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Brazil
13Inter-University Centre for Astronomy and Astrophysics, Pune - 411007, India
14Tata Institute for Fundamental Research, Mumbai 400005, India
15Syracuse University, Syracuse, NY 13244, USA



The NINJA-2 project 7

16University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA
17Leibniz Universität Hannover, D-30167 Hannover, Germany
18INFN, Sezione di Pisa, I-56127 Pisa, Italy
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43Université Nice-Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, F-06304
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81University of Sannio at Benevento, I-82100 Benevento, Italy
82INFN, Gruppo Collegato di Trento, I-38050 Povo, Trento, Italy
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120Instituto de F́ısica Teórica, Univ. Estadual Paulista/International Center for

Theoretical Physics-South American Institue for Research, São Paulo SP 01140-070,

Brazil
121Andrews University, Berrien Springs, MI 49104, USA
122Trinity University, San Antonio, TX 78212, USA
123University of Washington, Seattle, WA 98195, USA
124Southeastern Louisiana University, Hammond, LA 70402, USA
125Abilene Christian University, Abilene, TX 79699, USA
126Center for Radiophysics and Space Research, Cornell University, Ithaca, NY

14853, USA
127Theoretisch Physikalisches Institut, Friedrich Schiller Universität, 07743 Jena,

Germany
128Center for Relativistic Astrophysics and School of Physics, Georgia Institute of

Technology, Atlanta, GA 30332, USA
129Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL

61801, USA
130Department of Astronomy and Astrophysics, 50 St. George Street, University of

Toronto, Toronto, ON M5S 3H4, Canada
131Department of Physics, Florida Atlantic University, Boca Raton, FL 33431
132Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502,

Japan
133Canadian Institute for Advanced Research, 180 Dundas St. West, Toronto, ON

M5G 1Z8, Canada
134Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
135Institut de Ciencies de l’Espai (CSIC-IEEC), Campus UAB, Bellaterra, 08193

Barcelona, Spain

Abstract. The Numerical INJection Analysis (NINJA) project is a collaborative

effort between members of the numerical relativity and gravitational-wave astrophysics

communities. The purpose of NINJA is to study the ability to detect gravitational

waves emitted from merging binary black holes and recover their parameters with

next-generation gravitational-wave observatories. We report here on the results of

the second NINJA project, NINJA-2, which employs 60 complete binary black hole

hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger,

and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a

“blind injection challenge” similar to that conducted in recent LIGO and Virgo science

runs, we added 7 hybrid waveforms to two months of data recolored to predictions of
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Advanced LIGO and Advanced Virgo sensitivity curves during their first observing

runs. The resulting data was analyzed by gravitational-wave detection algorithms and

6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand

years. Parameter estimation algorithms were run on each of these waveforms to explore

the ability to constrain the masses, component angular momenta and sky position of

these waveforms. We find that the strong degeneracy between the mass ratio and

the black holes’ angular momenta will make it difficult to precisely estimate these

parameters with Advanced LIGO and Advanced Virgo. We also perform a large-scale

monte-carlo study to assess the ability to recover each of the 60 hybrid waveforms with

early Advanced LIGO and Advanced Virgo sensitivity curves. Our results predict

that early Advanced LIGO and Advanced Virgo will have a volume-weighted average

sensitive distance of 300Mpc (1Gpc) for 10M� + 10M� (50M� + 50M�) binary black

hole coalescences. We demonstrate that neglecting the component angular momenta in

the waveform models used in matched-filtering will result in a reduction in sensitivity

for systems with large component angular momenta. This reduction is estimated

to be up to ∼ 15% for 50M� + 50M� binary black hole coalescences with almost

maximal angular momenta aligned with the orbit when using early Advanced LIGO

and Advanced Virgo sensitivity curves.
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1. Introduction

A network of second-generation laser interferometric gravitational-wave (GW)

observatories is presently under construction. The US-based Advanced Laser

Interferometer Gravitational Wave Observatory (aLIGO) [1] is expected to have its

initial observing run in 2015 utilizing observatories in Hanford, Washington and

Livingston, Louisiana (denoted “H” and “L”, respectively). aLIGO will then work

towards reaching design sensitivity, expected in 2018-20 [2]. The French-Italian

Advanced Virgo (AdV) observatory [3, 4] (denoted “V”) is expected to follow shortly

after the aLIGO instruments. The cryogenically cooled KAGRA observatory [5, 6] and

a India-based aLIGO facility [7, 8] are due to begin operations around 2020, providing

a 5-site network to explore the gravitational-wave sky in detail.

These second-generation observatories will have an order of magnitude increase in

sensitivity over their first generation counterparts and will be sensitive to a broader range

of gravitational-wave frequencies [1, 4, 6]. One of the primary observational targets for

this global network is the inspiral, merger and ringdown of a binary system containing

two black holes [9]. With aLIGO and AdV operating at their final design sensitivities

it is expected that 0.4 - 1000 binary black hole (BBH) coalescences will be observed

per year of operation [10]. Directly observing the collision of two black holes will allow

gravitational-wave astronomers to understand the physics of black-hole spacetimes and

to explore the strong-field conditions of the theory of general relativity [11].

Exploring the underlying mass and spin distributions of stellar-mass black holes

can tell us a great deal about the end stages of massive-star evolution. The mass

measurements of compact objects made to date suggest a gap between the most massive

neutron stars (. 3 M�) [12] and the least massive black holes (& 5 M�) [13]. It is still

an open question as to whether this gap is real and the result of formation mechanisms,

or simply due to observational biases [14]. Whether or not ground-based detectors

will be able to distinguish between these regions in mass space is of great interest.

Furthermore, from the distributions of black hole spin magnitudes and tilts (orientation

of the spin relative to the orbital angular momentum), more can be learned about

supernovae kicks and compact binary formation environments. Stellar-mass black hole

spin measurements are currently done by modelling either the accretion disk’s thermal

continuum X-ray spectrum, or the profile of the broadened Fe Kα line [15]. Both

methods are fundamentally based on assumptions about the location of the inner edge

of the accretion disk, and also depend sensitively on very complicated physical models

of the disk and its emission. Gravitational waves will provide an entirely new method of

measuring black hole spin which does not require the complicated modeling of accretion

disk physics.

Of the stellar mass black hole angular momenta (spin) measurements made to

date, half are found to have a magnitude a & 0.8 [15]. With BBH observations, aLIGO

and AdV will be able to provide independent measurements of the black hole spin

magnitudes. Therefore, it will be interesting to evaluate how well aLIGO and AdV will
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be able to constrain the magnitude of the black holes’ component spins. The direction of

the compact objects’ angular momenta is also of interest, with particular implications

for formation mechanisms [16]. Measuring systems with component spins misaligned

with the orbital angular momentum is outside of the scope of this project. However,

this study does include systems with component spins that are both aligned and anti-

aligned with the orbital angular momenta, and we will evaluate the ability of aLIGO

and AdV to distinguish such systems from one another.

The standard technique for observing BBH mergers involves matched-filtering data

taken from gravitational-wave observatories against “template” waveforms that should

closely match potential astrophysical signals [17, 18, 19]. The observable BBH waveform

includes the signal from the inspiral of the two black holes, as well as their merger

and the resulting black hole’s ringdown. Search templates must include all of these

features [20, 21]. As an alternative to matched-filter searches, a number of algorithms

exist to perform searches for unmodelled gravitational-wave signals [22, 23, 24]. These

algorithms do not require accurate knowledge of the waveforms to make observations,

but are not as sensitive as matched-filter searches in cases where the waveform models

are well understood.

Theoretical models of the inspiral, merger and ringdown of BBH systems are

necessary to produce template banks for matched-filter searches and to use as model

signals to test both matched-filter and unmodelled searches. The inspiral portion of the

waveform can be modeled by analytic post-Newtonian (PN) calculations [25, 20], while

numerical solutions of the General Relativity field equations are required to accurately

model the final orbits and merger. Prior to breakthroughs in numerical relativity

(NR) in 2005 [26, 27, 28], template banks and search pipeline tests used only inspiral

waveforms. Since 2007, NR waveforms have been used to calibrate analytical waveform

models [29, 30, 31, 32, 33, 34, 35, 36]. Some of the analytical waveforms have been

already employed in search pipelines [37]. However, there exists another useful and

valuable avenue of communication between numerical relativists and gravitational-wave

astronomers. As NR pushes into new regions of parameter space the waveforms can be

used directly to test searches employing previously-calibrated templates, and the degree

to which these searches prove to be insufficient can motivate both new template models

and additional simulations.

The Numerical INJection Analysis (NINJA) project was created in 2008. The

project uses recent advances in numerical relativity ([38] and references therein) to

test analysis pipelines by adding numerically-modelled, physically-realistic signals to

detector noise and attempting to recover these signals with search pipelines. The first

NINJA project (NINJA-1) [39] utilized a total of 23 numerical waveforms, which were

injected into Gaussian noise colored with the frequency sensitivity of initial LIGO and

Virgo. These data were analyzed by nine data-analysis groups using both search and

parameter-estimation algorithms [39].

However, there were four limitations to the NINJA-1 analysis. First, due to the

computational cost of NR simulations, most waveforms included only ∼10 orbits before
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merger. Therefore the waveforms were too short to inject over an astrophysically

interesting mass range without introducing artifacts into the data. The lowest mass

binary considered in NINJA-1 had a total mass of 35M�, whereas the mass of black

holes could extend below 5M� [14, 40]. Second, the waveforms were only inspected for

obvious, pathological errors and no cross-checks were performed between the submitted

waveforms. It was therefore difficult to assess the physical fidelity of the results. Third,

the NINJA-1 data set contained stationary noise with the simulated signals already

injected into the data. Since the data set lacked the non-Gaussian noise transients

present in real detector data, it was not possible to fully explore the response of the

algorithms in a real search scenario. Finally, the data set contained only 126 simulated

signals, this precluded detailed statistical studies of the effectiveness of search and

parameter estimation algorithms. Despite these limitations, the NINJA-1 project lead

to a framework within which to perform injection studies using waveforms as calculated

by the full nonlinear general theory of relativity, established guidelines for such studies

(in particular a well-defined format for the exchange of NR waveforms [41]), and clarified

where further work was needed.

This lead to the initiation of the second NINJA project (NINJA-2), whose goals

were to build and improve upon NINJA-1 and perform a systematic test of the efficiency

of data-analysis pipelines in preparation for the Advanced detector era. A set of 60 NR

waveforms were submitted by 8 numerical relativity groups for the NINJA-2 project [42].

These waveforms conform to a set of length and accuracy requirements, and are attached

to PN inspiral signals to produce hybrid PN-NR waveforms that can be injected over the

full range of physically relevant total binary masses. The construction and verification

of these waveforms is described in a previous paper [42], and summarized here in

section 2. In the Numerical-Relativity and Analytical-Relativity collaboration, a project

complementary to the NINJA collaboration, 22 new NR waveforms were produced and

rigorously analysed. These newly produced NR waveforms were compared to the most

recent calibrated analytical models, finding that the loss of event rates due to modeling

is below 3% [43]. In this paper we study the ability of the search algorithms used in the

last of the Initial LIGO and Virgo science runs to observe numerically-modelled BBH

waveforms from the set of 60 waveforms submitted to the NINJA-2 project. This is done

using data taken during LIGO’s sixth and Virgo’s second science runs and recoloring

that data to the sensitivities expected from early observation runs of aLIGO and AdV.

There are a wide range of search and parameter estimation algorithms available

within the GW astronomy community: those that were used in past analyses of detector

data, old algorithms that have been updated and re-tuned following the experience

gained in those analyses, plus many new algorithms under development. For both

practical reasons, and to mark a clear point in the development and refinement of these

methods, this work employed only search and parameter estimation algorithms that

were approved and used in the last initial-LIGO and Virgo science runs, without any

additional tuning or modifications [22, 44, 37, 45]. By doing this we aim to provide a

benchmark against which future algorithms can be compared.



The NINJA-2 project 14

A set of 7 numerical relativity waveforms, with masses ranging from 14.4M� to

124M� were added into the recolored data as an unbiased test of the process through

which candidate events are identified for BBH waveforms. This data was distributed

to analysts who knew that such “blind injections” were present but had no information

about the number, parameters or temporal location of these waveforms. This was similar

to blind injection tests conducted by the LIGO and Virgo collaborations in their latest

science runs [46]. Using a search for unmodelled gravitational wave transients we found

that one of these signals was recovered, with an estimated false alarm rate of 1 every

47 years. The remaining 6 signals were consistent with background. Using a matched-

filtered algorithm with a bank of BBH IMR waveforms, which were not calibrated

against the NR signals used in NINJA-2, 6 of the signals were recovered with more

significance than all background events. This allowed upper limits on the false alarm

rate ranging between 1 every 5000 years and 1 every 40000 years to be placed on each

blind injection. The remaining signal was not recovered due to having a low network

signal-to-noise ratio and possessing a large anti-aligned spin, which was not modelled in

the bank of waveforms used in the search.

Parameter estimation algorithms have come a long way since the first NINJA

project. Previously these analyses were unable to estimate the parameters of high mass

systems accurately due to the use of inspiral-only models on data with little measurable

inspiral. We show that these tools are now capable of reliably providing parameter

estimates for both low and high mass systems. For all but one injection the masses

and spins of the black holes were recovered within the estimated 95% credible regions.

The remaining injection suffered small systematic biases due to non-Gaussian features

present in the noise, the modeling of which is an ongoing endeavor. We find that strong

intrinsic degeneracies between the masses and black hole spins [47, 48] make it difficult

to constrain the masses well, for 3 of the signals the presence of a neutron star cannot

be ruled out. We also investigate the ability to constrain the sky localization of the

various signals and demonstrate how even low power non-Gaussian noise transients in

the data can effect the recovery of the intrinsic parameters of BBH systems.

