basis states and, for simplicity,
the dependence of Ψ and αi on the boson number N
and the angular momentum L is suppressed. The degree
of O(6) symmetry of the state Ψ is inferred from the
fluctuations in σ which can be calculated as

∆σΨ =

√

√

√

√

∑

i

α2
i σ

2
i −

(

∑

i

α2
i σi

)2

. (3)

If Ψ carries an exact O(6) quantum number, σ fluctua-
tions are zero, ∆σΨ = 0. If Ψ contains basis states with
different O(6) quantum numbers, then ∆σΨ > 0, indicat-
ing that the O(6) symmetry is broken. Note that ∆σΨ

also vanishes for a state with a mixture of components
with the same σ but different O(5) quantum numbers
τ , corresponding to a Ψ with good O(6) but mixed O(5)
character. This method of quantifying the O(6) purity of
states has already been applied to 124Xe [32]. Also, ∆σΨ

has the same physical content as wave-function entropy
which, upon averaging over all eigenstates, discloses the
global DS content of a given Hamiltonian [33]. We ex-
amine here the fluctuations ∆σΨ for the entire parameter
space of the ECQF Hamiltonian (1) for values of N up
to 60, using the ArbModel code [34].
Results of this calculation for the ground state, Ψ =

0+gs, with N = 14 and parameters ξ ∈ [0, 1], χ ∈ [−
√
7
2 , 0],

are shown in Fig. 1. At the O(6) DS limit (ξ = 1, χ = 0)
∆σgs vanishes per construction whereas it is greater than
zero for all other parameter pairs. Towards the U(5) DS
limit (ξ = 0), the fluctuations reach a saturation value of

∆σgs ≈ 2.47. At the SU(3) DS limit (ξ = 1, χ = −
√
7
2 )
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FIG. 1. (Color online) Ground-state fluctuations ∆σgs (3)
for the ECQF Hamiltonian (1) with N = 14 bosons. The
fluctuations vanish at the O(6) DS limit, saturate towards
the U(5) DS limit, and are of the order 10−2 in the valley.
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FIG. 2. (Color online) Squared amplitudes α2
i in the expan-

sion (2) of the 0+gs ground state of the ECQF Hamiltonian (1)
for ξ = 0.84 and χ = −0.53 (indicated by the red star in the
symmetry triangle and appropriate for 160Gd).

the fluctuations are ∆σgs ≈ 1.25. In both cases the
O(6) symmetry is completely dissolved as measured by
σcrit = 0.849 [32]. Surprisingly, there is a previously un-
recognized valley of almost vanishing ∆σgs values, two
orders of magnitude lower than at saturation. This re-
gion represents a parameter range of the IBM, outside
the O(6) DS limit, where the ground-state wave func-
tion exhibits an exceptionally high degree of purity with
respect to the O(6) quantum number σ.

The ground-state wave functions in the valley of low
∆σgs can be analyzed with the help of the O(6) decompo-
sition (2). At the O(6) DS limit only one O(6) basis state,
with σ = N and τ = 0 contributes, while outside this
limit the wave function consists of multiple O(6) basis
states. Investigation of the wave function for parameter
combinations inside the valley reveals an overwhelming
dominance of the O(6) basis states with σ = N . This
is seen in Fig. 2 for the ground-state wave function of
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the ECQF Hamiltonian (1) at ξ = 0.84 and χ = −0.53
with N = 14, parameter values that apply to the nu-
cleus 160Gd discussed below. The σ = N states com-
prise more than 99% of the ground-state wave function
at the bottom of the valley and their dominance causes
∆σgs to be small. Furthermore, it is evident that at the
same time the O(5) symmetry is broken, as basis states
with different quantum number τ contribute significantly
to the wave function. Consequently, the valley can be
identified as an entire region in the symmetry triangle
with an approximate PDS of type III [4], which means
that some of the eigenstates exhibit some of the symme-
tries. Outside this valley the ground state is a mixture
of several σ values and ∆σgs increases. In the SU(3)
DS limit the σ = N components constitute 67% of the
wave function and in the U(5) DS limit and throughout
the plateau of saturated ∆σgs this contribution drops be-
low 1%. This region of approximate ground-state O(6)
symmetry is similar to the previously established “arc of
regularity” [35] which is a region of reduced mixing inside
the IBM parameter space attributed to an approximate
SU(3) symmetry [36].
An argument for the existence of the valley of ground-

state O(6) symmetry can be given in terms of the follow-
ing Hamiltonian [7]:

