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Abstract 

 

In this work, the oxidation of UO2 by the radiolysis products of water at the solid/solution 

interface is investigated in function of the dose under open and close atmospheres. Irradiation 

is realized by He
2+

 beam provided by the ARRONAX cyclotron with an energy of 66.5 MeV 

and a dose rate of 4.37 kGy/min. The aim of this investigation is to determine the effect of the 

atmosphere (presence of H2) and the dose on the UO2 oxidation in order to couple for the first 

time (1) characterization of the secondary oxidized phases, (2) quantification of H2O2 and H2 

produced by water radiolysis and (3) determination of the quantity of uranium released into 

the solution. The kinetic of the solid surface oxidation is followed by Raman spectroscopy. 

H2O2 and H2 are measured respectively by UV-VIS spectrophotometry and micro Gas 

Chromatography (µ-GC). Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used 

to quantify the soluble uranium species released into the solution. Our results show that He
2+

 

irradiation of water induced oxidation of the UO2 surface which depended on the atmosphere 

and the dose rate. We present below the results obtained for two samples irradiated at a dose 

of 8.73 kGy under the two atmospheres mentioned above. Results shows the Raman spectra 

of unirradiated UO2 (a) and a sample irradiated under open atmosphere (b, c, d). The spectra 

of the irradiated sample are obtained 0.3, 42 and 169 hours after contact with the irradiated 

water. When comparing the two spectra, 2 identical Raman signals can be observed at 445 

and 560 cm
-1

. The first one characterizes the U-O stretch in the fluorite structure of UO2 and 

the second one indicates the presence of defects in the matrix. After irradiation, two Raman 

signals appear at 820 and 865 cm
-1

. These vibration bands indicate the presence of studtite 

(UO4 4(H2O)) formed by oxidation of the UO2 surface by H2O2 produced by water radiolysis. 

We have verified that studtite is not formed by oxidation of the UO2 surface by O2 present in 

the atmosphere. For the irradiated sample, G(H2O2) formed by water radiolysis is 0.06 μmol/J 

and the quantity of uranium species released in the irradiated solution is 11.5 10
-7

 mol/L. For 

the sample irradiated under close atmosphere, oxidation is much slower due to the inhibition 

effect of H2 produced by water radiolysis. In these conditions, G(H2O2) and G(H2) are 

respectively 0.1 and 0.02 μmol/J. The concentration of Uranium species in the solution is 5.3 

10
-7

 mol/L which is comparable to that published in the literature. 

 G(H2O2) obtained in open atmosphere is two fold lower than that obtained in close one. In 

this last condition, H2O2 yield is equal to that of ultra-pure water which means that this 

molecule was not consumed. Moreover, G(H2) obtained in this work is lower than that 

obtained by radiolysis of ultra-pure water in similar conditions. From this, we can conclude 
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that H2 has an inhibition effect on the UO2 oxidation and this inhibition does not take place by 

direct effect on H2O2 but by interaction between H2 and the UO2 surface. 

 

Introduction 

This paper deals with the radiolytic corrosion at the UO2 surface. We study the impact of 

water radiolysis onto the corrosion of the grain boundaries (GB) present at the TRISO particle 

surface. The influence of H2 produced by water radiolysis on the UO2 corrosion is also 

studied. More details on the context of this study is published elsewhere (Kienzler et al., 

2012). The aim of this work was to investigate experimentally the effect of molecular 

radiolytic species (H2 and H2O2) produced by localized 
4
He

2+
 radiolysis of water on UO2 

corrosion in function of different parameters. Water in contact with UO2 particles was then 

irradiated by 
4
He

2+
 beam at different absorbed doses and under different atmospheres in order 

to evaluate the effect of H2 and the absorbed dose on the corrosion process. To fulfill this 

work, we chose to investigate the corrosion of the surface of solid particles by Raman 

Spectroscopy which is known to be very efficient in surface characterization of solid state 

materials. Soluble uranium species leached into the solution were analyzed by Inducted 

Coupled Plasma Mass Spectrometry (ICP-MS) technique. H2O2 and H2 produced by water 

radiolysis were respectively quantified by UV-VIS Spectrophotometry and Gas 

Chromatography (µ-GC) in order to calculate their radiolytic yields, compare them to those of 

pure water and clarify the role of these two species in the UO2 corrosion. 

