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Abstract

A search for associated production of a Z boson with an open charm meson is
presented using a data sample, corresponding to an integrated luminosity of 1.0 fb−1

of proton–proton collisions at a centre-of-mass energy of 7 TeV, collected by the LHCb
experiment. Seven candidate events for associated production of a Z boson with
a D0 meson and four candidate events for a Z boson with a D+ meson are observed
with a combined significance of 5.1 standard deviations. The production cross-
sections in the forward region are measured to be

σZ→µ+µ−,D0 = 2.50± 1.12± 0.22 pb

σZ→µ+µ−,D+ = 0.44± 0.23± 0.03 pb,

where the first uncertainty is statistical and the second systematic.
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hUniversità di Urbino, Urbino, Italy
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1 Introduction

The forward production cross-section for associated production of a Z boson1 with an open
charm meson in pp collisions provides information about the charm parton distribution
inside the proton, the charm production mechanism, and double-parton scattering [1,2].
A measurement of this cross-section is a complementary probe to previous measurements
by LHCb of double charm production [3], inclusive W± and Z boson production [4–6] and
Z production in association with jets [7]. Since the LHCb detector is fully instrumented in
the forward region, measurements of electroweak boson production at LHCb have a unique
sensitivity to both high and low Bjorken-x regions where parton distribution functions are
not precisely determined by previous measurements [8].

The first observation of associated production of a Z boson with open charm hadrons
is presented in this paper. The ATLAS and CMS collaborations have recently shown first
results of W production in association with a charmed hadron [9, 10], a measurement that
is directly sensitive to the s-quark content of the proton. The associative production of
Z bosons with charmed jets has been reported by the D0 collaboration to be in disagreement
with next-to-leading order pertubative QCD predictions [11].

In this paper the results are quoted as the product of the production cross-section and
the branching fraction for the Z → µ+µ− decay. The selection of the Z candidates and
the D mesons follows those of previous publications [3,4,7], allowing the analysis techniques
and reconstruction efficiencies to be reused. The results are compared to predictions from
two production mechanisms: single- (SPS) and double-parton scattering (DPS).

2 Detector and data sample

The LHCb detector [12] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined tracking system provides
a momentum measurement with relative uncertainty that varies from 0.4% at 5 GeV to
0.6% at 100 GeV, and impact parameter resolution of 20µm for tracks with high transverse
momentum.2 Charged hadrons are identified using two ring-imaging Cherenkov detec-
tors [13]. Photon, electron and hadron candidates are identified by a calorimeter system
consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and
a hadronic calorimeter. Muons are identified by a system composed of alternating layers
of iron and multiwire proportional chambers [14]. The trigger [15] consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction.

1The contribution of the virtual γ∗ and charge conjugated modes are always implied in this paper.
2In this paper units are chosen such that c = 1.
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Candidate events are first required to pass a hardware trigger, which selects single
muons with transverse momentum pT > 1.48 GeV. In the subsequent software trigger,
at least one of the final state muons is required to have pT > 10 GeV. In order to avoid
a few events with high hit multiplicity dominating the processing time in the software
trigger, global event cuts are applied. The dominant global event cut requires the total hit
multiplicity in the scintillating-pad detector to be fewer than 600 hits. This selects about
90% of the events that contain a Z boson.

The data sample consists of 1.0 fb−1 of integrated luminosity collected with the LHCb
detector in 2011 using pp collisions at a centre-of-mass energy of 7 TeV.

3 Event selection

The selection of Z boson candidates and charmed mesons follows those of previous pub-
lications [3, 4, 7]. Candidate Z → µ+µ− events are selected by requiring a pair of well
reconstructed tracks identified as muons. The invariant mass of the two muons must
be reconstructed in the range 60 < mµ+µ− < 120 GeV. Each muon track must have
pT > 20 GeV and lie in the pseudorapidity range 2.0 < η(µ±) < 4.5. For the recon-
struction of D0 → K−π+ and D+ → K−π+π+ decays, well reconstructed and identified
π± and K± candidates are selected. To ensure a good particle identification separation,
the kaons and pions are required to be in the momentum range 3.2 < p < 100 GeV and
pT > 250 MeV. The selected hadrons are combined to form open charm meson candi-
dates in the D0 → K−π+ and D+ → K−π+π+ final states in the invariant mass range
1.82 < mK−π+ < 1.92 GeV for D0 and 1.82 < mK−π+π+ < 1.91 GeV for D+. We require
ct to be larger than 100µm, where t is the decay time in the rest frame of the open charm
mesons. All open charm mesons are required to have rapidity reconstructed in the range
2 < y(D) < 4 and 2 < pT(D) < 12 GeV. The kinematic selection criteria mentioned above,
with the exception of the requirements on pions and kaons, define the fiducial region of
this analysis.