ĤM = −ĈO(6) + N̂(N̂ + 4) + 2αĈO(5) − αĈO(3)

+2αn̂d(N̂ − 2) +
√
14α(d†s+ s†d̃) · (d†d̃)(2) , (4)

where ĈG denotes the quadratic Casimir operator of the
group G [25], N̂ is the total boson number operator, and
α is a parameter. The Hamiltonian (4) generates a PDS
of type III [4]. For α = 0, ĤM has exact O(6) symmetry
whereas for α > 0 the last two terms introduce O(6)-
symmetry breaking. However, the yrast states of this
Hamiltonian, projected from the IBM intrinsic state with
intrinsic variables [37] β = 1 and γ = 0, keep exact O(6)
symmetry (σ = N) but break the O(5) symmetry (mixed
τ) for all values of α > 0 [7]. Interestingly, although ĤM

differs from ĤECQF, the overlap between their 0+gs ground
states maximizes (more than 99%) in extended regions
of (ξ, χ) inside the valley of low ∆σgs. This suggests
that the (β = 1, γ = 0) intrinsic state provides a good
approximation, in a variational sense, to the ground band
of ĤECQF along the valley. The equilibrium deformations
for a given IBM Hamiltonian are found by minimizing an
energy surface, E(β, γ), obtained by its expectation value
in an intrinsic state which is a condensate of N bosons,
b†c ∝ β cos γd†0 + β sin γ(d†2 + d†−2)/

√
2 + s†, that depends

parametrically on (β, γ) [38, 39]. Apart from a constant,
E(β, γ) ∝ (1 + β2)−2β2

[

a− bβ cos 3γ + cβ2
]

, where a,
b, and c are coefficients depending on the Hamiltonian.
The two extremum equations, ∂E/∂β = ∂E/∂γ = 0,
have β = 1 and γ = 0 as a solution, provided b = 2c. For

large N , the coefficients of ĤECQF are b = −ωξ
√

2
7χ/N

and c = ω
[

1− ξ − ξχ2/14
]

/N . Thus, in the valley of
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FIG. 3. (Color online) The ECQF symmetry triangle with the
position of the nucleus 160Gd indicated by a star. The green
area shows the region of low ∆σgs, calculated from Eq. (3)
for N = 60. The red dashed line shows the same region
of approximate ground-state O(6) symmetry, as predicted by
Eq. (5) for large N . The blue dotted line shows the “arc of
regularity” [35].

TABLE I. Calculated σ fluctuations ∆σL, Eq. (3), for rare
earth nuclei in the vicinity of the identified region of approx-
imate ground-state-O(6) symmetry. Also shown are the frac-

tion f
(L)
σ=N of O(6) basis states with σ = N contained in the

L=0, 2, 4 states, members of the ground band. The structure
parameters ξ and χ are taken from [30].

Nucleus N ξ χ ∆σ0 f
(0)
σ=N ∆σ2 f

(2)
σ=N ∆σ4 f

(4)
σ=N

156Gd 12 0.72 -0.86 0.46 95.3% 0.43 95.8% 0.38 96.6%
158Gd 13 0.75 -0.80 0.35 97.2% 0.33 97.5% 0.30 97.9%
160Gd 14 0.84 -0.53 0.19 99.1% 0.19 99.2% 0.17 99.3%
162Gd 15 0.98 -0.53 0.41 96.0% 0.40 96.0% 0.40 96.1%
160Dy 14 0.81 -0.49 0.44 96.2% 0.39 96.4% 0.36 96.8%
162Dy 15 0.92 -0.31 0.07 99.9% 0.07 99.9% 0.06 99.9%
164Dy 16 0.98 -0.26 0.13 99.6% 0.13 99.6% 0.13 99.6%
164Er 14 0.84 -0.37 0.39 96.5% 0.37 96.7% 0.35 97.1%
166Er 15 0.91 -0.31 0.12 99.7% 0.11 99.7% 0.10 99.7%

low ∆σgs the desired condition, b = 2c, fixes ξ to be

ξ =
1

1−
√

1
14χ+ 1

14χ
2
. (5)