We use large sets of known waveforms to assess the efficiency of the matched-filter

BBH search algorithm as a function of the mass and angular momenta of the component

black holes. These are the first such studies that have been done using real data recolored

to second-generation noise curves, which include the non-Gaussian features that will be

present in the data taken with Advanced LIGO and Advanced Virgo. As these results

were obtained using the search pipelines and techniques that were deployed in the final

observing runs of Initial LIGO and Initial Virgo, they can therefore provide a benchmark

against which improvements to the search techniques can be compared and assessed.

In our large-scale simulation studies we find evidence that incorporating search

waveforms including the effects of spin will increase the efficiency of searches. The

results shown here can be used, in the future, to compare with results of search

pipelines including the effects of component spins that are aligned with the orbital

angular momentum, which are currently under development [49, 50, 51]. We also
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assess the efficiency of the matched-filter BBH search algorithm to recover waveforms

generated by different groups with the same parameters. We find that the efficiency

of the matched-filter BBH search algorithm to recover different waveforms, generated

by different groups, but with identical physical parameters, is indistinguishable up to

statistical errors.

In this work we have not scaled observed masses and distances to account for

cosmological effects, which will be important especially for high-mass binary black hole

collisions. Therefore any masses and distances quoted should be interpreted as observed

masses and luminosity distances.

The paper is organized as follows: In section 2 we briefly summarize the waveform

catalogue described more fully in [42]. Section 3 describes the LIGO/Virgo data used

and the processing that was done to make it resemble anticipated advanced-detector

noise. Section 4 describes how the parameters for the signals were chosen and reports

the values that were selected. Section 5 describes the detection algorithms that were run

on the data set and section 6 reports their results. Section 7 describes the parameter

estimation results. Section 8 describes the results of a high-statistics analysis aimed at

quantifying the sensitivity of the detection searches to the different hybrid waveforms.

We conclude in section 9 with a discussion of how well the various algorithms performed,

and implications for the Advanced detector era.

2. PN-NR Hybrid Waveforms

The NINJA-2 waveform catalog contains 60 PN-NR hybrid waveforms that were

contributed by eight numerical relativity groups. This catalog and the procedures used

to validate it are described in detail in [42]. We briefly summarize the NINJA-2 catalog

here.

Each waveform in the NINJA-2 waveform catalog consists of a PN portion modelling

the early inspiral, stitched to a numerical portion modelling the late inspiral, merger and

ringdown. This ensures accurate modelling of the late portions of the waveform while

simultaneously ensuring that waveforms are long enough to be scaled to masses as low

as 10M� without starting abruptly within the sensitive frequency band of the detectors.

We require that for the NR portion of the waveform the amplitude be accurate to within

5% and the phase (as a function of gravitational-wave frequency) have an accumulated

uncertainty over the inspiral, merger and ringdown of no more than 0.5 rad. Since

we do not have access to exact waveforms we define “accuracy” by convergence of the

numerical waveforms as resolution and waveform-extraction radius are increased. We

also require at least five orbits of numerical data in order to ensure robust blending

with the PN portion. No requirements were placed on the hybridization itself, although

it is known that hybridization can introduce significant errors [52, 34, 53]. It was

decided to limit NINJA-2 to systems without eccentricity, and with black-hole spins

parallel or anti-parallel to the orbital angular momentum. This last condition avoids

precession, which we do for two reasons; (i) precession greatly complicates waveform
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Figure 1. Mass ratio q and dimensionless spins χi of the NINJA-2 hybrid waveform

submissions. Reproduced from [42].

phenomonology and we prefer to first tackle a simpler subset which still maintains the

main features of binary evolution and merger; and (ii) at the start of NINJA-2 the

precessing-binary parameter space had been sampled by only a handful of numerical

simulations. Waveforms were submitted in the format described in [41], and data was

provided as strain decomposed into spherical harmonics of weight −2. Groups were

encouraged to submit modes beyond (l,m) = (2,±2) and many did so. However the

techniques to validate these higher modes are a current research topic. In order not

to delay the NINJA-2 project it was decided to validate only the (2,±2) modes in

[42] and employ only these modes for the first NINJA-2 analysis. Different groups

employed different codes, as well as different methods for solving initial conditions,

dealing with singularities, evolving Einstein’s equations, and extracting gravitational-

wave information. In addition different PN approximants and different hybridization

methods were used by different groups in constructing the full hybrid waveforms. It was

found that the dominant source of disagreement between submissions was in the PN

portion, and in particular overlaps between submissions were greater than 0.97 over the

range of masses, including regions sensitive to differences in hybridization techniques.

See [42] for details.
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The parameter space for aligned-spin BBH systems is four dimensional; the masses

and spin magnitudes of each of the two holes. However, in the absence of matter

Einstein’s equations possess a mass invariance, and a solution obtained by numerical

relativity or other method may be trivially rescaled to any total mass. We therefore

eliminate total mass from the parameter space of submissions leaving the ratio of the

two masses, denoted q, and the dimensionless spins denoted χ1,2 which must lie between

−1 < χ1,2 < 1.

Tables 1 and 2 give a summary of the submissions for systems where the masses of

the two black holes are equal and unequal, respectively. The first column of Tables 1

and 2 gives a label for each waveform, to ease referring to them in later sections. These

labels of the form “G2+20+20 T4” are constructed as follows: The first letter represents

the group submitting the numerical simulation:

F: The numerical relativity group at Florida Atlantic University, also using the BAM

code [54, 55, 56, 57].

G: The Georgia Tech group using MayaKranc [58, 59, 60, 61, 62, 63, 64]

J: The BAM (Jena) code, as used by the Cardiff-Jena-Palma-Vienna

collaboration [65, 66, 33, 67, 55, 68]

L: The Lean Code, developed by Ulrich Sperhake [69, 70].

Ll: The Llama code, used by the AEI group and the Palma-Caltech groups [71, 72, 73]

R: The group from Rochester Institute of Technology, using the LazEv code [27, 74,

75, 76].

S: The SXS collaboration using the SpEC code [77, 78, 79, 80, 81, 82, 83, 84, 85, 86].

U: The group from The University of Illinois [87].

Immediately after this letter follows the mass-ratio q = m1/m2, where the black holes are

labeled such that q ≥ 1. Subsequently are the components of the initial dimensionless

spin along the orbital angular momentum, multiplied by 100 (e.g. ‘+20’ corresponds to

L̂ · ~S1/m
2
1 = 0.2) of the more massive and the less massive black hole. The label closes

with the Taylor-approximant being used for the PN portion of the waveform, with “T1”

and “T4” representing TaylorT1 and TaylorT4, respectively. The Georgia Tech group

submitted four pairs of simulations where each pair simulates systems with identical

physical parameters, stitched to the same PN approximant. These waveforms are not

identical however as each simulation within a pair has a different number of NR cycles

and was generated at a different resolution. These are distinguished by appending “ 1”

and “ 2” to the label.

Each NR group verified that their waveforms met the minimum NINJA-2

requirements as described above. The minimum-five-orbits requirement was easily

verified by inspection, and the amplitude and phase uncertainties were estimated by

convergence tests with respect to numerical resolution and waveform-extraction radius.

The full catalog was then verified by the NINJA-2 collaboration. Submissions were

inspected in the time and frequency domains to identify any obvious problems caused
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by hybridization or integration from the Newman-Penrose curvature scalar ψ4 to strain.

Where multiple simulations were available for the same physical parameters these

simulations were compared using the matched-filter overlap. The inner product between

two real waveforms s1(t) and s2(t) is defined as

(s1 s2) = 4<
∫ ∞

0

df
s̃1(f)s̃?2(f)

Sn(f)
(1)

where x̃ denotes the Fourier transform of x and Sn(f) is the power spectral density, which

was taken to be the target sensitivity for the first advanced-detector runs, referred to

as the “early aLIGO” PSD. This is described in more detail in section 3.

The overlap is then obtained by normalization and maximization over relative time

and phase shifts, ∆t and ∆φ.

〈s1 s2〉 := max
∆t,∆φ

(s1 s2)√
(s1 s1) (s2 s2)

. (2)

The investigations in [42] demonstrated that the submitted waveforms met the

requirements as outlined above and in addition were consistent with each other to the

extent expected. We therefore conclude that these submissions model real gravitational

waves with sufficient accuracy to quantitatively determine how data-analysis pipelines

will respond to signals in next-generation gravitational-wave observatories.

The NINJA-2 waveforms cover the 3-dimensional aligned-spin parameter space

rather unevenly, as indicated in figure 1. The configurations available fall predominantly

into two 1-dimensional subspaces: (i) Binaries of varying mass-ratio, but with non-

spinning black holes. (ii) Binaries of black holes with equal-mass and equal-spin, and

with varying spin-magnitude. Future studies, with additional waveforms covering the

gaps that are clearly evident in figure 1 and waveforms including precession [88, 89, 43],

would be useful to more fully understand the response of search codes across the

parameter space, and would help to better tune analytical waveform models including

inspiral, merger and ringdown phases.

3. Modified Detector Noise

In this section we describe the techniques used in this work to emulate data that will be

taken by second generation gravitational wave observatories. This was accomplished by

recoloring data taken from the initial LIGO and Virgo instruments to predicted 2015 –

2016 sensitivities. Recoloring initial LIGO and Virgo data allows the non-Gaussianity

and non-stationarity of that data to be maintained.

The predicted sensitivity curves of the advanced detectors as a function of time can

be found in the living document [2]. For this work we are interested in the sensitivity of

the advanced detectors in 2015 – 2016 and used a previous prediction of the sensitivity

curves for this time period as given in [90] and shown in the left panel of figure 2.

These curves were used as the updated predictions given in [2] were not available when

we began this study. We refer to the 2015 – 2016 predicted noise curves as the early
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Table 1. Summary of the contributions to the NINJA-2 waveform catalog with m1 =

m2. Given are an identifying label, described in section 2, mass-ratio q = m1/m2 which

is always 1 for these simulations, magnitude of the dimensionless spins χi = Si/m
2
i ,

orbital eccentricity e, frequency range of hybridization in Mω, the number of numerical

cycles from the middle of the hybridization region through the peak amplitude, and

the post-Newtonian Taylor-approximant(s) used for hybridization.

Label q χ1 χ2 1000e 100Mω # NR pN

hyb.range cycles Approx

S1-95-95 T1 1.0 -0.95 -0.95 1.00 3.3 – 4.1 18.42 T1

J1-85-85 T1 1.0 -0.85 -0.85 2.50 4.1 – 4.7 12.09 T1

J1-85-85 T4 T4

J1-75-75 T1 1.0 -0.75 -0.75 1.60 4.1 – 4.7 13.42 T1

J1-75-75 T4 T4

J1-50-50 T1 1.0 -0.50 -0.50 2.90 4.3 – 4.7 15.12 T1

J1-50-50 T4 T4

S1-44-44 T4 1.0 -0.44 -0.44 0.04 4.3 – 5.3 13.47 T4

Ll1-40-40 T1 1.0 -0.40 -0.40 6.1 – 8.0 6.42 T1

Ll1-40-40 T4 T4

J1-25-25 T1 1.0 -0.25 -0.25 2.50 4.5 – 5.0 15.15 T1

J1-25-25 T4 T4

Ll1-20-20 T1 1.0 -0.20 -0.20 5.7 – 7.8 8.16 T1

Ll1-20-20 T4 T4

J1+00+00 T1 1.0 0.00 0.00 1.80 4.6 – 5.1 15.72 T1

J1+00+00 T4 T4

G1+00+00 T4 3.00 5.5 – 7.5 9.77 T4

Ll1+00+00 F2 5.7 – 9.4 8.30 F2

S1+00+00 T4 0.05 3.6 – 4.5 22.98 T4

G1+20+20 T4 1 1.0 0.20 0.20 10.00 6.0 – 7.5 6.77 T4

G1+20+20 T4 2 6.00 5.5 – 7.5 10.96 T4

J1+25+25 T1 1.0 0.25 0.25 6.10 4.6 – 5.0 18.00 T1

J1+25+25 T4 T4

G1+40+40 T4 1 1.0 0.40 0.40 10.00 5.9 – 7.5 7.70 T4

G1+40+40 T4 2 6.00 5.5 – 7.5 12.02 T4

Ll1+40+40 T1 7.8 – 8.6 6.54 T1

Ll1+40+40 T4 T4

S1+44+44 T4 1.0 0.44 0.44 0.02 4.1 – 5.0 22.39 T4

J1+50+50 T1 1.0 0.50 0.50 6.10 5.2 – 5.9 15.71 T1

J1+50+50 T4 T4

G1+60+60 T4 1 1.0 0.60 0.60 12.00 6.0 – 7.5 8.56 T4

G1+60+60 T4 2 5.00 5.5 – 7.5 13.21 T4

J1+75+75 T1 1.0 0.75 0.75 6.00 6.0 – 7.0 14.03 T1

J1+75+75 T4 T4

G1+80+00 T4 1.0 0.80 0.00 13.00 5.5 – 7.5 12.26 T4

G1+80+80 T4 1 1.0 0.80 0.80 14.00 5.9 – 7.5 9.57 T4

G1+80+80 T4 2 6.70 5.5 – 7.5 14.25 T4

J1+85+85 T1 1.0 0.85 0.85 5.00 5.9 – 6.9 15.36 T1

J1+85+85 T4 T4

U1+85+85 T1 20.00 5.9 – 7.0 15.02 T1

G1+90+90 T4 1.0 0.90 0.90 3.00 5.8 – 7.5 15.05 T4

S1+97+97 T4 1.0 0.97 0.97 0.60 3.2 – 4.3 38.40 T4
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Table 2. Summary of the contributions to the NINJA-2 waveform catalog with

m1 > m2. Given are an identifying label, described in section 2, mass-ratio q = m1/m2

magnitude of the dimensionless spins χi = Si/m
2
i , orbital eccentricity e, frequency

range of hybridization in Mω, the number of numerical cycles from the middle of

the hybridization region through the peak amplitude, and the post-Newtonian Taylor-

approximant(s) used for hybridization.

