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1 Introduction

Contact interactions inevitably arise as the low-energy remnants of high-energy theories.

Should the LHC not find (additional) new particles, it can nonetheless be sensitive to their

traces in contact interactions.

This paper focuses on four-quark contact interactions, with two incoming valence

quarks, as is most probable at the LHC. New Physics from beyond the LHC energy

can induce various operators [1, 2], with different Lorentz and gauge structures as well as
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flavour indices. So bounds on contact interactions involving specific flavours are appropri-

ate for constraining New Physics models. The great variety of high-energy models have

different low-energy footprints, such as different flavour structures for contact interactions.

For instance, the contact interactions involving singlet (i.e., right-handed) u quarks might

differ from those involving d quarks. Furthermore, the flavour structure of contact interac-

tions induced by New Physics is explored by precision flavour physics (mostly for flavour

off-diagonal operators), so the collider bounds should also be for specific flavour indices, to

allow comparison and combination with low-energy observations.

However, the current LHC bounds are given for a subset of flavour-summed opera-

tors [3–5]. The aim of this paper is to make an approximate translation of the collider

constraints onto individual, flavoured operators and to illustrate the limits of such a trans-

lation. Two issues arise in attempting to apply the published contact interactions bounds

to a different operator: the Lorentz and gauge structure of the operator affects the par-

tonic cross section, and the flavour indices affect possible interferences with QCD, as well

as controlling the probability of finding the initial state quarks in the proton. Let us men-

tion that four-quark contact interactions have been searched for at the Tevatron in qq̄ →
dijets [6], and at the LHC in qq → dijets [3–5]. In both cases, the initial state q or q̄ are first

generation valence quarks, whereas the final state can be of any flavour, so the Tevatron

and LHC can constrain different flavour structures. In this paper, we focus on the qq →
dijets process at the LHC. Some previous theoretical analyses that use LHC dijet searches

to constrain New Physics can be found in reference [7–11].

Section 2 reviews the kinematical variables used by the experimental collaborations [3,

4, 6] to constrain contact interactions from the rapidity distribution of high energy dijets.

These variables allow an approximate “factorisation” of the pp → dijets cross section

into an integral over parton distribution functions (pdfs), multiplying a partonic cross

section. In section 3.1, a basis of Standard Model gauge-invariant, dimension-six effective

operators are listed, which, in the presence of electroweak symmetry breaking, induce

the effective interactions listed in section 3.2. We will constrain the coefficients of these

effective interactions, because, as discussed in section 3, this allows to set conservative

and operator-basis-independent limits, while turning the interactions on one at a time.

Issues regarding flavour and interferences are discussed in section 4. Section 5 uses the

approximate factorisation of section 2 to estimate bounds on individual operators based on

the CMS analysis of ref. [4]. The appendix collects the partonic cross sections for various

contact interactions. Its aim is to allow an interested reader to estimate bounds from future

data on their selection of contact interactions, following the mostly analytic recipe given

in section 5.

2 Kinematics of pp → dijets

At the LHC, the cross section for pp → dijets contains contributions from QCD, electroweak

bosons, and possibly from four-parton contact interactions. The purely QCD (or QED)

contribution falls off as 1/ŝ, where ŝ = M2
dijet is the four-momentum-squared of the pair of

jets, and grows in the forward/backward directions. On the other hand, the contact inter-
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Figure 1. Possible QCD and contact interaction diagrams for qiqj → qmqn. QED diagrams with the

gluon replaced by a photon are also possible. At the grey blob representing the contact interaction,

the quark lines may have chiral projectors and/or a colour matrix. Which gauge diagrams interfere

with a given contact interaction will depend on its flavour indices and operator structure; for

instance, for V −A operators with i = j = n = m, all four gauge diagrams could interfere.

action contribution grows with ŝ and is fairly central. So bounds on contact interactions

can be obtained from the meagre population of central high energy dijets. With a clever

choice of variables, the distribution in rapidity and invariant-mass squared of the two jets

can be approximated as the partonic cross section, multiplying an integral of pdfs. We

review here this approximation.