The Z boson and charmed meson are required to be consistent with being produced
at the same primary vertex. This is achieved by a requirement on the global χ2 of this
hypothesis, which itself is based on the χ2 of the impact parameters of the muons and
the D candidates and the vertex χ2 of the reconstructed D meson candidates [16].

In total seven events with Z and D0 candidates and four events with Z and D+ candidates
pass all selection criteria, no events with multiple candidates are observed. The invariant
mass distributions for the D and the Z candidates are shown in Fig. 1.

4 Cross-section determination and significance

Signal events are those for which the Z boson and charmed meson are produced directly in
the same pp interaction. Charmed hadrons produced from the decay of a beauty hadron
are considered as background. In addition two other background sources are considered:
combinatorial background and background from multiple pp interactions (pile-up).
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Figure 1: Invariant mass distribution for Z (left) and D (right) candidates for Z + D0 (top) and
Z + D+ (bottom) events. The superimposed curves represent the projection of the fit described
in Sect. 4.

Both the SPD and DPS mechanisms can lead to the associated production of a Z boson
and a beauty hadron. Contamination from feed-down from beauty hadrons decaying
to D mesons, where the beauty hadron has been produced in DPS, is estimated from
simulation to be 1.7% (1.3%) for D0(D+) [3] of the DPS contribution for a Z boson and
a charmed meson. The SPS contribution to the feed-down is determined with MCFM [17],
which predicts the associated production of a Z boson with a b quark to be 20% smaller
than the associated production of a Z with a c quark. This estimate is likely to be
conservative, since, according to the recent measurements by the D0 collaboration [11],
the production of Z + c-jets is larger by a factor four with respect to Z + b-jets for the
region with jet pT > 20 GeV, with only a small dependence on the jet pT [11]. Taking into
account the branching fractions, the beauty feed-down contribution in SPS is estimated to
be 9.4% (3.7%) for D0(D+) mesons of the SPS contribution for a Z boson and a charmed
meson. This estimate takes into account the suppression due to the requirement on the D to
originate from the same vertex as the Z candidate. Since the individual contributions
to feed-down from Z plus a b quark from DPS and SPS are unknown, we assume that
the contamination from b-quark decays is dominated by DPS. This assumption is in line
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Figure 2: Invariant mass of the Z and D0 (left) and Z and D+ (right) candidates (shown as black
dots) compared to the fit (see text) that was used to extract the combinatorial background. The
fit shown includes the signal and the background components. The colour scale shows the PDF
value at any given point.

with the theoretical predictions for Z plus charm quark production shown in Table 2.
An uncertainty is assigned that corresponds to the assumption that the SPS contribution
is at most 50%. This leads to an uncertainty of half the difference between DPS and SPS
of 3.9% (1.1%) for the D0(D+) meson sample.

Combinatorial background is estimated by performing a two-dimensional fit to the mass
distributions of the Z boson and the D meson candidates. Probability density functions
(PDFs) describing the signal and backgrounds are used for the fit: the signal consists of
a Z boson with a D meson; the background consists of a signal Z boson with a random
combination of charged hadrons as well as combinatorial background where all measured
stable particles are randomly combined. Since the combinatorial background for Z bosons
is known to be small (0.31 ± 0.06)% [7], it is not considered explicitly in the fit model.
The PDF for the Z invariant mass is calculated using Fewz [18] with the Z mass as the
renormalisation and factorisation scale and using the MSTW08 [19] parametrisation for
the parton density functions of the proton. Final-state radiation and detector resolution are
included by convolving the resulting Z lineshape with a resolution function, obtained using
the inclusive Z sample of the same data taking period. The PDF for the charmed hadron
candidates is a modified Novosibirsk function [20] with the parameters taken from Ref. [3].
The combinatorial background components are modelled with exponential distributions for
the purity determination and a uniform distribution for the significance calculation. Using
a uniform distribution for the combinatorial background in the significance calculation
is a conservative approximation: it improves the stability of the fit and tends to assign
more events to the signal region and therefore leads to a lower significance. The fit to
the two-dimensional mass distributions of the Z boson and the open charm candidates is
shown in Fig. 2.

Following Refs. [3,16], the contribution from pile-up is assessed using a fit to the χ2 dis-
tribution of the hypothesis that the Z boson and the D mesons originate from the same
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primary vertex. It is estimated from a higher statistics sample with a looser selection to
be (2.8± 0.6)%. The total purity, defined as the signal fraction, amounts to (95.3± 3.8)%
and (95.6± 1.2)% for the Z boson plus D0 and D+ meson samples, respectively.

