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Abstract. Two equivalent ways of looking for mutually unbiased bases are discussed in this note.
The passage from the search for d+1 mutually unbiased bases in Cd to the search for d(d+1) vectors in

Cd2

satisfying constraint relations is clarified. Symmetric informationally complete positive-operator-
valued measures are briefly discussed in a similar vein.
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1. Introduction

The concept of mutually unbiased bases (MUBs)
plays an important role in finite-dimensional quan-
tum mechanics and quantum information (for more
details, see [1–4] and references therein). Let us recall
that two orthonormal bases {|aα〉 : α = 0, 1, . . . , d −
1} and {|bβ〉 : β = 0, 1, . . . , d−1} in the d-dimensional
Hilbert space Cd (endowed with an inner product de-
noted as 〈 | 〉) are said to be unbiased if the modulus
of the inner product 〈aα|bβ〉 of any vector |bβ〉 with
any vector |aα〉 is equal to 1/

√
d. It is known that the

maximum number of MUBs in Cd is d + 1 and that
this number is reached when d is a power of a prime
integer. In the case where d is not a prime integer, it
is not known if one can construct d+1 MUBs (see [4]
for a review).

In a recent paper [5], it was discussed how the
search for d+1 mutually unbiased bases in Cd can be
approached via the search for d(d + 1) vectors in Cd2

satisfying constraint relations. It is the main aim of
this note to make the results in [5] more precise and
to show that the two approaches (looking for d + 1

MUBs in Cd or for d(d + 1) vectors in Cd2

) are en-
tirely equivalent. The central results are presented in
Sections 2 and 3. In Section 4, parallel developments
for the search of a symmetric informationally com-
plete positive-operator-valued measure (SIC POVM)
are considered in the framework of similar approaches.
Some concluding remarks are given in the last section.

2. The two approaches

It was shown in [5] how the problem of finding d + 1
MUBs in Cd, i.e., d + 1 bases

Ba = {|aα〉 : α = 0, 1, . . . , d − 1} (1)

satisfying

|〈aα|bβ〉| = δα,βδa,b +
1√
d

(1 − δa,b) (2)

can be transformed in the problem of finding d(d + 1)

vectors w(aα) in Cd2

, of components wpq(aα), satis-
fying

wpq(aα) = wqp(aα), p, q ∈ Z/dZ (3)

d−1
∑

p=0

wpp(aα) = 1 (4)

and

d−1
∑

p=0

d−1
∑

q=0

wpq(aα)wpq(bβ) = δα,βδa,b +
1

d
(1 − δa,b) (5)

with a, b = 0, 1, . . . , d and α, β = 0, 1, . . . , d − 1 in
(1)–(5). (In this paper, the bar denotes complex con-
jugation.) This result was described by Proposition 1
in [5]. In fact, the equivalence of the two approaches

(in Cd and Cd2

) requires that each component wpq(aα)
be factorized as

wpq(aα) = ωp(aα)ωq(aα) (6)

for a = 0, 1, . . . , d and α = 0, 1, . . . , d − 1, a condition
satisfied by the example given in [5]. The factoriza-
tion of wpq(aα) follows from the fact that the operator
Πaα defined in [5] is a projection operator.

The introduction of (6) in (3), (4) and (5) leads to
some simplifications. First, (6) implies the hermitic-
ity condition (3). Second, by introducing (6) into (4)
and (5), we obtain

d−1
∑

p=0

|ωp(aα)|2 = 1 (7)

and
∣

∣

∣

∣

∣

d−1
∑

p=0

ωp(aα)ωp(bβ)

∣

∣

∣

∣

∣

2

= δα,βδa,b +
1

d
(1 − δa,b) (8)

respectively. It is clear that (7) follows from (8) with
a = b and α = β. Therefore, (3) and (7) are re-
dundant in view of (5) and (6). As a consequence,
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Proposition 1 in [5] can be precised and reformulated
in the following way.

Proposition 1. For d ≥ 2, finding d + 1 MUBs
in Cd (if they exist) is equivalent to finding d(d + 1)

vectors w(aα) in Cd2

, of components wpq(aα) such
that

d−1
∑

p=0

d−1
∑

q=0

wpq(aα)wpq(bβ) = δα,βδa,b +
1

d
(1 − δa,b) (9)

and

wpq(aα) = ωp(aα)ωq(aα), p, q ∈ Z/dZ (10)

where a, b = 0, 1, . . . , d and α, β = 0, 1, . . . , d − 1.
This result can be transcribed in matrix form.

Therefore, we have the following proposition.
Proposition 2. For d ≥ 2, finding d + 1 MUBs

in Cd (if they exist) is equivalent to finding d(d + 1)
matrices Maα of dimension d, with elements

(Maα)pq = ωp(aα)ωq(aα), p, q ∈ Z/dZ (11)

and satisfying the trace relations

Tr (MaαMbβ) = δα,βδa,b +
1

d
(1 − δa,b) (12)

where a, b = 0, 1, . . . , d and α, β = 0, 1, . . . , d − 1.

3. Equivalence
Suppose that we have a complete set {Ba : a =
0, 1, . . . , d} of d + 1 MUBs in Cd, i.e., d(d + 1) vectors
|aα〉 satisfying (2), then we can find d(d + 1) vectors

w(aα) in Cd2

, of components wpq(aα), satisfying (9)
and (10). This can be achieved by introducing the
projection operators

Πaα = |aα〉〈aα| (13)

where a = 0, 1, . . . , d and α = 0, 1, . . . , d − 1. In
fact, it is sufficient to develop Πaα in terms of the
Epq generators of the GL(d,C) complex Lie group;
the coefficients of the development are nothing but
the wpq(aα) complex numbers satisfying (9) and (10),
see [5] for more precisions.