As seen in Fig. 3, this relation predicts the location of
the region of approximate ground-state O(6) symmetry
for large N very precisely. For small N its precision de-
creases somewhat due to finite-N effects, causing a more
pronounced curvature of the region close to the O(6) DS
limit.
Detailed ECQF fits for energies and electromagnetic

transitions of rare-earth nuclei, performed by McCutchan
et al. [30], allow one to relate the structure of collec-
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FIG. 4. (Color online) a) The experimental spectrum of 160Gd compared with the IBM calculation using the ECQF Hamilto-
nian (1) with parameters ξ = 0.84 and χ = −0.53 taken from Ref. [30]. b) The O(6) decomposition in σ components of yrast
states with L = 0, 2, 4. c) The SU(3) decomposition in (λ, µ) components of the same yrast states.

tive nuclei to the parameter space of the ECQF Hamilto-
nian (1). Examining the extracted (ξ, χ) parameters, one
finds that several rotational nuclei in this region, such as
160Gd, commonly interpreted as SU(3)-like nuclei, are
actually located in the valley of small σ fluctuations.
They can be identified as candidate nuclei with approx-
imate ground-state O(6) symmetry. The experimental
spectrum of 160Gd, along with its ECQF description with
ξ = 0.84 and χ = −0.53 taken from Ref. [30], is shown in
the left panel of Fig. 4. The middle and right panels show
the decomposition into O(6) and SU(3) basis states, re-
spectively, for yrast states with L = 0, 2, 4. It is evident
that the SU(3) symmetry is broken, as significant con-
tributions of basis states with different SU(3) quantum
numbers (λ, µ) occur. It is also clear from Fig. 4c that
this mixing occurs in a coherent manner with similar pat-
terns for the different members of the ground-state band.
This is the hallmark of a QDS [18] and it results from the
existence of a single intrinsic wave function for the mem-
bers of this band. On the other hand, as seen in Fig. 4b,
the yrast states with L = 0, 2, 4 are almost entirely com-
posed out of O(6) basis states with σ = N = 14 which
implies small fluctuations ∆σΨ and the preservation of
O(6) symmetry in the ground-state band.

Other rare-earth nuclei with ground-state bands with
approximate O(6) symmetry can be identified by the
same arguments. Their structure parameters ξ and χ can
be taken from Ref. [30], from where the fluctuations ∆σΨ

and the fractions fσ=N of squared σ = N amplitude can
be calculated. Nuclei with ∆σgs < 0.5 and fσ=N > 95%
are listed in Table I. These quantities are also calculated
for yrast states with L > 0 and exhibit similar values
in each nucleus. It is evident that the IBM predicts a
high degree of O(6) purity in the ground-state-band, for

a large set of rotational rare-earth nuclei.

These results show that the approximate O(6) PDS
does hold not only for the ground state but also for the
members of the band built on top of it. Since the entire
band corresponds to a single intrinsic state, the SU(3)
wave-function decomposition is similar for the different
members of the band and therefore the notion of SU(3)
QDS applies. In addition, provided the indicated intrin-
sic state has β ≈ 1 and γ = 0, the notion of O(6) PDS
applies. Thus a link is established between SU(3) QDS
and O(6) PDS.

To summarize, the method of quantum-number fluc-
tuations reveals the existence of a region of almost exact
ground-state-band O(6) symmetry outside the O(6) DS
limit of the IBM. The existence of a valley of small σ
fluctuations can be understood in terms of an approx-
imate O(6) PDS of type III. The same wave functions
display coherent (L-independent) mixing of SU(3) rep-
resentations and hence comply with the conditions of
an SU(3) QDS. Coherent mixing of one symmetry may
therefore result in the purity of a quantum number asso-
ciated with partial conservation of a different, incompati-
ble symmetry. Previously established ECQF systematics
show that many rare-earth nuclei do exhibit these ap-
proximate partial O(6) and quasi SU(3) dynamical sym-
metries. We conclude that partial dynamical symmetries
are more abundant than previously recognized, may lead
to coherent mixing and quasi dynamical symmetries, and
hence play a role in understanding the regular behavior
of complex nuclei. This example serves to illustrate a
fundamental linkage between two distinct types of in-
termediate symmeteries, PDS and QDS, with potential
implications to algebraic modeling of diverse dynamical
systems.
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