The cross-sections are then calculated as

σZ→µ+µ−,D =
ρ

LBD εGEC

N corr
Z→µ+µ−,D =

ρ

LBD

∑
candidates

ε−1, (1)

where N corr
Z→µ+µ−,D is the efficiency-corrected event yield, ε is the single event efficiency, εGEC

the efficiency of the global event cuts used in the trigger, ρ the purity, L the integrated
luminosity and BD the branching fraction of an open charm hadron into the reconstructed
final state [21].

The single event efficiencies are computed according to Refs. [3, 4, 6, 7] as

ε = εtrg
Z→µ+µ− × εZ→µ+µ− × εD,

where εZ→µ+µ− and εD are the Z→ µ+µ− and D reconstruction efficiencies, respectively,
and εtrg

Z→µ+µ− is the trigger efficiency. The efficiencies εZ→µ+µ− and εD are taken from

Refs. [7] and [3], respectively. The trigger efficiency εtrg
Z→µ+µ− is calculated as

εtrg
Z→µ+µ− = 1−

(
1− εtrg

1µ (µ+)
)
×
(
1− εtrg

1µ (µ−)
)
,

where εtrg
1µ is the efficiency of the single muon trigger, that in turn has been measured using

a tag-and-probe method on the inclusive Z→ µ+µ− sample [4]. All efficiencies have been
validated using data-driven techniques and the appropriate correction factors have been
applied [13–15, 22–25]. The efficiencies have been further corrected for the inefficiency
introduced by the global event cuts used in trigger. Finally, the efficiency corrected yields
are found to be N corr

Z→µ+µ−,D0 = 99± 45 and N corr
Z→µ+µ−,D+ = 41± 21, where the uncertainties

are statistical only.
The results of the two-dimensional mass fits described above allow the significance of

the observation of the associated production of a Z boson with an open charm meson to
be estimated. The significance is assessed using pseudo-experiments. For each pseudo-
experiment the events are sampled according to the observed number of events using
the background-only hypothesis. The distributions obtained are fitted using the function
described above. The p-value obtained from the pseudo-experiments for the associated
production of Z with D mesons corresponds to a significance of 3.7 and 3.3 standard
deviations for the D0 and D+ cases, respectively. The combined significance for the associ-
ated production of a Z boson with an open charm meson corresponds to a significance of
5.1 standard deviations.

5 Systematic uncertainties

The largest systematic uncertainties are summarised in Table 1. The total systematic
uncertainties are 8.7% (6.6%) for the D0(D+) samples and are therefore small with respect
to the statistical uncertainties.
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Table 1: Relative systematic uncertainties for the production cross-section of a Z boson with
an open charm meson [%].

Z + D0 Z + D+

Efficiencies 6.8 5.0
Pile-up 0.6 0.6
Feed down 3.9 1.1
BD 1.3 2.1
Luminosity 3.5 3.5
Total 8.7 6.6

Systematic uncertainties on the trigger, reconstruction and selection efficiencies are
computed in a similar manner to Refs. [3, 4]. They are dominated by the statistical
uncertainty of the tag and probe samples for all efficiencies related to the Z and differences
in the track reconstruction efficiency between data and simulation as well as uncertainties
in the particle identification efficiency in case of the D reconstruction. The uncertainties
are propagated by varying the efficiencies ten thousand times within their uncertainties
and taking the standard deviation of the resulting yields as the uncertainty on the event
yield. In total the estimated uncertainty due to the efficiencies corresponds to 6.8% (5.0%)
for the D0(D+) samples.

An uncertainty on the pile-up contamination of 0.6% is assigned as a systematic
uncertainty. The feed-down from beauty hadron decays was estimated with precision of
3.9% (1.1%) for Z and D0(D+), and is assigned as a systematic uncertainty. The uncertain-
ties in the branching fractions of an open charm hadron into the reconstructed final state
of 1.3% for D0 and 2.1% for D+ are taken from Ref. [21].

The absolute luminosity scale was measured with a precision of 3.5 % at specific periods
during the data taking, using both van der Meer scans [26] where colliding beams are
moved transversely across each other to determine the beam profile, and a beam-gas
imaging method [27,28].

Other systematic uncertainties, including those related to the purity estimation are
found to be negligible.