Reciprocally, should we find d(d+1) vectors w(aα)

in Cd2

, of components wpq(aα), satisfying (9) and
(10), then we could construct d(d + 1) vectors |aα〉
satisfying (2). This can be done by means of a diag-
onalization procedure of the matrices

Maα =

d−1
∑

p=0

d−1
∑

q=0

wpq(aα)Epq (14)

where a = 0, 1, . . . , d and α = 0, 1, . . . , d − 1. An
alternative and more simple way to obtain the |aα〉
vectors from the w(aα) vectors is as follows. Equa-
tion (8) leads to

∣

∣

∣

∣

∣

d−1
∑

p=0

ωp(aα)ωp(bβ)

∣

∣

∣

∣

∣

= δα,βδa,b +
1√
d

(1 − δa,b) (15)

to be compared with (2). Then, the |aα〉 vectors can
be constructed once the w(aα) vectors are known.
The solution, in matrix form, is

|aα〉 =











ω0(aα)
ω1(aα)

...
ωd−1(aα)











(16)

a = 0, 1, . . . , d α = 0, 1, . . . , d − 1 (17)

Therefore, we can construct a complete set {Ba : a =
0, 1, . . . , d} of d+1 MUBs from the knowledge of d(d+
1) vectors w(aα). Note that, for fixed a and α, the
|aα〉 vector is an eigenvector of the Maα matrix with
the eigenvalue 1. This establishes a link with the
above-mentioned diagonalization procedure.

4. A parallel problem

The present work takes its origin in [6] where some
similar developments were achieved for the search of
a SIC POVM. Symmetric informationally complete
positive-operator-valued measures play an important
role in quantum information. Their existence in arbi-
trary dimension is still the object of numerous studies
(see for instance [7]).

A SIC POVM in dimension d can be defined as a
set of d2 nonnegative operators Px = |Φx〉〈Φx| acting
on Cd and satisfying

1

d

d2

∑

x=1

Px = I (18)

and

Tr (PxPy) =
dδx,y + 1

d + 1
(19)

where I is the identity operator. The search for such
a SIC POVM amounts to find d2 vectors |Φx〉 in Cd

satisfying

1

d

d2

∑

x=1

|Φx〉〈Φx| = I (20)

and

|〈Φx|Φy〉| =

√

dδx,y + 1

d + 1
(21)

with x, y = 1, 2, . . . , d2. The Px operator can be de-
veloped as

Px =

d−1
∑

p=0

d−1
∑

q=0

vpq(x)Epq (22)

so that the determination of d2 operators Px (or d2

vectors |Φx〉) is equivalent to the determination of d2

vectors v(x), of components vpq(x), in Cd2

. In the
spirit of the preceding sections, we have the following
result.
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Proposition 3. For d ≥ 2, finding a SIC POVM
in Cd (if it exists) is equivalent to finding d2 vectors

v(x) in Cd2

, of components vpq(x) such that

1

d

d2

∑

x=1

vpq(x) = δp,q, p, q ∈ Z/dZ (23)

d−1
∑

p=0

d−1
∑

q=0

vpq(x)vpq(y) =
dδx,y + 1

d + 1
(24)

and
vpq(x) = νp(x)νq(x), p, q ∈ Z/dZ (25)

where x, y = 0, 1, . . . , d2.

5. Concluding remarks
The equivalence discussed in this work of the two
ways of looking at MUBs amounts in some sense to
the equivalence between the search for equiangular
lines in Cd and for equiangular vectors in Cd2

(cf. [8]).
Equiangular lines in C

d correspond to

|〈aα|bβ〉| =
1√
d

for a 6= b (26)

while equiangular vectors in Cd2

correspond to

w(aα) · w(bβ) =
1

d
for a 6= b (27)

where the w(aα) · w(bβ) inner product in Cd2

is de-
fined as

w(aα) · w(bβ) =
d−1
∑

p=0

d−1
∑

q=0

wpq(aα)wpq(bβ) (28)

Observe that the modulus disappears and the 1/
√

d
factor is replaced by 1/d when passing from (26) to
(27). It was questioned in [5] if the equiangular vec-
tors approach can shed light on the still unsolved
question to know if one can find d+1 MUBs when
d is not a (strictly positive) power of a prime inte-
ger. In the case where d is not a power of a prime,
the impossibility of finding d(d + 1) vectors w(aα)
or d(d + 1) matrices Maα satisfying the conditions in
Propositions 1 and 2 would mean that d + 1 MUBs
do not exist in Cd. However, it is hard to know if
one approach is better than the other. It is the hope
of the author that the equiangular vectors approach
be tested in the d = 6 case for which one knows only
three MUBs instead of d+1 = 7 in spite of numerous
numerical studies (see [9–11] and references therein
for an extensive list of related works).

Similar remarks apply to SIC POVMs. The exis-
tence problem of SIC POVMs in arbitrary dimension
is still unsolved although SIC POVMs have been con-
structed in every dimension d ≤ 67 (see [7] and ref-
erences therein). For SIC POVMs, the equiangular
lines in Cd correspond to

|〈Φx|Φy〉| =
1√

d + 1
for x 6= y (29)

and the equiangular vectors in Cd2

to

v(x) · v(y) =
1

d + 1
for x 6= y (30)

where the v(x) · v(y) inner product in Cd2

is defined
as

v(x) · v(y) =

d−1
∑

p=0

d−1
∑

q=0

vpq(x)vpq(y) (31)

The parallel between MUBs and SIC POVM char-
acterized by the couples of equations (26)-(29), (27)-
(30) and (28)-(31) should be noted. These matters
shall be the subject of a future work.
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