Label q χ1 χ2 1000e 100Mω # NR pN

hyb.range cycles Approx

J2+00+00 T1 2.0 0.00 0.00 2.30 6.3 – 7.8 8.31 T1

J2+00+00 T4 T4

G2+00+00 T4 2.50 5.5 – 7.5 10.42 T4

Ll2+00+00 F2 6.3 – 9.4 7.47 F2

S2+00+00 T2 0.03 3.8 – 4.7 22.34 T2

G2+20+20 T4 2.0 0.20 0.20 10.00 5.6 – 7.5 11.50 T4

J2+25+00 T1 2.0 0.25 0.00 2.00 5.0 – 5.6 15.93 T1

J2+25+00 T4 T4

J3+00+00 T1 3.0 0.00 0.00 1.60 6.0 – 7.1 10.61 T1

J3+00+00 T4 T4

S3+00+00 T2 0.02 4.1 – 5.2 21.80 T2

F3+60+40 T4 3.0 0.60 0.40 1.00 5.0 – 5.6 18.89 T4

J4+00+00 T1 4.0 0.00 0.00 2.60 5.9 – 6.8 12.38 T1

J4+00+00 T4 T4

L4+00+00 T1 5.00 5.1 – 5.5 17.33 T1

S4+00+00 T2 0.03 4.4 – 5.5 21.67 T2

S6+00+00 T1 6.0 0.00 0.00 0.04 4.1 – 4.6 33.77 T1

R10+00+00 T4 10.0 0.00 0.00 0.40 7.3 – 7.4 14.44 T4
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Figure 2. Left: predicted sensitivity curves for aLIGO and AdV. Shown are both

the design curves and predicted 2015 – 2016 early sensitivity curves. Also shown

is the early AdV noise curve rescaled such that the horizon distance for a (10 M�,

10 M�) binary system is equal to that obtained with the early aLIGO noise curve.

Right: Horizon distance as a function of observed total mass for the early aLIGO and

rescaled early AdV sensitivity curves. This plot is made considering only equal mass,

non-spinning systems and calculated using the EOBNRv2 [31] waveform approximant.

Results in this paper are generated from the early aLIGO noise curve and the rescaled

early AdV curve.
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sensitivity curves. It is clear from the figure that the predicted sensitivity of early AdV

is significantly greater than that of the early aLIGO curve, when using the predictions

given in [90]. In the right panel of figure 2 we show the distance at which optimally

oriented, optimally located, non-spinning, equal mass binaries would be detected with

a signal-to-noise ratio (SNR) of 8 using both noise curves. This is commonly referred

to as the horizon distance. The early AdV noise curve was rescaled by a factor of 1.61

so that the sensitive distance for a (10 M�, 10 M�) binary merger would be equal to

the early aLIGO noise curve. This rescaling was found to better reflect the updated

predicted sensitivities presented in [2]. The results in this paper are generated using the

early aLIGO and rescaled early AdV sensitivity curves.

As with the initial science runs, we expect data taken from these detectors, in

the absence of gravitational-wave signals, to be neither Gaussian nor stationary. It is

important that search pipelines demonstrate an ability to deal with these features. To

simulate data with advanced detector sensitivities and with realistic non-Gaussian and

non-stationary features, we chose to use data recorded by initial LIGO and Virgo and

recolor that data to the predicted early sensitivity curves of aLIGO and AdV. The data

we chose to recolor was data taken during LIGO’s sixth science run and Virgo’s second

science run.

The procedure for producing such recolored data was accomplished in the following

steps, which were conducted separately for the two LIGO detectors and Virgo.

• Identify a two-month duration of initial detector data to be recolored

• Measure the power spectral density (PSD) for each distinct section of science mode

data using the PSD estimation routines in the lal software package [91].

• Calculate an average PSD over the two month period by taking, for every discrete

value of frequency recorded in the PSDs, the median value over each of the PSDs

in the set.

• Remove any line features from the resulting PSD and from the predicted early noise

curves. This is done because it is difficult to remove or introduce line features from

the data without introducing unwanted artifacts. Therefore it is simpler to remove

line features in the PSDs, which will have the effect of preserving the line features

of the original data into the recolored data.

• For each frequency bin, record the median value of the PSD over each section of

science mode

• Take the ratio of the median PSD and the predicted early advanced detector noise

curve. This is the reweighting to be used when recoloring.

• Using the time domain filtering abilities of the gstlal software package [92], recolor

the data using this reweighting factor.

In figure 3 we show some examples of the PSDs obtained from recoloring the data

and compare with the predicted sensitivity curves. As there are some small stretches of

data in the original science runs where the sensitivity was significantly different from the
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Figure 3. Sensitivity curves of the recolored data for the LIGO Hanford detector

(left) and the Virgo detector (right). In both cases the black dashed line shows the

predicted 2015 – 2016 sensitivity curve (with the scaling factor added for Virgo). The

dark colored region indicates the range between the 10 % and 90 % quantiles of the PSD

over time. The lighter region shows the range between the minimum and maximum of

the PSD over time.
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Figure 4. SNR time series in a 20 s window around a known glitch in the original

data (left) and in the recolored data (right). While the SNR time series clearly change,

the primary features of the glitch are preserved across the recoloring procedure. These

SNR time series were obtained by matched-filtering a short stretch of recolored and

original data against a (23.7,1.3) M� template.

average, we show the 10 % and 90 % quantiles as well as the maximum and minimum

values for the PSD of the recolored data. We notice that the sensitivity of the detector

still varies with time, as in the initial data, and that the lines in the initial spectra are

still present.

Non-Gaussian features present in the original data will still be present in the

recolored data, albeit distorted by the recoloring process. An example of this is shown in

figure 4 where we show the SNR time-series around a known glitch in both the original

and recolored data. While the recoloring does have some effect on the glitch, the two
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SNR time series are very comparable. As in searches on the original data, we attempt

to mitigate the effect of such features. A set of data quality flags were created for the

initial detector data [93, 94]. These attempt to flag times where a known instrumental or

environmental factor, which is known to produce non-Gaussian artifacts in the resulting

strain data, was present. To simulate these data quality flags in our recolored data we

simply used the same flags that were present in the original data and apply them to the

recolored data.

4. Injection Parameters

As an unbiased test of the process through which candidate events are identified for BBH

waveforms, 7 BBH waveforms were added to the recolored data. The analysts were aware

that “blind injections” had been added, however the number and parameters of these

simulated signals were not disclosed until the analyses were completed. This was similar

to blind injection tests conducted by the LIGO and Virgo collaborations in their latest

science runs [46]. These injections are self-blinded to ensure that no bias from knowing

the parameters of the signal, or indeed whether a candidate event is a signal or a noise

artifact, affects the analysis process.

The 7 waveforms added to the data were taken from the numerical relativity

simulations discussed in section 2. The parameters of the blind injections are given

in Table 3. The distribution of physical parameters used in these blind injections was

not intended to represent any physical distribution. Instead, the injections were chosen

to test the ability to recover BBH systems across a wide range of parameter space. We

describe the results of searches for these blind injections in section 6 and of parameter

estimation studies on these signals in section 7.

As well as these blind injections, a large number of (non-blind) simulated signals

were subsequently analyzed to obtain sufficient statistics to adequately evaluate the

sensitive distances at which the NR waveforms could be detected in the early aLIGO

and early AdV simulated data sets. For each of the 60 NR waveforms given in Table 1

and used in results in section 8, a set of ∼ 42000 simulated signals was generated,

necessarily with the same mass ratio and spins as the provided NR waveform. The total

mass was chosen from a uniform distribution between 10 and 100 M�. The simulations

were distributed uniformly in distance, however they were not injected beyond a distance

where they could not possibly be detected. The mass-dependent maximum distance that

we chose to use is given by

Dmax =

( M
1.219M�

)5/6

175 Mpc. (3)

Here 1.219M� is the chirp mass of a (1.4 + 1.4)M� binary system. The factor of M5/6

describes, to leading order, how the SNR of the inspiral-only portion of a compact-

binary merger at fixed distance will scale with mass when the inspiral is bandwidth-

limited[95, 19]. 175 Mpc is chosen because it is larger than the distance at which it

would be possibly to detect a (1.4 + 1.4)M� binary merger with the early noise curves.
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Table 3. The details of the blind injections that were added to the NINJA-2 datasets

prior to analysis. In this table the Event ID will be used throughout the paper to refer

to specific injections. The network SNR of each injection is denoted by ρN. This is

the sum of the overlaps of the injection with itself in each detector, using 30 Hz as the

starting frequency in the overlap integrals. M denotes the total mass and q the mass

ratio. χ denotes the spin on each black hole, in all 7 cases both black holes in the

binary had the same spin. RA and dec give the right ascension and declination of the

signals respectively. Dist. denotes the distance to the source. Detectors online lists

the detectors for which data is present at the time of signal. Hybridization range gives

the range of frequencies in which the signal is hybridized between the post-Newtonian

and numerical components. Waveform label indicates which numerical waveform was

used, as shown in Tables 1 and 2.

Event Waveform M RA Dec. Dist. Detectors Hybrid

ID label ρN q (M�) χ (rad) (rad) (Mpc) Online Range (Hz)

1 J4+00+00 T4 23.9 4 124 0.00 1.26 -0.76 569 HLV 15 – 18

2 Ll1-20-20 T4 14.1 1 35.5 -0.20 1.70 -0.03 244 HLV 52 – 71

3 Ll1+40+40 T4 16.2 1 14.4 0.40 4.18 0.07 170 HLV 175 – 193

4 G2+20+20 T4 15.1 2 26.8 0.20 2.19 -0.36 247 LV 68 – 90

5 L4+00+00 T1 19.2 4 19.1 0.00 1.68 0.14 83 HV 86 – 93

6 J1+25+25 T4 16.9 1 75.7 0.25 4.68 0.49 854 HV 20 – 21

7 J1-75-75 T1 9.8 1 19.3 -0.75 0.81 -0.07 292 HLV 69 – 79

However, to include a large margin for safety ∼ 7000 of the signals were generated

with chirp-weighted distances between 175 and 350 Mpc. The orbital orientations,

polarization angles and sky directions are all chosen from isotropic distributions. The

signal coalescence times are drawn from a uniform distribution within our analysis

window. Coalescence times were limited to times where at least two observatories were

operating and no data-quality flags were active. The results of analyses on the non-blind

simulated signals are given in section 8.

5. Search Pipelines

The goal of this work was to evaluate the detection sensitivity to binary black hole

systems, modelled from the latest numerical simulations, using the search pipelines that

were used to search for gravitational-wave transient signals in data taken during the

final initial LIGO and Virgo joint observing run. The two pipelines that were used to

do this were the dedicated compact binary coalescence (CBC) search pipeline “ihope”

[96, 97, 98, 46, 37, 44] and the unmodelled burst pipeline “Coherent WaveBurst” (cWB)

[99, 100, 45, 101]. The ihope pipeline was developed as a search pipeline for detecting

compact binary mergers. It employs a matched-filtering algorithm against a bank of

template waveforms [44]. The ihope pipeline was used to search for CBC systems (not

just binary black holes) with component masses ∈ [1, 99] M�. As a complement to

template-based specialized searches, cWB was developed as an all-purpose un-modeled
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search pipeline, hence, it does not require a priori knowledge of the signal waveforms. It

is better suited for burst signals spanning a small time-frequency volume. Moreover, due

to the lack of model constraints, cWB is more adversely affected by background noise

than matched-filter searches. Past simulation studies with initial LIGO sensitivity curves

have shown that cWB was sensitive to CBC mergers with total masses ∈ [25, 500] M�
over wide regions of the binary parameter space [102].

In addition to the ihope and cWB detection pipelines we also use parameter

estimation algorithms to provide estimates of the parameters of compact binary systems

observed with the detection algorithms. In the following section we provide a brief

overview of the detection and parameter estimation pipelines. The results of running

these searches on the data containing the NINJA-2 blind injections are presented in

section 6 and parameter estimation results given in section 7.

5.1. Coherent WaveBurst

Coherent WaveBurst is a multi-resolution algorithm for coherent detection and

reconstruction of gravitational wave bursts [22]. The cWB algorithm has been used

in various LIGO-Virgo burst searches [99, 100, 45] and more recently in the search for

intermediate mass black hole binaries [101]. Within the framework of the constrained

maximum likelihood analysis [22], cWB identifies GW signals in data from multiple

detectors and provides estimates of the signal parameters, e.g. sky location and

waveforms. Along with the reconstruction of un-modeled burst signals, which imply

random polarization, cWB can perform loosely modeled likelihood analyses assuming

different polarization states, i.e. elliptical, linear or circular.

The NINJA2 cWB analysis uses the elliptical polarization constraint [102, 101] and

searches for signals in the frequency band from 32 Hz to 1024 Hz. The analysis is

performed in several steps: first, the data streams from all GW detectors are processed

with the Meyer’s wavelet transformations with 6 different time-frequency resolutions of

4×1/8, 8×1/16, 16×1/32, 32×1/64, 64×1/128, 128×1/256 [Hz × s]. Then the data

are conditioned with a linear predictor error filter to remove power lines, violin modes

and other predictable data components. Triggers are reconstructed as the coherent

sets of samples (pixels) identified in the time-frequency data. For each trigger the

coherent statistics are then computed. These include the network correlation coefficient,

cc and the network energy disbalance, Λ, which are used to enable the signal consistency

selection cuts. The cWB detection statistic is the coherent network amplitude, η, which

is used to rank the events and thereby establish the significance against a sample of

background events obtained with the time-shift analysis [22, 101, 102]. This shifting

procedure is typically performed thousands of times in order to accumulate sufficient

statistics.
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5.2. ihope

The ihope pipeline is designed to search for gravitational waves emitted by coalescing

compact binaries [44]. It has been optimized for and used in LIGO and Virgo GW

searches over the past decade [103, 96, 97, 104, 46, 37], and also in the mock Laser

Interferometer Space Antenna (LISA) data challenges [105]. The NINJA-2 ihope

analysis uses the same pipeline-tuning that was used in the searches performed during

the final initial LIGO and Virgo joint observing run [46].

The pipeline matched-filters the detector data against a bank of analytically

modelled compact binary merger waveforms [19, 44]. Only nonspinning compact binary

merger signals are used as filters and the bank is created so as to densely sample the

range of possible binary masses [106]. For each detector, the filtering stage produces a

sequence of triggers which are plausible events with a high signal to noise ratio SNR ρ.