 

Material and Methods :  

The experimental section (analytical tools and irradiation conditions) is described elsewhere 

(Kienzler et al., 2012). 3 irradiations were performed for 3 sets of sample: (1) irradiation 

under open to air atmosphere (oxidative conditions without H2), (2) close with air atmosphere 

(oxidative conditions with H2 produced by water radiolysis), and (3) close with Ar/H2 (4%) 

atmosphere (reductive atmosphere where H2 is initially added into the system before 

irradiation by the Ar/H2 (4%) gas). 

 

Results  

1.UO2 Surface Characterization  

UO2 TRISO particle is constituted of a UO2 based kernel (500 μm of diameter) composed by 

grains and grain boundaries (Figure 1). The grain size has been measured between 10 and 20 

µm. After irradiation, SEM pictures were realized on the surface particles in order to 

determine the zones most affected by the corrosion process (Figure 2). Figure 2 clearly 

shows that regardless the irradiation atmosphere, the grain boundaries are a lot more degraded 

than the UO2 grains. It appears too that the corrosion did not occur homogeneously on the 

entire surface. Some regions of the grains surface are indeed more corroded. The corrosion 

can be considered as localized to the GB. 
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Figure 1 : SEM picture of the surface of an unirradiated UO2 particle. 

 

 
Figure 2 : SEM pictures of the surface of a UO2 particle corroded in open to air atmosphere.  

 

The spectrum of the unirradiated UO2 is presented in Figure 3. It presents two characteristic 

bands around 445 cm
-1

 and 560 cm
-1

. The former is affected to the triply degenerated Raman 

active mode (T2g) of U-O stretch (Amme et al., 2002; Amme et al., 2005; Desgranges et al., 

2012; He and Shoesmith, 2010; Manara and Renker, 2003) whereas the latter characterizes 

defects present initially in the UO2 fluorite structure (He and Shoesmith, 2010). 

To estimate the Raman spectral modifications brought by the radiolytic products of water in 

the different studied atmospheres, a comparison was made between the UO2 spectra before 

and after irradiation. The results showed that after irradiation in close atmospheres, the spectra 

of the UO2 particles remained stable in function of the dose (not presented in this paper). 

When water in contact with the UO2 particles was irradiated in open to air atmosphere, no 

spectral modifications were observed until 21.8 kGy deposited in the solution. From 43.7 

kGy, modifications can be seen between 800 and 900 cm
-1

 and appear clearly at the dose of 

87.3 kGy. Two peeks appear indeed at 825 and 860 cm
-1

. They characterize the metastudtite 

(UO2(O2) 2H2O) (Amme et al., 2002; Canizarès et al., 2012; Guimbretière et al., 2011) 

formed on the UO2 surface by oxidation with H2O2 produced by water radiolysis according to 

the reaction (i) (Corbel et al., 2006) : 

UO2    +    2H2O2    →    UO2(O2) (H2O)2       (i) 

After irradiation, temporal evolution of the solid particles was followed by Raman 

spectroscopy. The results showed that Raman spectra of the samples irradiated with an 

irradiation time t = 1 min remained unchanged after two months of the experiment. It seems 

that in these conditions, the concentration of H2O2 produced by water radiolysis was not 

sufficient to oxidize the UO2 surface. For t ≥ 3 min, Raman spectra of the irradiated particles 

evolved slightly in function of time until one week after irradiation and then remained stable. 
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Figure 3 : Raman spectra of unirradiated UO2 ((a)) and a sample irradiated at 8.73 kGy under 

open atmosphere ((b), (c) and (d)). The spectra (b), (c) and (d) are obtained 0.3, 42 and 169 

hours after contact with the irradiated solution. 

 

2.Uranium Solubility and Dissolution Rate 

After irradiation, water in contact with the UO2 particles was collected to quantify the soluble 

uranium species leached into the solution. Indeed, the metastudtite phase formed on the UO2 

surface after oxidation by H2O2 produced by water radiolysis underwent later a dissolution 

step where uranyl ions (UO2
2+

) were leached into the solution. The mechanism of this 

dissolution reaction in ultra-pure water was rarely discussed in the literature. According to 

some authors (Sattonnay et al., 2001), the dissolution step occurs according to reaction (ii) : 

UO2
2+

(s)    +    H2O    →    UO2(OH)
+
    +    H

+
       (ii) 

However, (Sattonnay et al., 2001) proposed this dissolution mechanism based on a pH 

decreasing observed in their case after the solution irradiation. But, in our work measurement 

of the irradiated solutions acidity after each irradiation showed that pH did not evolve 

significantly and remained between 6.5 and 7.5. This means that the above proposed 

mechanism (reaction (ii)) does not occur in our case. 