The parton-level diagrams for quark-quark scattering qi(k1)qj(k2) → qm(p1)qn(p2) are

given in figure 1, where i, j,m, n are flavour indices, and {k, p} are four-momenta. The

resulting cross sections, which can be parametrised with the partonic mandelstam variables

ŝ, t̂, and û are listed in the appendix. To obtain an observable, the partons must be

embedded in the incident protons, here taken to have four-momenta P±. We denote fj(x1)

the probability density that the parton j carries a fraction x1 of the four-momentum of an

incident proton, so that ŝ = x1x2(P+ + P−)
2. The total cross section can be written

σ(pp → dijets) =
∑

i,j,m,n

∫ 1

0
dx1

∫ 1

0
dx2fi(x1)fj(x2)σ(i(x1P+)j(x2P−) → mn) (2.1)

where the sum runs over all possible incident partons for each partonic process, and over all

the partonic processes which contribute (e.g., in the case of dijets, qq → qq, qq̄ → qq̄, gg →
qq̄, gg → gg, etc). In our estimates, we only include uu → uu, dd → dd, ud → ud and

ug → ug in the partonic QCD cross section. These should be the main contributions to

the dijet cross section. The partonic cross sections increase by a factor ∼ 9/4 for each

initial gluon: σ(qq → qq) : σ(qg → qg) : σ(gg → gg) ∼ 4
9 : 1 : 9

4 . However, the density of

gluons in the proton, at the large values of x which are relevant here, is at least a factor of

1/10 (1/3) below that of valence u (d) quarks, and the density of sea quarks, is two orders

of magnitude below the u density, which justifies our approximation.

It can be convenient to introduce the pseudo-rapidities

y =
1

2
ln

E + pz
E − pz

(2.2)

of the individual jets, and their combined mass squared

M2
dijet = ŝ = x1x2s . (2.3)

We interchangeably refer to M2
dijet or ŝ throughout the paper, using the convention that

partonic variables, such as the Mandelstam ŝ, t̂, û (defined in eq. (A.1)), wear hats.

– 3 –
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The CMS search [4] for contact interactions in the angular distribution of dijets at

high M2
dijet uses as variables the dijet mass squared eq. (2.3), the pseudo-rapidity of the

partonic centre of mass frame

y+ = (y1 + y2)/2 , (2.4)

and

χ = exp |y1 − y2| =
1 + | cos θ∗|
1− | cos θ∗| , (2.5)

where θ∗ is the centre-of-mass scattering angle away from the beam axis (see the appendix).

At the parton level, the QCD contributions to the differential cross section dσ̂/dt̂

have a 1/t̂2 divergence, leading to a large rate for small-angle scatterings along the beam

pipe. On the other hand, the dijets produced by contact interactions have a more isotropic

distribution. The most sensitive place to look for contact interactions is therefore in large-

angle scatterings, producing dijets in the central part of the detector. Expressed as a

function of χ, the QCD contribution to the dijet cross section is approximately flat, whereas

the contact interaction contribution peaks at small χ. This is illustrated in figures 1 and

2 of ref. [4], where the main effect of contact interaction occurs for 1 ≤ χ ≤ 3 bin, which

corresponds to 60o ≤ θ∗ ≤ 120o.

With these variables, the differential dijet cross section is

dσ

dy+ dχ dM2
dijet

=
fi(x1)fj(x2)

s

dσ̂

dt̂

t̂2

ŝ
. (2.6)

For fixed dijet mass, the pdfs depend on y+ but not χ (since x1 = ey+Mdijet/
√
s, x2 =

e−y+Mdijet/
√
s), and the partonic differential cross section depends on χ but not y+, so the

expected number of events can be factorised as a integral-of-pdfs, multiplied by a partonic

cross section. Therefore, in an ideal world with contact interactions, the dijet distribution

in mass and χ could allow one to determine the actual partonic cross section, providing

the necessary information to identify the operator(s) that induced it.