The algorithm proposed in [107] is used to keep only those that are found coincident in

more than one detector across the network, which helps remove triggers due to noise.

Knowledge of the instrument and its environment is used to further exclude triggers that

are likely due to non-Gaussian noise transients, or glitches. Periods of heightened glitch

rate are removed (vetoed) from the analysis. The time periods where the rate of glitches

is elevated are divided into 3 veto categories. Periods of time flagged by category 1 and

2 vetoes are not included in the analysis as known couplings exist between instrumental

problems and the gravitational-wave channel during these periods. Periods of time

vetoed at category 3 are likely to have instrumental problems. A strong gravitational-

wave signal can still be detected during category 3 times, but including these periods

in the background estimate can compromise our ability to detect weaker signals in less

glitchy periods of time. For this reason the search is performed both before and after

category 3 vetoes are applied. The significance of events that survived category 1-3

vetoes were calculated using the background that also survived categories 1-3. The

significance of events that survived category 2 but were vetoed at category 3 were

calculated using background that survived categories 1-2.

Signal based consistency measures further help distinguish real signals from

background noise triggers in those that are not vetoed and pass the coincidence test.

The χ2 statistic proposed in [108] quantifies the disagreement in the frequency evolution

of the trigger and the waveform template that accumulated the highest SNR for it, c.f.

Eq. (4.14) of [108]. We weight the SNR with this statistic to obtain the reweighted SNRs

for all coincident triggers. The exact weighting depends on the mass range the search is

focused on, c.f. Eq. (17,18) of [44]. The reweighted SNR is used as the ranking statistic

to evaluate the significance, and thus the false alarm rate (FAR), of all triggers.

Following the division of the mass-parameter space used in [46, 37], we performed

both low mass and high mass ihope searches on the NINJA-2 data. The low-mass

search focused on binaries with 2M� ≤ m1 + m2 < 25M�, and used frequency domain

3.5PN waveforms as templates [109, 110, 111]. The high-mass search instead focused on

the mass-range 25M� ≤ m1 + m2 < 100M�, and used the effective-one-body inspiral-
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merger-ringdown model calibrated to numerical relativity, as described in [29]. The exact

χ2-weighting used to define the re-weighted SNR varied between the two analyses [44].

The significance of the triggers found by both was estimated as follows. All coincident

triggers are divided into 4 categories, i.e. HL, LV, HV and HLV, based on the detector

combination they are found to be coincident in [46]. They are further divided into 3

mass-categories based on their chirp mass Mc = (m1m2)3/5(m1 + m2)−1/5 for the low-

mass search, and 2 categories based on their length in time for the high-mass search [46].

The rate of background noise triggers, or false alarms, has been found to be significantly

higher for shorter signals from more massive binaries, and also to be different depending

on the detector combination, and these categorizations help segregate these effects for

estimation of the background [46, 44]. For all the triggers the combined re-weighted SNR

ρ̂ is computed, which is the quadrature sum of re-weighted SNRs across the network of

detectors. All triggers are then ranked in each of the mass and duration sub-categories

independently according to their ρ̂, allowing us to put a limit on the trigger false alarm

rate (FAR) at a given threshold ρ̂ = ρ̂0. This is described by

FAR (ρ̂0) ≤ N(ρ̂ ≥ ρ̂0) + 1

Tc
, (4)

where N(ρ̂ ≥ x) is the number of background noise triggers with ρ̂ greater than or

equal to x, and Tc is the total time analyzed for that coincidence category. From

4, the smallest FAR we can estimate is 1/Tc, and to get a more precise estimate

for our detection candidates we simulate additional background time. We shift the

time-stamps on the time-series of single detector triggers by ∆t relative to the other

detector(s), and treat the shifted time-series as independent coincident background time.

All coincident triggers found in the shifted times would be purely due to background

noise. We repeat this process setting ∆t = ±5s,±10s,±15s, . . ., recording all the time-

shifted coincidences, until ∆t is larger than the duration of the dataset itself. With

the additional coincident background time Tc accumulated in this way, we can get a

more precise estimate of the low FARs we expect for detection candidates, which are

described in detail in section 6.2.

5.3. Parameter estimation

The detection methods described above produce times of interest where a gravitational

wave may be present in the data (i.e. triggers), along with point estimates of the

compact object masses from the signal, independently in each detector. These triggers

are followed up with the goal of estimating the posterior probability density function

of the parameters that describe the signal and to evaluate the evidence of different

waveform models. In order to do so, we use Bayesian methods, in which the data from

all detectors are analysed coherently.

The Bayesian parameter estimation algorithms used in this work provide estimates

of the posterior probability distribution function. The probability of a set of parameters
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~θ under a model M given the observed data d can be written as

p(~θ|d,M) =
p(~θ|M)p(d|~θ,M)

p(d|M)
. (5)

Here p(d|~θ,M) is the likelihood of observing the measured data given the set of

parameters ~θ, and p(d|M) is the marginal distribution of the data under model M ,

commonly referred to as the evidence. When only concerned with parameter estimation

the evidence is a normalization constant that can be ignored. It becomes relevant

however, when comparing how well two models do in describing the observed data. By

marginalizing over all model parameters the evidence is obtained

p(d|M) =

∫
p(~θ|M)p(d|~θ,M)d~θ. (6)

Given the evidence of two competing models, M1 and M2, the support for M1 over M2

can be quantified via the Bayes factor

B12 =
p(d|M1)

p(d|M2)
. (7)

These techniques require the generation of ∼ 106 − 107 model waveforms to probe

the 9 (for non-spinning black holes) to 15 (for fully spinning black holes) dimensional

parameter space of compact binary systems in circular orbit, making it infeasible at

present to use numerical relativity simulations. Instead approximate models (e.g. post-

Newtonian, effective one-body) that are computationally cheaper to produce are used

to estimate the parameters of a measured signal. Numerous studies have assessed the

statistical uncertainty in compact binary parameter estimates [112, 113, 114, 115], which

use the same approximate model for injection and analysis. Few studies have been

done to quantify the systematic uncertainty in parameter estimates due to the use of

these approximate models [116, 117]. Numerical relativity simulations provide us with

the most accurate waveforms currently available, making them ideal for quantifying

the systematic uncertainties inherent with using approximate models. This mock data

challenge is the first time such a study has been conducted using models that account

for the component angular momenta of the compact objects.

The Markov Chain Monte Carlo sampler lalinference mcmc [118, 119], and two

nested sampling implementations lalinference nest [114] and MultiNest [120] from

the LALInference package of the LSC Algorithm Library [91] were used to follow

up GW candidates from the detection search pipelines. Due to the computational

burden, we carried out the analysis with lalinference mcmc, and as a consistency

check for selected candidates and waveforms posterior estimates were also obtained

with lalinference nest and MultiNest. For model comparisons we have calculated

the evidence by marginalizing each posterior estimate using thermodynamic integration.

Each candidate was analyzed using two distinct waveform models: PhenomB and

EOBNRv2. Both models describe the IMR phases of the GW from a compact binary

merger. EOBNRv2 models non-spinning binaries using the effective-one-body (EOB)

that re-sums the PN dynamics and energy flux, and describes the merger-ringdown
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signal as a superposition of quasi-normal modes [31]. PhenomB is a phenomenological

model with a PN description of the inspiral phase building up on test-mass terms to

2PN order, fit to a set of spinning and non-spinning PN-NR hybrid waveforms [33].

Waveforms are generated in the frequency domain and model binaries with component

spins aligned with the orbital angular momentum through a single spin parameter

χ ≡ (1 + δ)χ1/2 + (1 − δ)χ2/2. Here δ ≡ (m1 − m2)/M and χi ≡ Si/m
2
i , where Si

denotes the angular momentum of the ith component of the binary, and M the total

mass of the system.

The mass-ratio dependent and higher order terms used in PhenomB are calibrated

to PN-NR hybrids that cover the late-inspiral, merger and ringdown. Therefore the

accuracy of the model is expected to decline with decreasing total mass, as the inspiral

phase of the waveform becomes a larger fraction of the total SNR of the signal, especially

for comparable mass binaries. At the time of the analysis however, it was the only IMR

waveform, including spin effcts, that was computationally feasible for use, making it the

most physically relevant waveform for the analysis. EOBNRv2 is more computationally

expensive, but has been shown to be accurate enough for uncertainties in parameter

estimates to be dominated by statistical error, rather than systematic [121]. It only

models binaries with non-spinning components however, so the model is only relevant

for non-spinning injections. SEOBNRv1 is the successor to EOBNRv2 that accounts for

(aligned) spin [32], however it is currently too computationally expensive to be used for

parameter estimation.

Due to the lack of astrophysical constraints on compact binary systems, it is difficult

to physically motivate any particular choice for the prior distribution of the intrinsic

parameters (i.e. masses and spins). For this study we have chosen to use distributions

that are uniform in component masses and component spin magnitudes over the range

of parameter values being injected. The prior distribution was also flat in coalesence

time across a 200 ms window centered on the trigger time, isotropic in orientation angles

(e.g. inclination), and volumetric, giving equal prior probability to all spatial locations.

6. Blind Injection Challenge Results

In this section we present the results of using the detection pipelines described in section

5 to search for the blind injections listed in Table 3.

6.1. Coherent WaveBurst

For the NINJA2 cWB analysis it was decided a priori to search for GW bursts in the

entire available times during which all three detectors were operating (17.9 days) and

to discard the remaining times. First the search was performed on a total of 12,000

time-lagged observation times, accumulating 563.7 years of effective background live

time. The background events that survived the data quality and analysis selection cuts

(i.e. cc > 0.7 and Λ < 0.4) were used for calculation of the significance of candidate
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Table 4. The cWB search and follow-up results. The Event Labels correspond to

those of each blind injection given in Table 3. This association is based on the time

of the candidates relative to the time of the injections. M denotes the total mass.

The false alarm probability, FAR, and false alarm probability, FAP, of each event are

estimated by comparison with the empirically-calculated background distribution of

the corresponding network of detectors. All but the first event are well within the

bulk of the corresponding FAR distributions. η is the network correlated amplitude,

which is the main cWB detection statistic. The injected network SNR (ρnetinj ) is the

square root of the quadratic sum of the optimal SNR in each detector. The recovered

network SNR (ρnetrec) is the cWB estimate of the injected network SNR. Events 5 and

7 were completely missed due to a low reconstructed SNR and/or because of nearby

noise glitches.

Event

ID

Event

Label
M

1/FAR

(yr)
FAP Network η ρnetrec ρnetinj

1 J4+00+00 T4 124 47 0.001 HLV 7.1 22.1 22.8

2 Ll1-20-20 T4 35.5 - - HLV 2.8 9.1 13.9

3 Ll1+40+40 T4 14.4 - - HLV 2.7 9.2 15.7

4 G2+20+20 T4 26.8 - - LV 1.6 7.4 14.1

5 L4+00+00 T1 19.1 - - HV - - 18.5

6 J1+25+25 T4 76.7 - - HV 2.0 13.8 15.9

7 J1-75-75 T1 19.3 - - HLV - - 9.5

events. This background sample contains all reconstructed events, most of which do not

resemble expected compact coalescence waveforms, as we do not enforce any waveform

model. As a result, our background distribution is populated by relatively high signal-

to-noise ratio events.

After completing the background analysis, the zero lag live time was analysed.

The search detected an on-source event showing a chirping waveform compatible with

a compact binary coalescence at a SNR ∼ 22.1 and η = 7.1 . The FAR of the candidate

was estimated at ∼ 1/47 yr−1 from comparison with the burst reference background,

yielding a false alarm probability (FAP) of ∼ 0.001. After the parameters of the blind

injections were disclosed, this event was revealed to be the first blind injection of Table 3.

As a follow-up analysis, we investigated a posteriori all the times of the blind injections,

as well as those on 2-fold exclusive live time. We found that the rest of the injected

signals are either reconstructed with extremely low η or missed, see Table 4. For massive

systems, such as events 1 and 6, the cWB algorithm recovers a large fraction of the

injected signal-to-noise ratio. For lighter binaries, as expected, the algorithm is largely

sub-optimal ‡.
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Table 5. The ihope search results. The Event IDs correspond to the Event ID of each

blind injection given in Table 3; this association is based on the time of the candidates

relative to the time of the injections. The FARs are calculated from all possible 5 s

time shifts in a two-week period surrounding each event. M and q give the total mass

and mass ratio respectively that were recovered in each detector. The recovered SNR

(ρrec) and re-weighted SNR (ρ̂) are reported separately for each detector. To calculate

FARs the quadrature sum of ρ̂ was used. Unless noted, FARs were calculated after

category 1-3 vetoes were applied.

Event

ID

1/FAR

(yr)
Detectors M q ρrec ρ̂ Search

1 ≥ 6200
H

L

99.8

94.7

24.7

13.8

18.6

14.5

12.3

13.2
High mass

2 ≥ 10000∗
H

L

V

37.1

42.7

40.3

3.22

3.99

2.47

6.6

9.6

9.2

4.9

9.6

9.2

High mass

3
≥ 23000

L

V

13.8

14.2

1.15

1.41

12.4

5.9

11.6

5.2

Low mass

Cat. 3

≥ 5800†
H

L

V

13.7

13.8

14.2

1.15

1.15

1.41

7.9

12.4

5.9

7.5

11.6

5.2

Low mass

Cat. 2

4
≥ 31000

L

V

24.8

25.5

1.14

1.55

9.0

12.4

8.7

12.4
High mass

≥ 23000
L

V

25.0

25.0

1.80

1.43

8.5

10.9

8.5

9.2
Low mass

5 ≥ 21000
H

V

19.5

22.2

4.27

6.24

16.2

8.8

15.6

8.1
Low mass

6 ≥ 37000
H

V

72.4

65.8

5.19

1.19

10.6

14.7

10.6

12.0

High mass

Cat. 2

7 Not found

∗ Only used LV triggers for computing significance of this event; see section 6.2.
† Only used HL triggers for computing significance of this event; see section 6.2.