We have followed the variation of the soluble uranium species concentration leached into the 

solution after irradiation in function of the dose and the irradiation time in both open and 

close atmospheres. Regardless the irradiation atmosphere, the quantity of soluble uranium 

species increased with the dose and then remained constant from 43.6 kGy. At this latter dose, 

concentration of soluble uranium species found in close with air atmosphere (5.25 10
-7

 mol l
-

1
) is two-fold lower than that observed in open to air atmosphere (11.49 10

-7
 mol l

-1
) due to 

inhibition of UO2 oxidation by H2 produced by water radiolysis. Values of [U] measured in 

our system at the steady state are presented in Table 1 for an irradiation time of 10 min 

together with the normalized leaching rate (r). Moreover, Table 1 presents also UO2 

dissolution rate values obtained from literature in order to compare it to our data. When UO2 

particles were irradiated between 10 and 20 min in close with air atmosphere, concentration of 

Uranium species remained practically constant. The obtained values were respectively 4.44 ± 

0.5 and 5.25 ± 0.5 10
-7

 mol l
-1

 for the latter mentioned irradiation time. These values are 
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comparable to most solubility data reported in the literature (Casas et al., 2009; Grambow et 

al., 2004; Jégou et al., 2003; Shoesmith and Sunder, 1992). However, we believe that in our 

work the thermodynamic equilibrium of the UO2 particles dissolution was not achieved due to 

their composition of grains and grain boundaries. In these conditions, the dissolution rate was 

equal to 13.5 g m
-2

 d
-1

. A comparison of our dissolution rates with literature data is given in 

Table 1. Despite the similarity with [U] reported in the literature, r values obtained in this 

investigation are at least 10
3
 fold higher. It seems then that with the irradiation conditions 

used in our work, the UO2 oxidation/dissolution mechanism occurred with a faster kinetic. 

This is very probably due to the impact of the high doses deposited into the irradiated solution 

for this work. In order to apprehend the dose impact on the UO2 corrosion, we propose here a 

new methodology to express the dissolution rate. This methodology consists in calculating the 

dissolution rate in function of the dose deposited into the solution and not in function of the 

irradiation time. Thus, the new dissolution rate r’ can be defined as follow : 

 

 

Where d[U]/dd (mol m
-3

) is the variation of soluble uranium species in function of the dose 

deposited into the solution. In our case the r’ values are 2.01 µg m
-2

 Gy
-1

 for the open with air 

atmosphere experiment and 1.11 µg m
-2

 Gy
-1

 for the close with air atmosphere one. These 

results confirm that the reducing atmosphere (in presence of H2) has a strong diminishing 

impact onto the UO2 dissolution rate. Moreover, we have recalculated the same new 

dissolution rate r’ from literature data (Grambow et al., 2004; Jégou et al., 2003) (Table 1) in 

order to compare it to our results. Even after taking into account the effect of the dose, r’ 

values obtained in this investigation still higher (table 1). However, the dose rate used in our 

work is very high. It appears then that the dose rate is the main parameter which controls the 

UO2 dissolution rate under irradiation. 

 

Table 1 : Steady state U concentrations, Dissolution rates (r and r’) of UO2 and experimental 

conditions used in this study and others found in the literature. 