3 Contact interactions: operators versus effective interactions

3.1 Operators

New Physics from a scale M > mW can be described, at scales ≪ M , by an effective

Lagrangian containing the renormalisable Standard Model (SM) interactions, and various

SU(3)× SU(2)×U(1)Y -invariant operators of dimension > 4, with coefficients determined

by the New Physics model. There can be relations among the operators, arising from

symmetries and equations of motion. This section gives a basis of dimension six, four-

quark operators, taken from the Buchmuller-Wyler [1] list as pruned by ref. [2].1

In the following list of four quark operators, Q are electroweak doublets, U and D are

singlets, λA are the generators of SU(3), ~τ/2 are those of SU(2), the gauge index sums

are implicit inside the parentheses, and i, j,m, n are generation indices which all run from

1We restrict our analysis to dimension-6 operators. This is a reasonable perturbative approximation

when the next-order terms, relatively suppressed by ∼ ŝ/Λ2, v2/Λ2 can be neglected.
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1. . . 3 (so there is a factor 1/2 in front of operators made of same current twice, to obtain

the Feynman rule described below in eq. (3.17)).

O1,1
Q̄Q

=
1

2
(QmγµQi)(QnγµQj) (3.1)

O1,3
Q̄Q

=
1

2
(Qmγµ~τQi)(Qnγµ~τQj) (3.2)

O1,1
ŪU

=
1

2
(UmγµUi)(UnγµUj) (3.3)

O1,1
D̄D

=
1

2
(DmγµDi)(DnγµDj) . (3.4)

There are also operators contracting currents of singlet quarks of different charge:

O1,1
ŪD

= (UmγµUi)(DnγµDj) O8,1
ŪD

= (UmγµλAUi)(Dnγµλ
ADj) (3.5)

and operators contracting doublet and singlet currents:

O1,1
Q̄D

= (QmγµQi)(DnγµDj) O8,1
Q̄D

= (QmγµλAQi)(Dnγµλ
ADj) (3.6)

O1,1
Q̄U

= (QmγµQi)(UnγµUj) O8,1
Q̄U

= (QmγµλAQi)(Unγµλ
AUj) (3.7)

and finally there is a scalar operator, with antisymmetric SU(2) index contraction across

the parentheses:

OS,1,1
Q̄Q̄

= (QmUi)(QnDj) OS,8,1
Q̄Q̄

= (QmλAUi)(Qnλ
ADj) . (3.8)

3.2 Effective interactions

Once electroweak symmetry is broken, a particular operator induces one or several effective

interactions among mass eigenstates. We aim at constraining these effective interactions,

one at a time, through the LHC searches on contact interactions.

This leads us to make a distinction between (gauge-invariant) operators, and effective

interactions (having distinct external legs). The aim of this distinction is to address a

general problem with setting bounds on the coefficients of gauge-invariant operators [13]:

such bounds may not transfer, in a simple way, from one operator basis to another. The

selection of SM gauge-invariant operators made in section 3.1 is not unique, as expected

for a choice of basis. A different list of operators might be more suited to describing some

models because they capture the symmetries of the model in a more economical way. Ide-

ally, the constraints on four-fermion operator coefficients should be transferable from one

operator basis to another. However, this is not possible if these constraints are obtained by

turning on one operator at a time, as will be done here. One difficulty is that an operator,

such as the SU(2) triplet of eq. (3.3), induces several four-fermion interactions, so quoting

a bound on the operator loses the correlation carrying the information about which inter-

action the bound arose from. In addition, if the operators can interfere among themselves

(for instance, the singlet and triple operators of eqs. (3.1) and (3.3) can interfere), then the

bound on a sum of operators could be less restrictive than the bounds on single operators.

– 5 –
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To circumvent the problem of “basis-dependent” bounds,2 we follow ref. [12], and set

limits on the coefficients of “effective four-quark interactions”, These effective interactions

should be distinct, so that they do not interfere among each other, and should include all

the interactions induced by the effective operators. Unfortunately, these two requirements

are not quite compatible; there are two interactions which can interfere, but we neglect

this effect.