6.2. ihope

The results of the low-mass and high-mass ihope searches are presented in Table 5.

The Event IDs correspond to the Event IDs of the blind injections in Table 3. The

mapping between the ihope candidates and the blind injections is based on the event

times of each. All injections except for injection 7 were found with high significance in

one or both searches. Event 7 was missed because the injection’s SNR was too small to

be detected by the pipeline. The optimal SNR of this injection — obtained by finding

the overlap of the injection with itself — was 5.7 in H, 6.0 in L, and 5.3 in V, giving a

network SNR of 9.8. However, the injected SNR in Virgo was below the SNR threshold

‡ Lately, a lot of work has been devoted to extend the sensitivity of the algorithm to lower total masses,

which is part of the on-going upgrades of cWB.
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used by the ihope pipeline (= 5.5). This means that, at best, the event could only

surpass threshold in H and L, giving a maximum recoverable network SNR of 8.2; the

false alarm rate at this network SNR is order 103 per year.

For this analysis we used the same vetoes as were used in [46] and [37] applied to the

corresponding times in the recolored data. After veto categories 1-3 were applied, the

total analyzed time consisted of 0.6 days of coincident HL data, 5.4 days of coincident

LV data, 6.5 days of coincident HV data and 8.9 days of coincident HLV data. FARs

were calculated in each bin using the time-shift method described in section 5.2, then

combined over all bins.

Table 5 also gives the total masses and mass ratios that were recovered by the

ihope pipeline in each detector for each candidates. We see that the values reported by

ihope can vary substantially from the injected parameters. This is not surprising: many

of the injections had spin, and one injection (Event 1) was outside of the mass range

covered by the template bank. We also see that the high-mass search deviates from the

actual mass parameters more than the low-mass search. This, too, is expected since the

template bank in the high-mass search is more sparsely populated. In general, templates

are placed in ihope so as to maximize detection probability across the parameter space

while minimizing computational cost. ihope therefore only provides a rough estimate

of candidate parameters. For more precise estimates we use the parameter estimation

techniques described in section 5.3, the results of which are presented in section 7. For

compact binary systems where most of the SNR is obtained from the inspiral, ihope is

expected to give a good estimation of the chirp mass of the system [122, 123, 48]. For

the lowest mass systems in this study, ihope is not recovering the chirp mass to within

5% accuracy. For the higher mass systems the error on the chirp mass recovered by

ihope grows to over 100% for event 1.

The greatest concern for a detection pipeline like ihope is whether the mismatch

between templates and signals is small enough so as not to lose a substantial amount of

re-weighted SNR. The templates used in this search were able to recover enough SNR

of the blind injections to make them stand significantly above background. One might

think that the majority of the recovered SNR comes from templates matching the PN

part of the injected waveforms. However, figure 5 shows the SNR recovered by ihope in

the PN and NR parts of the injections as a fraction of the total available SNR. We see

that most of the available NR SNR is recovered in every event even though template

waveforms did not have merger and ringdown (in the case of events recovered by the

low-mass search), or were not calibrated to these particular numerical waveforms (in

the case of events recovered by the high-mass search). To more rigorously determine

what effect mismatch between templates and signals may have on detection sensitivity,

we perform a large scale injection campaign with the NINJA-2 waveforms in section 8.

Initially we used 100 time shifts to identify candidate events. All of the coincident

events associated with the blind injections were louder than all background in the 100

time shifts. These were the only events to be louder than all background. Using 100

time shifts we could only bound the FAR of the events to . 10 yr−1, which is not small
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enough to claim a detection. To improve our estimate, we performed as many 5 s time

shifts as possible in the NINJA-2 dataset. This is the same method that was used for

the blind injection described in [46].

Two blind injections were found in all three detectors: Event 2 in the high-mass

search and Event 3 in the low-mass search (before category 3 vetoes were applied).

Estimating background using the extended slide method with three detectors adds

computational complexity, and has not previously been performed (the blind injection

in [46] was only coincident in two detectors). However, in both Events 2 and 3 one of

the three detectors had significantly less ρ̂ than the other two (H in Event 2 and V in

Event 3). We therefore did not include the detector with the smallest ρ̂ when estimating

the extended background for these two events.

Event 6 was vetoed at category 3. We therefore calculated its significance only after

the first two veto categories were applied. All of the other events survived category 3

vetoes. Näıvely, we expect these events to have lower FARs if their significance is

calculated after categories 1-3 have been applied. However, for Event 3 the trigger in

the H detector was vetoed at category 3, leaving only L and V. Since the H trigger

contributed a substantial amount of the combined re-weighted SNR, we might expect

the resulting FAR to be higher for this event after category 3. A method to deal with

partially vetoed events like this has not been proposed. We therefore simply report both

results here.

Event 4 was found with high significance by both the high-mass and low-mass

searches. This is not surprising as the injected total mass was 26.8 M�, which is close

to the boundary between the two searches. Currently no method has been established

on how to combine the results from the low-mass and high-mass searches. We therefore

give both results here.

7. Parameter Estimation Results

For each of the blind injections described in section 4 and 6, parameter distributions

were estimated using both non-spinning and spin-aligned models, as functions of eleven

and nine parameters, respectively. PhenomB was used both as an aligned-spin model, as

well as a non-spinning model by fixing the effective spin χ to 0, which we will refer to

as PhenomBχ=0. In addition, the EOBNRv2 model was used as an additional non-spinning

waveform (see section 5.3 for model descriptions). From these posterior estimates, one

can determine the marginalized distributions in parameters of interest, as well as the

evidence for the given model (see eq. (6)).

Figure 6 shows the 95% credible region of the marginalized posterior in component

mass space for the non-spinning and spinning models. The credible region is

systematically larger for the spinning model due to the strong degeneracy between the

mass ratio and spin magnitude for aligned-spin models [47, 48], illustrated in figure 7.

In a real detection scenario, we can never be certain that a source contains only non-

spinning components. Therefore to evaluate the ability to distinguish between ‘typical’
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Figure 5. SNR recovered by ihope as a fraction of total available SNR in each

detector for each found injection. Hatched bars give the percentage of available SNR

in the PN part of the injection; solid bars give the percentage of available SNR in

the NR part. Color bars indicate the amount of SNR recovered by ihope. “LM”

indicates events recovered by the low-mass search — which used 3.5PN waveforms for

templates — “HM” indicates events recovered by the high-mass search — which used

EOBNRv1 waveforms for templates. The PN SNR is determined by terminating the

matched filter at the frequency half-way between the hybridization range; the NR part

is given by filtering from that frequency and up. Remarkably, both the low-mass and

high-mass searches recovered most of the NR SNR despite the templates not having

merger and ringdown (low mass) or not calibrated to the numerical waveforms used

for the injections (high mass).

stellar-mass black holes and those occupying the mass gap (∼ 3−5M�), we must restrict

our attention to the spinning PhenomB model. Event 3 is a spinning system where

both components have a mass of 7.18 M�. Despite being well above the mass gap, the

degeneracy of the spinning model results in constraining the lower-mass component to be

outside of the mass gap with only 46% confidence. Event 5, on the other hand, contains

a lower-mass component well inside the mass gap, with a mass of 3.83 M�. Knowing a

priori that this is a non-spinning system, we would be able to constrain the mass to be

within the gap with 100% certainty. However, when including spin, the PhenomB model

only constrains it to be within the gap with 21% certainty. The estimates of the masses

and spin are summarized in Table 6. These results highlight the need to take spin into

account when making any statements about compact object mass from GW data. We

note that spin-aligned systems are the most extreme case of this degeneracy; if spins

are mis-aligned with respect to the binary angular momentum the binary precesses,

which causes phase and amplitude modulations in the observed waveform. This effect
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Figure 6. The 95% credible regions for the EOBNRv2 (blue), PhenomBχ=0 (red), and

PhenomB (green) models. Injected values are indicated by the “x” and the neutron star

and mass gap regions are indicated where relevant. A strong degeneracy between spin

and mass ratio results in systematic biases and artificially strong constraints on mass

estimates when spin is ignored (i.e. EOBNRv2, PhenomBχ=0). By accounting for spin

the PhenomB model produces estimates consistent with the injected sources.
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Figure 7. The 90% (dashed), 95% (solid), and 99% (dotted) credible regions of the

two-dimensional marginalized posterior for the mass ratio and effective spin χ using

the PhenomB model. The strong correlation between mass ratio and spin is responsible

for the systematically weaker constraints placed on component masses when analyzing

signals with an aligned-spin model.

provides additional information to break the degeneracy between masses and spins that

may result in tighter constraints on the component masses. However, we expect the
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Figure 8. (a) shows a spectrogram of the noise in Hanford centered on the end

time of the injection (before the blind injection is added). A non-Gaussian feature is

present with peak energy slightly after the end time of the injection. (b) shows the

95% credible regions for the EOBNRv2 analysis of the event 1 injection in real noise

(solid) and noiseless data (dashed). Injected values are indicated by the “x”. The fact

that the injected values are well outside of the 95% credible region when real noise is

present, and not in noiseless data, leads to the conclusion the non-Gaussian feature in

the noise led to significant systematic biases in parameter estimates.

exact details to depend on the actual parameters of the observed systems (masses, spins

and orientation of the angular momenta), and studies are ongoing to address this issue.

If the waveform and noise models exactly describe the data, then these Bayesian

credible intervals would be equivalent to frequentist confidence intervals, meaning that

the true parameters would fall within the 95% credible interval, for example, for 95% of

injections. Any errors in the models however, will introduce systematic biases that break

this equivalence. In these analyses such biases could be introduced both by the use of

model waveforms that only approximate those that were injected, and by our assumption

that the noise is purely Gaussian. Since the noise used for this study is real (recolored)

noise recorded by the initial LIGO and Virgo detectors, the non-Gaussianities inherent

with real noise can introduce bias to the parameter estimates [124]. Such biases are most

apparent in the first event. This non-spinning injection was loud enough that systematic

uncertainties between the numerical relativity and EOBNRv2 waveforms should be less

than the statistical uncertainty [121]. Omega scan [125] spectrograms show there to be

a significant glitch in the Hanford detector at the time of the injection (see Fig. 8(a)).

An additional MCMC analysis was performed on the same injection made into noiseless

data, using the same PSD as estimated for the event 1 analysis. Figure 8(b) shows the

95% credible region of this analysis to indeed constrain the injected values, leading to

the conclusion that the non-Gaussian features of the detector noise led to significant

systematic biases. Such biases, to varying degrees, are likely for any signal in noise that

is not properly modeled. It will be crucial for better noise models to be implemented

before the first detections in order to avoid these biases in parameter estimates.
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Figure 9. (Top) Evidences for the non-spinning (EOBNRv2 and PhenomBχ=0) and

spin-aligned (PhenomB) models. (Bottom) Bayes factors showing the support for the

spin-aligned model over the non-spinning PhenomBχ=0 model. Events 3 and 4 are found

to be spinning with high certainty. Event 7, with the largest spin magnitude, has little

support for spin, though this is likely due to its low SNR.

The top of figure 9 shows the evidence for each model for the events analyzed.

From the non-spinning (PhenomBχ=0) and spinning (PhenomB) evidences, the support

for the presence of spin in each signal can be quantified using the Bayes factor, defined

in equation (7). The bottom of figure 9 shows the Bayes factor and associated error

estimates.

These model comparisons show strong support for the presence of spin for events 3

(χinj = 0.4) and 4 (χinj = 0.20). Event 7 had the greatest spin magnitude at χinj = −0.75,

however analyses showed little evidence of it. This can likely be attributed to the low

network SNR of event 7 (see table 3), which was partly due to the faster phase evolution

of systems with spins counter-aligned to the orbital angular momentum [126].

There has been much work done to quantify the ability of ground-based detectors to

localize GW sources on the sky [127, 2, 128, 129]. The accuracy of such localizations will

be important for triggering electromagnetic (EM) followup of GW detections. Though

most of this sky-localization work has focused on binary neutron star mergers due to

their likely association with short gamma ray bursts [130, 131, 132] and numerous other

proposed emission mechanisms (e.g. r-process [133], etc.), there is still much to be

learned from accurate binary black hole merger localization. Since such mergers have

never been observed, the possibility of an unexpected EM emission mechanism warrants

the EM followup of the first detections.
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Figure 10. 95% credible regions for the sky position of all seven events, using

the EOBNRv2 (blue), PhenomBχ=0 (red), and PhenomB (green) models. Despite the

substantial differences between these models, their sky localization ability is very

consistent.

Figure 10 shows the two dimensional marginalized distribution for the sky position

of each event. Estimates of each sky position and the areas of the 95% credible regions

are given in Table 7. The constraints on sky position are remarkably consistent across
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Table 6. Summary of the mass and spin estimates for events 1-7 for each of the

models used. Median values are quoted along with the upper and lower bounds of the

95% credible intervals. The injected values for each event are included for reference.

Event
Model

m1 (M�) m2 (M�) χ

ID Median True Median True Median True

1

PhenomB 79.568.6
93.6

99.2

58.236.7
71.6

24.8

−0.184−0.417
0.128

0PhenomBχ=0 81.372.6
96.1 63.140.2

72.7 -

EOBNRv2 83.274.1
96 64.337.7

74.8 -

2

PhenomB 22.117.4
37.8

17.8

13.68.43
17.3

17.8

−0.18−0.37
0.0999

−0.2PhenomBχ=0 32.220.1
36.8 9.828.15

16.8 -

EOBNRv2 27.919.9
33.2 11.89.32

17.5 -

3

PhenomB 117.32
26.2

7.18

4.822.55
7.04

7.18

0.4970.415
0.923

0.4PhenomBχ=0 7.646.83
9.16 6.045.04

6.75 -

EOBNRv2 11.911.5
12.6 3.913.7

4.03 -

4

PhenomB 19.812.9
82.6

17.9

8.262.78
12.4

8.95

0.2940.161
0.862

0.2PhenomBχ=0 13.412.3
15.8 11.29.46

12.2 -

EOBNRv2 13.312.4
15.4 11.59.89

12.3 -

5

PhenomB 9.127.38
16.9

15.3

5.93.57
7.22

3.83

−0.36−0.434
0.1

0PhenomBχ=0 15.114.3
15.6 3.893.75

4.09 -

EOBNRv2 1514.5
15.4 3.923.81

4.05 -

6

PhenomB 42.435.9
54.4

37.9

32.524.4
38.9

37.9

0.2770.0582
0.468

0.25PhenomBχ=0 39.233.1
49.7 27.521

32.7 -

EOBNRv2 40.133.9
51 27.719.5

33.7 -

7

PhenomB 16.310.1
39.8

9.67

6.273.18
9.61

9.67

−0.332−0.673
0.286

−0.75PhenomBχ=0 24.818.1
29.7 4.453.61

7.17 -

EOBNRv2 23.113.3
25.7 4.84.22

9.62 -

the models used. This is of great importance for low latency sky localization efforts,

where time is of the essence. These results suggest that the more physically accurate, and

computationally expensive, waveform models do not provide significantly more precise

or accurate estimates of source sky positions.