Ref. Physica

l aspect 

UO2 

4
He

2+
  

Beam 

Dose Rate 

Gy min
-1

 

Atm. [U] 10
-7 

mol l
-1

 

Diss. rate r 

mg m
-2

 d
-1

 

Diss. rate r’ 

µg m
-2

 Gy
-1

 

This work Particle External 

source* 

4366 Ox 

Red 

11.49  

5.25  

13500 

7000 

2.01 

1.11 

(Shoesmith 

and Sunder, 

1992) 

Pellet Internal No Ox  0.5  X 

(Casas et 

al., 2009) 

Particle  No 0 Red  23.3  X  

(Grambow 

et al., 2004) 

Colloid External 

source* 

52.7 Red  15.7 0.246  

(Jégou et 

al., 2003) 

Pellet Internal** 18 Ox  2.5 0.095 

1.8 Ox  0.2 0.076 

* 
4
He

2+
 Beam produced by cyclotron facility 

** Doped UO2 with Pu 

 

3.H2 and H2O2 Chemical Yields 

When the UO2 particles were irradiated in close with air atmosphere, H2 produced by water 

radiolysis was quantified by calculating its radiolytic yield (G) in order to compare it to that 

of pure water and explain any gas consumption due to the inhibition of the UO2 corrosion 
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process. In our work, the solution used during irradiation is ultra-pure water (ρ = 1 kg l
-1

) and 

the mean G(H2) was 0.02 ± 0.002 μmol J
-1

. It corresponds to the slope of the curve 

representing the variation of H2 concentration in function of the dose. (Crumière et al., 2013) 

irradiated ultra-pure water by a cyclotron 
4
He

2+
 beam with a 64.7 MeV energy and doses up to 

800 Gy in Argon saturated atmosphere. G(H2) obtained in their work was 0.061 ± 0.006 

μmol J
-1

 which is three-fold higher than that found in this investigation (G(H2) = 

0.02 ± 0.002 μmol J
-1

). The irradiation conditions used by (Crumière et al., 2013) are very 

similar to those used in our work which means that for the system UO2/ultra-pure water, a non 

negligible part (around 2/3) of the H2 produced by water radiolysis was consumed certainly 

by inhibition of the UO2 oxidation process.  

In both open to air and close with air atmospheres, concentrations of H2O2 produced by water 

radiolysis was determined by the Ghormley method (Ghormley and Hochanadel, 1954) to 

analyze the effect of the irradiation atmosphere on its consumption by the UO2 oxidation 

process. During this study, we have followed the variation of H2O2 concentration produced by 

water radiolysis under open to air and close with air atmospheres in function of the dose. It 

shows that concentration of H2O2 produced by water radiolysis increased with the dose and 

then reached a steady state from 21.8 kGy and 65.5 kGy in open to air and close with air 

atmospheres respectively. At these latter doses, [H2O2] values were respectively 1.4 10
-4

  and 

5.5 10
-4

 mol l
-1

 which means that H2O2 concentration was four-fold higher when the UO2 

particles were irradiated in presence of H2. It seems then that in the latter conditions 

consumption of H2O2 and thus oxidation of the UO2 surface was mainly inhibited by H2 

produced by water radiolysis. Radiolytic yields of H2O2 were also calculated and the values 

obtained were 0.06 ± 0.006 and 0.1 ± 0.01 μmol J
-1

 in open to air and close with air 

atmospheres respectively. G(H2O2) obtained in open to air atmosphere is two fold lower than 

that obtained in close with air one. In this last condition, H2O2 yield is equal to that of ultra-

pure water (LaVerne, 2004; Pastina and LaVerne, 1999; Yamashita et al., 2008a; Yamashita 

et al., 2008b) which means that this molecule was not consumed whereas a non-negligible 

part of H2 was consumed. From this, we can conclude that in open to air atmosphere, half of 

the H2O2 produced by water radiolysis was consumed by oxidation of the UO2 surface leading 

to the formation of metastudtite secondary phase. We can conclude too that H2 has an 

inhibition effect on the UO2 oxidation and this inhibition does not take place by direct effect 

on H2O2 but by interaction between H2 and the UO2 surface.  

 

Conclusions and Future work 

In conclusion, this work brings some light on the radiolytic corrosion of UO2 by identification 

of (1) the oxidized secondary phase formed (metastudtite) and following its temporal 

evolution, (2) the H2 role as an inhibitor agent, (3) the oxidative role of H2O2 and (4) the 

quantity of U species released. Detailed mechanisms of UO2 corrosion/oxidation will be 

proposed taking into account the phenomena of water radiolysis.  

Furthers studies will be performed in order to determine the role of the radical speces 

produced by water radiolysis on UO2 corrosion. Moreover, spacial resolution technique will 

be used in future surface characterization experiments in order to localize the corrosion on the 

grain boundaries as shown with SEM pictures. 
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