6 Results and discussion

The cross-sections for associated production of a Z boson and a D meson are measured to
be

σZ→µ+µ−,D0 = 2.50± 1.12± 0.22 pb

σZ→µ+µ−,D+ = 0.44± 0.23± 0.03 pb,

where the first uncertainty is statistical and the second systematic. These cross-sections
correspond to the following fiducial region: 60 < mµ+µ− < 120 GeV, pT(µ±) > 20 GeV,
2 < η(µ±) < 4.5, 2 < pT(D) < 12 GeV and 2 < y(D) < 4.
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The measured cross-section is expected to be the sum of the SPS and DPS predictions.
The prediction of the SPS for the Zcc production cross-section is calculated with MCFM [17]
at leading order and, using the massless approximation, at next-to-leading order [1].
The contributions from Zc production [29] are calculated in both cases at next-to-leading
order. The renormalisation and factorisation scales are set to the Z boson mass and
varied by a factor of two to assess the theory uncertainty. The MSTW08 [19] parton
distribution functions with their uncertainties at 68% confidence level are used. For
the parton level predictions the fiducial region requirements on the D mesons are applied to
the c quarks. The cross-sections are corrected for the fragmentation fractions as in Ref. [30].
These hadronisation factors do not take into account the change in momentum in the
c→ D transition, but only the total probability that a charm quark hadronises into a given
charm meson. Reference [31] suggests that the hadronisation of charm quarks may lead to
an enhancement of charm hadrons in the LHCb acceptance.

The DPS cross-section is calculated using the factorisation approximation as [32]

σDPS
Z→ µ+µ−,D =

σZ→µ+µ− σD

σeff

, (2)

where σZ→µ+µ− and σD are the inclusive production cross-sections of Z → µ+µ− and
D mesons, respectively, and σeff is the effective DPS cross-section. The production cross-
sections of Z bosons and prompt D mesons are taken from Refs. [4, 30] and extrapolated
to the fiducial region of this analysis. The effective DPS cross-section has been measured
by several experiments at the ISR [33], SPS [34], Tevatron [35, 36] and LHC [3, 37, 38].
The measured value is energy and process independent within the experimental preci-
sion [39] and the value of σeff = 14.5± 1.7+1.7

−2.3 mb is taken from Ref. [35]. The factorisation
ansatz used to derive Eq. (2) has been criticised as being too näıve [40]. The corresponding
uncertainty is not assessed here but could be large in this region of phase space [32].
The contribution of the non-factorisable component is estimated in Ref. [41] to be 30 %
for x ≤ 0.1 and up to 90 % for x ∼ 0.2− 0.4.

The measured cross-sections together with three theoretical predictions are presented
in Table 2: a DPS prediction and two SPS predictions from fixed order calculations using
MCFM [17]. For the associative production of Z bosons and D0 mesons the sum of
DPS and SPS contributions is consistent with the measured cross-section within the large
uncertainties from both theory and experiment, while for Z + D+ case, the measured
cross-section lies below the expectations.

7 Conclusion

Associated production of a Z boson with an open charm hadron is observed by LHCb for
the first time in pp collisions at a centre-of-mass energy

√
s = 7 TeV corresponding to

an integrated luminosity of 1.0 fb−1.
Eleven signal candidates are observed, consisting of seven D0→ K−π+ candidates and

four D+ → K−π+π+ candidates, all associated with a Z→ µ+µ− decay. The cross-sections
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Table 2: Comparison of the measured cross-sections [ pb] and the theoretical predictions for
the associated production of a Z boson with an open charm meson. For the measured cross-section
the first uncertainty is statistical and the second systematic. For MCFM the first uncertainty is
related to the uncertainties of the parton distribution functions, the second is the scale uncertainty
and the third due to uncertainties associated with c-quark hadronisation as discussed in the text.

measured MCFM massless MCFM massive DPS

Z + D0 2.50± 1.12± 0.22 0.85+0.12
−0.07

+0.11
−0.17 ± 0.05 0.64+0.01

−0.01
+0.08
−0.13 ± 0.04 3.28+0.68

−0.58

Z + D+ 0.44± 0.23± 0.03 0.37+0.05
−0.03

+0.05
−0.07 ± 0.03 0.28+0.01

−0.01
+0.04
−0.06 ± 0.02 1.29+0.27

−0.23

for the associated production of Z bosons and D mesons in the fiducial region are found to
be

σZ→µ+µ−,D0 = 2.50± 1.12± 0.22 pb

σZ→µ+µ−,D+ = 0.44± 0.23± 0.03 pb,

where the first uncertainty is statistical and the second systematic. The results are quoted
as the product of the production cross-section and the branching fraction of the Z →
µ+µ− decay. These cross-sections correspond to the fiducial region 60 < mµ+µ− < 120 GeV,
pT(µ±) > 20 GeV, 2 < η(µ±) < 4.5 2 < pT(D) < 12 GeV and 2 < y(D) < 4. The results
are consistent with the theoretical predictions for Z + D0 production, and lie below
expectations for Z+D+ case. With more data a measurement of the differential distributions
will be possible, which could allow to disentangle the SPS and DPS contributions.
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