8. Sensitivity evaluation

A large set of simulated signals, distributed as described in section 4, was used to assess

the sensitivity of the pipelines to observe numerical relativity signals buried in data

taken from Initial LIGO and Initial Virgo and recoloured to predicted early advanced

detector observing runs, as described in section 3. Here, we use the CBC search pipelines

(low-mass and high-mass ihope) to assess search efficiency in the chosen mass region:

total mass between 10 and 100 solar masses.
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Table 7. Summary of the sky location estimates for events 1-7 for each of the models

used. Median values are quoted along with the upper and lower bounds of the 95%

credible intervals, as well as the area of the 95% credible regions in the sky. The

injected values for each event are included for reference.

Event
Model

α δ Sky Area

ID Median True Median True (sq. deg.)

1

PhenomB 1.281.23
1.33

1.26

−0.767−0.807
−0.684

−0.757

32.4

PhenomBχ=0 1.271.22
1.32 −0.764−0.803

−0.712 26.6

EOBNRv2 1.261.21
1.32 −0.763−0.801

−0.722 22.5

2

PhenomB 1.671.6
1.74

1.7

0.0402−0.0877
0.163

−0.0276

103

PhenomBχ=0 1.671.6
1.74 0.0453−0.0827

0.163 100

EOBNRv2 1.671.6
1.74 0.0406−0.0921

0.164 100

3

PhenomB 4.214.17
4.26

4.18

0.00761−0.0587
0.086

0.0684

41.7

PhenomBχ=0 4.244.18
4.29 −0.0377−0.11

0.0776 65.7

EOBNRv2 4.244.17
4.3 −0.0388−0.126

0.0761 80.0

4

PhenomB 2.192.01
2.41

2.19

−0.333−0.441
−0.132

−0.36

430

PhenomBχ=0 2.32.08
2.45 −0.36−0.459

−0.197 301

EOBNRv2 2.32.06
2.45 −0.344−0.451

−0.14 470

5

PhenomB 1.841.72
2.6

1.68

0.3760.193
0.44

0.144

215

PhenomBχ=0 1.851.74
2.62 0.3770.209

0.45 199

EOBNRv2 1.861.74
2.63 0.3890.223

0.455 150

6

PhenomB 4.54.44
5.78

4.68

0.141−0.247
0.521

0.49

207

PhenomBχ=0 4.524.44
5.84 0.233−0.241

0.542 294

EOBNRv2 4.564.44
5.85 0.309−0.192

0.551 342

7

PhenomB 0.830.684
1.67

0.806

−0.121−0.532
0.159

−0.0736

551

PhenomBχ=0 0.8360.662
1.84 −0.117−0.595

0.17 716

EOBNRv2 0.8360.653
1.02 −0.135−0.495

0.0922 627

Each signal in these large simulation sets was added at a random time to the 2-

month period of recolored data. Coalescence times were limited to times where at least

two observatories were operating and no data-quality flags were active. We then search

for each signal using the ihope pipeline, as described in section 5. In the plots that

follow we treat a simulated signal as “detected” if there was no louder background event

in the 100 time-slide trials that were performed to estimate the search background. As

two ihope searches are performed, “low-mass” and “high-mass”, we treat simulated

signals as detected if either search recovers the signal with more significance than its

corresponding 100 background trials.

The results of the injection campaign are summarized in figure 11, which shows the

dependence of the search sensitive distance on the chosen NR waveform and the total

mass value. The sensitive distance is defined as the volume-weighted average distance
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Figure 11. Volume-weighted average sensitive distance as a function of total mass, for

a variety of NR waveforms. The sensitive distance is defined as the volume-weighted

average distance up to which a CBC signal with a given waveform and total mass

can be detected, where we average over the source extrinsic parameters and over

the varying detector noise levels in the data set via Monte Carlo integration. Top

left—Waveforms with equal component masses and various spins. Here the dotted

lines represent predicted performances if an aligned-spin search had been performed.

Details of this prediction are given in section 8. Top right—Waveforms with zero

component spins and various mass ratios. Bottom left—Waveforms with equal-mass,

non-spinning components. The dashed black line represents the predicted sensitivity

curve of non-spinning waveforms with the aLIGO sensitivity curve, as described in

8. The dotted black line represents the predicted sensitivity with tha AdV sensitivity

curve. Bottom right—Waveforms with unequal spins, or unequal component masses

and non-zero spins. The waveform designations are given in Table 1. These plots

were generated using the data described in section 3 and the distribution of signals

described in section 4.
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up to which a CBC signal with a given waveform and total mass can be detected, where

we average over the source extrinsic parameters and over the varying detector noise

levels in the data set via Monte Carlo integration. In order to obtain a clear comparison

between different NR waveforms, we used the same set of random parameters (including

total masses, coalescence times and orientation angles) for each set of ∼24000 injected

signals, thus statistical errors will tend to be correlated between different waveforms.

In figure 11, top left, we plot the sensitive distance as a function of total mass for

a number of equal mass NR waveforms with varying component spin magnitudes. The

two waveforms with anti-aligned spins have smaller sensitive distances than the other

waveforms (see also [37]). This is expected; systems with anti-aligned spin emit less

power in gravitational waves than non-spinning systems [134, 33] and also may not match

well with the template bank of non-spinning waveforms that was used [50]. At the largest

masses in this study we can detect the two aligned-spin waveforms at distance∼ 10−15%

larger than the non-spinning waveform. However, at the smallest masses used, the non-

spinning waveform can be seen to comparable distances. Again this is a combination of

two factors. Aligned-spin waveforms emit more power in gravitational waves than non-

spinning systems, but the bank of non-spinning waveforms will not capture all of that

power. This emphasizes that investigating the use of template waveforms incorporating

spin effects is a necessity for the advanced detector era. To illustrate this further the

dotted lines in this figure represent a prediction of the sensitivity that would have

been obtained if a bank of aligned-spin template waveforms had been used. This

prediction was obtained for the (anti)aligned-spin waveforms by multiplying the ratio

of the expected signal-to-noise ratio of each spinning waveform and the non-spinning

waveform with the performance of the non-spinning waveform. This is described by

Di
sens(M) =

σi(M)

σNS(M)
DNS

sens(M). (8)

Here i is used to denote the aligned-spin waveform for which the sensitive distance, Di
sens,

is to be predicted. NS is used to denote the non-spinning waveform. σ is a measure of

the signal power given by the inner product defined in equation (1)

σi =
(
hi hi

)1/2
, (9)

where h denotes the waveform corresponding to i. We can see from the plot that the

distance sensitivity to spinning waveforms using a non-spinning bank is not as large

as the predicted values from using (anti)aligned-spin template banks. This is especially

true for the highly aligned-spin waveform where the predicted sensitive distance is∼ 15%

larger than the obtained distance for systems with total mass > 40M�. We note that

the actual sensitivity improvement of a search using (anti)aligned-spin templates may

not be as much as predicted here because such a search would require a larger number

of templates and therefore provide more chances to obtain large SNR when matched-

filtered against the underlying noise. Therefore the detection threshold when performing

an aligned-spin search will increase with respect to a search using a non-spinning

template bank. However, even a factor of 10 increase in the number of independent
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templates will only increase the expected SNR of the loudest background event by less

than 5%, if Gaussian noise is assumed [51]. Work is ongoing to assess how much larger

template banks of aligned-spin BBH waveforms are when compared to banks restricted

to only non-spinning waveforms and to accurately compare the performance of such

searches.

In the top right panel of figure 11 we plot the horizon distance as a function of

total mass for a number of non-spinning NR waveforms with varying mass ratio. The

sensitivity to these systems, for the same total mass, increases as the mass ratio (which

we take to be greater than or equal to 1) decreases. This is because, to leading order, the

gravitational-wave power emitted during the inspiral phase is dependent on the chirp

mass [95]; for the same total mass, a system with higher mass ratio will have a smaller

chirp mass.

The bottom left panel of figure 11 shows the horizon distance as a function of

total mass for the 5 non-spinning, equal-mass waveforms that were submitted. As

expected, there is no significant discrepancy between these waveforms. We remind

the reader that the same set of source parameters was used for each of these 5 sets

of injections. Therefore statistical errors are strongly correlated between the results

for different waveforms. The dashed and dotted black lines on this plot represent a

prediction of the sensitive distance to non-spinning signals for the early aLIGO and

early AdV noise curves respectively. This prediction was obtained by calculating the

horizon distance, defined in section 3, for the G1 + 00 + 00 T4 waveform for both the

early aLIGO and early AdV sensitivity curves as a function of mass. This measurement

is then rescaled by a factor of 2.26 to account for the fact that the observatories do

not have equal power to all orientations and sky locations [135]. We note that the

obtained results agree well with this prediction, and fall between the early aLIGO and

early AdV predictions when the two diverge. This is expected, as detection in ihope

is dominated by the sensitivity of the second most sensitive detector operating at the

time [44]. For times when at least two observatories were operating, the NINJA-2 dataset

approximately consists of 50% of time when only one of the LIGO detectors and Virgo

were operating and 50% of time when both LIGO detectors were operating, including

time when Virgo is operating and when it is not. As the early aLIGO sensitivity does

not drop below the early AdV sensitivity for the mass range considered, we expect the

obtained sensitivity curve to lie roughly in the middle of the two predictions, and this

is what we observe. It is worth pointing out that the ihope search is able to acheive

this Gaussian-noise-predicted sensitivity, even though this analysis is run on real data,

which includes non-stationarity and non-Gaussian transients.

Finally, in the bottom right panel of figure 11 we show sensitive distances for a

number of waveforms with unequal spins, or unequal masses and non-zero spins.
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9. Conclusion

This paper presents the first systematic study to assess the ability to detect numerically

modelled binary black hole data in real data taken from Initial LIGO and Virgo and

recolored to predicted sensitivity curves of Advanced LIGO and Advanced Virgo in

early observing runs. Building upon the work of the first NINJA project, this work, the

culmination of the second NINJA project, studies the ability to do gravitational wave

astronomy on a set of 60 binary black hole hybrid waveforms submitted by 8 numerical

relativity groups.

In this work, a set of 7 numerically modelled binary black hole waveforms were

added into the recolored data. This data was distributed to analysts with no knowledge

of the parameters of the systems. The unmodelled gravitational waveform search

pipeline, cWB, was able to recover one of these signals with an estimated false alarm

rate of 1 every 47 years. The matched-filtered compact binary merger search pipeline,

ihope, using a bank of BBH IMR waveforms, which were not calibrated against the NR

signals used in NINJA-2, was able to recover 6 of the waveforms with false alarm rate

upper limits ranging between 1 every 300 years and 1 every 2500 years.

A range of parameter estimation codes were run on the 7 blind injections that were

added to the data used in this work. Though only results from the MCMC sampler

were shown, these results proved to be statistically equivalent to estimates produce by

the nested sampling and multinest samplers. These results demonstrate that it will be

difficult to produce precise estimate of black hole component masses and spins because

of intrinsic degeneracies between these parameters in the emitted waveforms. For some

of the BBH blind injections we find that a neutron-star–black-hole coalescence cannot

be ruled out. We also demonstrate the sensitivity of current parameter estimation

algorithms to non-Gaussian features in the data and explore the ability to perform

sky-localization of BBH observations.

A large-scale monte-carlo study was conducted to assess the efficiency of the ihope

search pipeline as a function of the mass and angular momenta of the component

black holes. We find that for non-spinning equal mass waveforms the sensitivity of

the ihope search pipeline in real noise, including non-Gaussian artifacts, agrees well

with predictions obtained using a Gaussian-noise assumption. We have found evidence

that adding waveform models that include the effects of spin into the search pipeline

will increase the efficiency of binary black hole observation. We have also demonstrated

that the ability to recover numerical relativity waveforms, with identical parameters,

but submitted by different groups, is indistinguishable up to statistical errors.

These results represent the next step for the NINJA collaboration; they address

shortcomings in NINJA-1 while paving the way for future work. In a sense this paper

represents a baseline, as it measures the ability of current gravitational-wave analyses

to detect and recover the parameters of an important subset of possible BBH signals in

non-Gaussian noise in the advanced detector era. From this baseline there are multiple

directions in which NINJA can expand. On the NR front, groups are continuing to
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fill in the parameter space. As shown in figure 1, even within the subspace of systems

with (anti-)aligned spins there are large regions left to explore. Although NINJA-2

chose not to consider precessing signals many groups already have or are working on

such simulations [88, 136, 137, 138, 139, 140, 141, 142, 43, 36]. Similarly, although

the analyses used only the ` = m = 2 mode in this work, it is expected that higher

modes will be important for detection and parameter recovery [143, 144, 145, 21, 31].

Additional modes have been provided for many of the waveforms in the NR catalog,

although they have not yet been validated. In all cases, as additional waveforms and

modes become available they can be injected into the noise allowing for systematic tests

of both detection and parameter estimation analyses.

In parallel the detection and parameter estimation analyses continue to evolve and

improve. There is much development work ongoing to improve the analytical waveform

models that are used in analysis pipelines, particularly for inspiral-merger-ringdown

waveforms. It seems likely that before the first aLIGO and AdV observation runs

generic fast IMR precessing analytic models will be available [34, 32, 146, 147, 36].

Improvements in how detection pipelines deal with non-Gaussianities are being explored

to attempt to achieve the maximum possible sensitivity to BBH signals across the

parameter space. A number of efforts are ongoing to implement aligned-spin waveform

models into search algorithms. As we have demonstrated here, this will increase

sensitivity to BBH systems with aLIGO and AdV [49, 50, 51]. Work is also underway

to develop more realistic models of detector noise for parameter estimation pipelines,

which account for the non-stationarity and non-Gaussianity present in real noise [148].

Accounting for such features is expected to greatly reduce systematic biases in the

recovered masses and spins, such as those seen in event 1. The results presented here

can provide a measure against which these next-generation analyses can be compared,

in a way that measures not only their response to signals but also to realistic noise.

Acknowledgements

The authors gratefully acknowledge the support of the United States National Science

Foundation for the construction and operation of the LIGO Laboratory, the Science

and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and

the State of Niedersachsen/Germany for support of the construction and operation of

the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the

French Centre National de la Recherche Scientifique for the construction and operation

of the Virgo detector. The authors also gratefully acknowledge the support of the

research by these agencies and by the Australian Research Council, the International

Science Linkages program of the Commonwealth of Australia, the Council of Scientific

and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the

Spanish Ministerio de Economı́a y Competitividad, the Conselleria d’Economia Hisenda

i Innovació of the Govern de les Illes Balears, the Foundation for Fundamental Research

on Matter supported by the Netherlands Organisation for Scientific Research, the Polish



The NINJA-2 project 47

Ministry of Science and Higher Education, the FOCUS Programme of Foundation for

Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities

Physics Alliance, The National Aeronautics and Space Administration, OTKA of

Hungary, the Lyon Institute of Origins (LIO), the National Research Foundation of

Korea, Industry Canada and the Province of Ontario through the Ministry of Economic

Development and Innovation, the National Science and Engineering Research Council

Canada, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard

Foundation, the Research Corporation, and the Alfred P. Sloan Foundation.

We gratefully acknowledge support from the National Science Foundation under

NSF grants PHY-1305730, PHY-1212426, PHY-1229173, AST-1028087, DRL-1136221,

OCI-0832606, PHY-0903782, PHY-0929114, PHY-0969855, AST-1002667, PHY-

0963136, PHY-1300903, PHY-1305387, PHY-1204334, PHY-0855315, PHY-0969111,

PHY-1005426, PHY-0601459, PHY-1068881, PHY-1005655, PHY-0653443, PHY-

0855892, PHY-0914553, PHY-0941417, PHY-0903973, PHY-0955825, by NASA grants

07-ATFP07-0158, NNX11AE11G, NNX13AH44G, NNX09AF96G, NNX09AF97G, by

Marie Curie Grants of the 7th European Community Framework Programme FP7-

PEOPLE-2011-CIG CBHEO No. 293412, by the DyBHo-256667 ERC Starting Grant,

and MIRG-CT-2007-205005/PHY, and Science and Technology Facilities Council grants

ST/H008438/1 and ST/I001085/1. Further funding was provided by the Sherman

Fairchild Foundation, NSERC of Canada, the Canada Research Chairs Program, the

Canadian Institute for Advanced Research, the Ramón y Cajal Programme of the

Ministry of Education and Science of Spain, contracts AYA2010-15709, CSD2007-00042,

CSD2009-00064 and FPA2010-16495 of the Spanish Ministry of Science and Innovation,

the German Research Foundation, grant SFB/Transregio 7, the German Aerospace

Center for LISA Germany, and the Grand-in-Aid for Scientific Research (24103006).

Computations were carried out on Teragrid machines Lonestar, Ranger, Trestles

and Kraken under Teragrid allocations TG-PHY060027N, TG-MCA99S008, TG-

PHY090095, TG-PHY100051, TG-PHY990007N, TG-PHY090003, TG-MCA08X009.

Computations were also performed on the clusters “‘HLRB-2” at LRZ Munich,

“NewHorizons” and “Blue Sky” at RIT (funded by NSF Grant Nos. PHY-1229173,

AST-1028087, DMS-0820923 and PHY-0722703), “Zwicky” at Caltech (funded by

NSF MRI award PHY-0960291), “Finis Terrae” (funded by CESGA-ICTS-2010-200),

“Caesaraugusta” (funded by BSC Grant Nos. AECT-2011-2-0006, AECT-2011-3-

0007), “MareNostrum” (funded by BSC Grant Nos. AECT-2009-2-0017, AECT-2010-

1-0008, AECT-2010-2-0013, AECT-2010-3-0010, AECT-2011-1-0015, AECT-2011-2-

0012), “VSC” in Vienna (funded by FWF grant P22498), “Force” at GaTech, and

on the GPC supercomputer at the SciNet HPC Consortium [149]; SciNet is funded

by: the Canada Foundation for Innovation under the auspices of Compute Canada;

the Government of Ontario; Ontario Research Fund - Research Excellence; and the

University of Toronto.



The NINJA-2 project 48

References

[1] Harry G M (LIGO Scientific Collaboration) 2010 Class.Quant.Grav. 27 084006

[2] Aasi J et al. (LIGO Scientific Collaboration, Virgo Collaboration) 2013 (Preprint 1304.0670)

[3] Accadia T et al. 2011 Class.Quant.Grav. 28 114002

[4] The Virgo Collaboration, 2009 Advanced Virgo Baseline Design, Virgo Tech. Rep. VIR-027A-09

https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf

[5] Kuroda K (LCGT Collaboration) 2010 Class.Quant.Grav. 27 084004

[6] Somiya K (KAGRA Collaboration) 2012 Class.Quant.Grav. 29 124007 (Preprint 1111.7185)

[7] Iyer B, Souradeep T, Unnikrishnan C S, Dhurandhar S, Raja S and Sengupta A, 2013 LIGO-India:

Proposal of the Consortium for Indian Initiative in Gravitational-wave Observations (IndIGO),

LIGO Tech. Rep. LIGO-M1100296-v2 https://dcc.ligo.org/LIGO-M1100296-v2/public

[8] Unnikrishnan C 2013 Int.J.Mod.Phys. D22 1341010

[9] Thorne K S 1987 Gravitational radiation Three hundred years of gravitation ed Hawking S W

and Israel W (Cambridge: Cambridge University Press) chap 9, pp 330–458

[10] Abadie J et al. (LIGO Scientific Collaboration, Virgo Collaboration) 2010 Class.Quant.Grav. 27

173001 (Preprint 1003.2480)

[11] Sathyaprakash B and Schutz B 2009 Living Rev.Rel. 12 2 (Preprint 0903.0338)

[12] Kalogera V and Baym G 1996 Astrophys.J. 470 L61–L64 (Preprint astro-ph/9608059)

[13] Bailyn C D, Jain R K, Coppi P and Orosz J A 1997 Astrophys.J. 499 367 (Preprint astro-ph/

9708032)

[14] Farr W M et al. 2011 Astrophys.J. 741 103 (Preprint 1011.1459)

[15] McClintock J E et al. 2011 Class.Quant.Grav. 28 114009 (Preprint 1101.0811)

[16] Belczynski K, Taam R E, Rantsiou E and van der Sluys M 2007 Astrophys.J. (Preprint

astro-ph/0703131)

[17] Wainstein L A and Zubakov V D 1962 Extraction of signals from noise (Englewood Cliffs, NJ,

USA: Prentice-Hall)

[18] Wainstein L A and Zubakov V D 1968 Statistical Theory of Signal Detection (London, UK:

Permagon)

[19] Allen B, Anderson W G, Brady P R, Brown D A and Creighton J D 2012 Phys.Rev. D85 122006

(Preprint gr-qc/0509116)

[20] Buonanno A, Iyer B, Ochsner E, Pan Y and Sathyaprakash B 2009 Phys.Rev. D80 084043

(Preprint 0907.0700)

[21] Brown D A, Kumar P and Nitz A H 2013 Phys.Rev. D87 082004 (Preprint 1211.6184)

[22] Klimenko S, Yakushin I, Mercer A and Mitselmakher G 2008 Class.Quant.Grav. 25 114029

(Preprint 0802.3232)

[23] Searle A C, Sutton P J, Tinto M and Woan G 2008 Class.Quant.Grav. 25 114038 (Preprint

0712.0196)

[24] Sutton P J et al. 2010 New J.Phys. 12 053034 (Preprint 0908.3665)

[25] Blanchet L 2006 Living Rev.Rel. 9 4

[26] Pretorius F 2005 Phys.Rev.Lett. 95 121101 (Preprint gr-qc/0507014)

[27] Campanelli M, Lousto C, Marronetti P and Zlochower Y 2006 Phys.Rev.Lett. 96 111101 (Preprint

gr-qc/0511048)

[28] Baker J G, Centrella J, Choi D I, Koppitz M and van Meter J 2006 Phys.Rev.Lett. 96 111102

(Preprint gr-qc/0511103)

[29] Buonanno A et al. 2007 Phys.Rev. D76 104049 (Preprint 0706.3732)

[30] Damour T and Nagar A 2009 Phys.Rev. D79 081503 (Preprint 0902.0136)

[31] Pan Y et al. 2011 Phys.Rev. D84 124052 (Preprint 1106.1021)

[32] Taracchini A et al. 2012 Phys.Rev. D86 024011 (Preprint 1202.0790)

[33] Ajith P et al. 2011 Phys.Rev.Lett. 106 241101 (Preprint 0909.2867)

[34] Santamaria L et al. 2010 Phys.Rev. D82 064016 (Preprint 1005.3306)

1304.0670
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
1111.7185
https://dcc.ligo.org/LIGO-M1100296-v2/public
1003.2480
0903.0338
astro-ph/9608059
astro-ph/9708032
astro-ph/9708032
1011.1459
1101.0811
astro-ph/0703131
gr-qc/0509116
0907.0700
1211.6184
0802.3232
0712.0196
0908.3665
gr-qc/0507014
gr-qc/0511048
gr-qc/0511103
0706.3732
0902.0136
1106.1021
1202.0790
0909.2867
1005.3306


The NINJA-2 project 49

[35] Damour T, Nagar A and Bernuzzi S 2013 Phys.Rev. D87 084035 (Preprint 1212.4357)

[36] Taracchini A et al. 2013 (Preprint 1311.2544)

[37] Aasi J et al. (LIGO Scientific Collaboration, Virgo Collaboration) 2013 Phys.Rev. D87 022002

(Preprint 1209.6533)

[38] Centrella J, Baker J G, Kelly B J and van Meter J R 2010 Rev.Mod.Phys. 82 3069 (Preprint

1010.5260)

[39] Aylott B et al. 2009 Class.Quant.Grav. 26 165008 (Preprint 0901.4399)

[40] Ozel F, Psaltis D, Narayan R and McClintock J E 2010 Astrophys.J. 725 1918–1927 (Preprint

1006.2834)

[41] Brown D et al. 2007 (Preprint 0709.0093)

[42] Ajith P et al. 2012 Class.Quant.Grav. 29 124001 (Preprint 1201.5319)

[43] Hinder I et al. 2013 Class.Quant.Grav. 31 025012 (Preprint 1307.5307)

[44] Babak S et al. 2013 Phys.Rev. D87 024033 (Preprint 1208.3491)

[45] Abadie J et al. (LIGO Scientific Collaboration, Virgo Collaboration) 2012 Phys.Rev. D85 122007

(Preprint 1202.2788)

[46] Abadie J et al. (LIGO Collaboration, Virgo Collaboration) 2012 Phys.Rev. D85 082002 (Preprint

1111.7314)

[47] Baird E, Fairhurst S, Hannam M and Murphy P 2013 Phys.Rev. D87 024035 (Preprint

1211.0546)

[48] Hannam M, Brown D A, Fairhurst S, Fryer C L and Harry I W 2013 Astrophys.J. 766 L14

(Preprint 1301.5616)

[49] Brown D A, Harry I, Lundgren A and Nitz A H 2012 Phys.Rev.D86 084017 (Preprint 1207.6406)

[50] Ajith P, Fotopoulos N, Privitera S, Neunzert A and Weinstein A 2012 (Preprint 1210.6666)

[51] Harry I et al. 2013 (Preprint 1307.3562)

[52] MacDonald I, Nissanke S, Pfeiffer H P and Pfeiffer H P 2011 Class.Quant.Grav. 28 134002

(Preprint 1102.5128)

[53] Ohme F 2012 Class.Quant.Grav. 29 124002 (Preprint 1111.3737)

[54] Tichy W and Marronetti P 2011 Phys.Rev. D83 024012 (Preprint 1010.2936)

[55] Bruegmann B et al. 2008 Phys.Rev. D77 024027 (Preprint gr-qc/0610128)

[56] Marronetti P et al. 2007 Class.Quant.Grav. 24 S43–S58 (Preprint gr-qc/0701123)

[57] Bruegmann B, Tichy W and Jansen N 2004 Phys.Rev.Lett. 92 211101 (Preprint gr-qc/0312112)

[58] Healy J et al. 2009 Phys.Rev.Lett. 102 041101 (Preprint 0807.3292)

[59] Healy J, Laguna P, Matzner R A and Shoemaker D M 2010 Phys.Rev. D81 081501 (Preprint

0905.3914)

[60] Bode T, Haas R, Bogdanovic T, Laguna P and Shoemaker D 2010 Astrophys.J. 715 1117–1131

(Preprint 0912.0087)

[61] Herrmann F, Hinder I, Shoemaker D M, Laguna P and Matzner R A 2007 Phys.Rev. D76 084032

(Preprint 0706.2541)

[62] Healy J, Levin J and Shoemaker D 2009 Phys.Rev.Lett. 103 131101 (Preprint 0907.0671)

[63] Bode T et al. 2012 Astrophys.J. 744 45 (Preprint 1101.4684)

[64] Hinder I, Vaishnav B, Herrmann F, Shoemaker D and Laguna P 2008 Phys.Rev. D77 081502

(Preprint 0710.5167)

[65] Husa S, Gonzalez J A, Hannam M, Bruegmann B and Sperhake U 2008 Class.Quant.Grav. 25

105006 (Preprint 0706.0740)

[66] Hannam M, Husa S, Bruegmann B and Gopakumar A 2008 Phys.Rev. D78 104007 (Preprint

0712.3787)

[67] Hannam M, Husa S, Ohme F, Muller D and Bruegmann B 2010 Phys.Rev. D82 124008 (Preprint

1007.4789)

[68] Hannam M, Husa S, Sperhake U, Bruegmann B and Gonzalez J A 2008 Phys.Rev. D77 044020

(Preprint 0706.1305)

[69] Sperhake U 2007 Phys.Rev. D76 104015 (Preprint gr-qc/0606079)

1212.4357
1311.2544
1209.6533
1010.5260
0901.4399
1006.2834
0709.0093
1201.5319
1307.5307
1208.3491
1202.2788
1111.7314
1211.0546
1301.5616
1207.6406
1210.6666
1307.3562
1102.5128
1111.3737
1010.2936
gr-qc/0610128
gr-qc/0701123
gr-qc/0312112
0807.3292
0905.3914
0912.0087
0706.2541
0907.0671
1101.4684
0710.5167
0706.0740
0712.3787
1007.4789
0706.1305
gr-qc/0606079


The NINJA-2 project 50

[70] Sperhake U et al. 2008 Phys.Rev. D78 064069 (Preprint 0710.3823)

[71] Pollney D and Reisswig C 2011 Astrophys.J. 732 L13 (Preprint 1004.4209)

[72] Reisswig C, Bishop N, Pollney D and Szilagyi B 2010 Class.Quant.Grav. 27 075014 (Preprint

0912.1285)

[73] Pollney D, Reisswig C, Schnetter E, Dorband N and Diener P 2011 Phys.Rev. D83 044045

(Preprint 0910.3803)

[74] Lousto C O, Nakano H, Zlochower Y and Campanelli M 2010 Phys.Rev.Lett. 104 211101 (Preprint

1001.2316)

[75] Lousto C O, Nakano H, Zlochower Y and Campanelli M 2010 Phys.Rev. D82 104057 (Preprint

1008.4360)

[76] Nakano H, Zlochower Y, Lousto C O and Campanelli M 2011 Phys.Rev. D84 124006 (Preprint

1108.4421)

[77] Pfeiffer H P, Kidder L E, Scheel M A and Teukolsky S A 2003 Comput.Phys.Commun. 152

253–273 (Preprint gr-qc/0202096)

[78] Scheel M A et al. 2006 Phys.Rev. D74 104006 (Preprint gr-qc/0607056)

[79] Lovelace G, Boyle M, Scheel M A and Szilagyi B 2012 Class.Quant.Grav. 29 045003 (Preprint

1110.2229)

[80] Szilagyi B, Lindblom L and Scheel M A 2009 Phys.Rev. D80 124010 (Preprint 0909.3557)

[81] Lovelace G, Scheel M and Szilagyi B 2011 Phys.Rev. D83 024010 (Preprint 1010.2777)

[82] Scheel M A et al. 2009 Phys.Rev. D79 024003 (Preprint 0810.1767)

[83] Spectral Einstein Code URL http://www.black-holes.org/SpEC.html

[84] Boyle M et al. 2007 Phys.Rev. D76 124038 (Preprint 0710.0158)

[85] Lindblom L, Scheel M A, Kidder L E, Owen R and Rinne O 2006 Class.Quant.Grav. 23 S447–S462

(Preprint gr-qc/0512093)

[86] Boyle M and Mroue A H 2009 Phys.Rev. D80 124045 (Preprint 0905.3177)

[87] Etienne Z B, Liu Y T, Shapiro S L and Baumgarte T W 2009 Phys.Rev. D79 044024 (Preprint

0812.2245)

[88] Campanelli M, Lousto C O, Nakano H and Zlochower Y 2009 Phys.Rev. D79 084010 (Preprint

0808.0713)

[89] Mroue A H et al. 2013 Phys.Rev.Lett. 111 241104 (Preprint 1304.6077)

[90] Aasi J et al. 2010 Possible scenarios for Commissioning and Early observing with the Second

Generation Detectors, LIGO Tech. Rep. LIGO-G1000176

[91] LSC Algorithm Library URL https://www.lsc-group.phys.uwm.edu/daswg/projects/lal.

html

[92] LSC Algorithm Library for GStreamer URL https://www.lsc-group.phys.uwm.edu/daswg/

projects/gstlal.html

[93] Aasi J et al. (VIRGO Collaboration) 2012 Class.Quant.Grav. 29 155002 (Preprint 1203.5613)

[94] Aasi J et al. 2014 Characterizing the LIGO instruments in their sixth science run, in preparation

[95] Peters P and Mathews J 1963 Phys.Rev. 131 435–439

[96] Abbott B et al. (LIGO Scientific Collaboration) 2009 Phys.Rev. D79 122001 (Preprint 0901.

0302)

[97] Abbott B et al. (LIGO Scientific Collaboration) 2009 Phys.Rev. D80 047101 (Preprint 0905.

3710)

[98] Abadie J et al. (LIGO Scientific Collaboration, Virgo Collaboration) 2011 Phys.Rev. D83 122005

(Preprint 1102.3781)

[99] Abbott B et al. (LIGO Scientific Collaboration) 2007 Class.Quant.Grav. 24 5343–5370 (Preprint

0704.0943)

[100] Abadie J et al. (LIGO Collaboration, Virgo Collaboration) 2010 Phys.Rev. D81 102001 (Preprint

1002.1036)

[101] Abadie J et al. (LIGO Scientific Collaboration, Virgo Collaboration) 2012 Phys.Rev. D85 102004

(Preprint 1201.5999)

0710.3823
1004.4209
0912.1285
0910.3803
1001.2316
1008.4360
1108.4421
gr-qc/0202096
gr-qc/0607056
1110.2229
0909.3557
1010.2777
0810.1767
http://www.black-holes.org/SpEC.html
0710.0158
gr-qc/0512093
0905.3177
0812.2245
0808.0713
1304.6077
https://www.lsc-group.phys.uwm.edu/daswg/projects/lal.html
https://www.lsc-group.phys.uwm.edu/daswg/projects/lal.html
https://www.lsc-group.phys.uwm.edu/daswg/projects/gstlal.html
https://www.lsc-group.phys.uwm.edu/daswg/projects/gstlal.html
1203.5613
0901.0302
0901.0302
0905.3710
0905.3710
1102.3781
0704.0943
1002.1036
1201.5999


The NINJA-2 project 51

[102] Pankow C et al. 2009 Class.Quant.Grav. 26 204004 (Preprint 0905.3120)

[103] Abbott B et al. (LIGO Scientific Collaboration) 2008 Phys.Rev. D77 062002 (Preprint 0704.

3368)

[104] Abadie J et al. (LIGO Scientific Collaboration, Virgo Collaboration) 2010 Phys.Rev. D82 102001

(Preprint 1005.4655)

[105] Babak S et al. 2008 Class.Quant.Grav. 25 184026 (Preprint 0806.2110)

[106] Babak S, Balasubramanian R, Churches D, Cokelaer T and Sathyaprakash B 2006

Class.Quant.Grav. 23 5477–5504 (Preprint gr-qc/0604037)

[107] Robinson C, Sathyaprakash B and Sengupta A S 2008 Phys.Rev. D78 062002 (Preprint

0804.4816)

[108] Allen B 2005 Phys.Rev. D71 062001 (Preprint gr-qc/0405045)

[109] Blanchet L, Faye G, Iyer B R and Joguet B 2002 Phys.Rev. D65 061501 (Preprint gr-qc/

0105099)

[110] Blanchet L, Iyer B R and Joguet B 2002 Phys.Rev. D65 064005 (Preprint gr-qc/0105098)

[111] Blanchet L, Damour T, Esposito-Farese G and Iyer B R 2004 Phys.Rev.Lett. 93 091101 (Preprint

gr-qc/0406012)

[112] van der Sluys M et al. 2009 Class.Quant.Grav. 26 204010 (Preprint 0905.1323)

[113] Raymond V et al. 2009 Class.Quant.Grav. 26 114007 (Preprint 0812.4302)

[114] Veitch J and Vecchio A 2010 Phys.Rev. D81 062003 (Preprint 0911.3820)

[115] Raymond V et al. 2010 Class.Quant.Grav. 27 114009 (Preprint 0912.3746)

[116] Canitrot P 2001 Phys.Rev. D63 082005

[117] Cutler C and Vallisneri M 2007 Phys.Rev. D76 104018 (Preprint 0707.2982)

[118] van der Sluys M V et al. 2008 Astrophys. J. 688 L61–L65 (Preprint 0710.1897)

[119] van der Sluys M et al. 2008 Class.Quant.Grav. 25 184011 (Preprint 0805.1689)

[120] Feroz F, Hobson M and Bridges M 2009 Mon.Not.Roy.Astron.Soc. 398 1601–1614 (Preprint

0809.3437)

[121] Littenberg T B, Baker J G, Buonanno A and Kelly B J 2013 Phys.Rev. D87 104003 (Preprint

1210.0893)

[122] Cutler C and Flanagan E E 1994 Phys.Rev. D49 2658–2697 (Preprint gr-qc/9402014)

[123] Poisson E and Will C M 1995 Phys.Rev. D52 848–855 (Preprint gr-qc/9502040)

[124] Aasi J et al. (LIGO Collaboration, Virgo Collaboration) 2013 Phys.Rev. D88 062001 (Preprint

1304.1775)

[125] Isogai T (LIGO and Virgo Scientific Collaborations) 2010 J.Phys.Conf.Ser. 243 012005

[126] Campanelli M, Lousto C and Zlochower Y 2006 Phys.Rev.D74 041501 (Preprint gr-qc/0604012)

[127] Veitch J et al. 2012 Phys.Rev. D85 104045 (Preprint 1201.1195)

[128] Nissanke S, Sievers J, Dalal N and Holz D 2011 Astrophys.J. 739 99 (Preprint 1105.3184)

[129] Fairhurst S 2011 Class.Quant.Grav. 28 105021 (Preprint 1010.6192)

[130] Eichler D, Livio M, Piran T and Schramm D N 1989 Nature 340 126–128

[131] Narayan R, Paczynski B and Piran T 1992 Astrophys.J. 395 L83–L86 (Preprint astro-ph/

9204001)

[132] Fong W F and Berger E 2013 Astrophys.J. 776 18 (Preprint 1307.0819)

[133] Rosswog S, Freiburghaus C and Thielemann F 2001 Nuclear Physics A 688 344–348 (Preprint

astro-ph/0012046)

[134] Buonanno A, Chen Y and Damour T 2006 Phys.Rev. D74 104005 (Preprint gr-qc/0508067)

[135] Finn L S and Chernoff D F 1993 Phys.Rev. D47 2198–2219 (Preprint gr-qc/9301003)

[136] Tichy W and Marronetti P 2007 Phys.Rev. D76 061502 (Preprint gr-qc/0703075)

[137] Tichy W and Marronetti P 2008 Phys.Rev. D78 081501 (Preprint 0807.2985)

[138] Schmidt P, Hannam M, Husa S and Ajith P 2011 Phys.Rev. D84 024046 (Preprint 1012.2879)

[139] O’Shaughnessy R, Vaishnav B, Healy J, Meeks Z and Shoemaker D 2011 Phys.Rev. D84 124002

(Preprint 1109.5224)

[140] Mroue A H and Pfeiffer H P 2012 (Preprint 1210.2958)

0905.3120
0704.3368
0704.3368
1005.4655
0806.2110
gr-qc/0604037
0804.4816
gr-qc/0405045
gr-qc/0105099
gr-qc/0105099
gr-qc/0105098
gr-qc/0406012
0905.1323
0812.4302
0911.3820
0912.3746
0707.2982
0710.1897
0805.1689
0809.3437
1210.0893
gr-qc/9402014
gr-qc/9502040
1304.1775
gr-qc/0604012
1201.1195
1105.3184
1010.6192
astro-ph/9204001
astro-ph/9204001
1307.0819
astro-ph/0012046
gr-qc/0508067
gr-qc/9301003
gr-qc/0703075
0807.2985
1012.2879
1109.5224
1210.2958


The NINJA-2 project 52

[141] O’Shaughnessy R, Healy J, London L, Meeks Z and Shoemaker D 2012 Phys.Rev. D85 084003

(Preprint 1201.2113)

[142] O’Shaughnessy R, London L, Healy J and Shoemaker D 2013 Phys.Rev. D87 044038 (Preprint

1209.3712)

[143] Pekowsky L, Healy J, Shoemaker D and Laguna P 2012 (Preprint 1210.1891)

[144] Healy J, Laguna P, Pekowsky L and Shoemaker D 2013 Phys.Rev. D88 024034 (Preprint

1302.6953)

[145] McWilliams S T, Kelly B J and Baker J G 2010 Phys.Rev. D82 024014 (Preprint 1004.0961)

[146] Pan Y et al. 2013 (Preprint 1307.6232)

[147] Hannam M et al. 2013 (Preprint 1308.3271)

[148] Littenberg T B, Coughlin M, Farr B and Farr W M 2013 (Preprint 1307.8195)

[149] Loken C et al. 2010 J. Physics: Conf. Series 256 012026

1201.2113
1209.3712
1210.1891
1302.6953
1004.0961
1307.6232
1308.3271
1307.8195

	1 Introduction
	2 PN-NR Hybrid Waveforms
	3 Modified Detector Noise
	4 Injection Parameters
	5 Search Pipelines
	5.1 Coherent WaveBurst
	5.2 ihope
	5.3 Parameter estimation

	6 Blind Injection Challenge Results
	6.1 Coherent WaveBurst
	6.2 ihope

	7 Parameter Estimation Results
	8 Sensitivity evaluation
	9 Conclusion