We obtain the list by considering the U(1)×SU(3) invariant operators generated after

electroweak symmetry breaking by the previous basis of SM gauge invariant operators

(decomposing the SU(2) doublets Q into their components). These interactions almost

never interfere among themselves (the exceptions are eqs. (3.12) and (3.16)), which ensures

that the prediction of a sum of interactions will be the sum of the predictions of the

interactions taken separately. The possibilities are the following:

• the “neutral-current” left-left or right-right interactions, X = L or R:

O1,XX
umuiunuj

=
1

2
(umγµPXui)(unγµPXuj) (3.9)

O1,XX
dmdidndj

=
1

2
(dmγµPXdi)(dnγµPXdj) (3.10)

O1,XX
umuidndj

= (umγµPXui)(dnγµPXdj) O8,RR
umuidndj

= (umγµPRλ
Aui)(dnγµPRλ

Adj).

(3.11)

Notice that, with the previous basis of gauge-invariant operators, the octet O8,RR
uudd

only arises for singlet currents.

• the “charged-current” interactions

O1,CC
umdidnuj

= (umγµPLdi)(dnγµPLuj) O8,CC
umdidnuj

= (umγµPLλ
Adi)(dnγµPLλ

Auj) ,

(3.12)

the second of which can be rearranged to a linear combination of O1,CC
umdidnuj

and

O1,LL
umujdndi

. We therefore do not include octet charged-current interactions. We in-

clude the singlet O1,CC
umdidnuj

, which unfortunately can interfere with O1,LL
umujdndi

(see

eq. (A.14)).

• the “neutral-current” left-right operators,

O1,XY
umuiunuj

=
1

2
(umγµPXui)(unγµPY uj) O8,XY

umuiunuj
=
1

2
(umγµPXλAui)(unγµPY λ

Auj)

(3.13)

O1,XY
dmdidndj

=
1

2
(dmγµPXdi)(dnγµPY dj) O8,XY

dmdidndj
=
1

2
(dmγµPXλAdi)(dnγµPY λ

Adj)

(3.14)

O1,XY
umuidndj

=(umγµPXui)(dnγµPY dj) O8,XY
umuidndj

=(umγµPXλAui)(dnγµPY λ
Adj)

(3.15)

where PX , PY ∈ {PL, PR}, X 6= Y.

2Ref. [14] shows some parameter choices where interference among operators could reduce sensitivity,

although the O2 operator they discuss is not present in the basis of [2].
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• the scalar operators stemming from eq. (3.8), which each give two interactions:

OS1
qmuiqndj

= (dmPRui)(unPRdj)− (umPRui)(dnPRdj)

OS8
qmuiqndj

= (dmPRλ
Aui)(unPRλ

Adj)− (umPRλ
Aui)(dnPRλ

Adj) . (3.16)

For the scalar operators, we constrain the coefficients of the operators, that is, of

OS1 and OS8 given above, because the interactions in the sums interfere between

each other.

3.3 Feynman rules and dimensional analysis

Following the convention of collider constraints on contact interactions, we suppose that

the coupling in the four-quark Feynman rule is

iη
4π

Λ2
, with η = ±1 . (3.17)

The operators/interactions, of the previous sections are normalised such that their coeffi-

cient should be η4π/Λ2. For each flavoured contact interaction, there will be a different

lower bound on Λ.

In the matrix element squared, the contact interaction may interfere with QCD (de-

pending on its colour, flavour and chiral structure) as well as with itself. The pp → dijet

cross section, in the central part of the detector, is therefore of the form

dσ

dχ
∼ CQCD

α2
s

ŝ
+ C2

αs

Λ2
+ C4

ŝ

Λ4
, (3.18)

where the Cx are O(1) constants that depend on the specific contact interaction. C4,

related to the contribution of contact interaction alone, is always positive and will dominate

for very large ŝ, whereas C2, stemming from the interference between QCD and contact

interactions, can be positive or negative depending on the value of η, and can thus induce

either a deficit or an excess of events at intermediate values of ŝ.

Requiring that the contact interactions induce a deviation of ǫ <∼ 1 from the QCD

expectation, gives
1

Λ2
<∼

αs

ŝ
, (3.19)

suggesting that for
√
ŝ = 3TeV at the 7–8TeV LHC [4], the limits on Λ should be >∼

O(10)TeV. In the following, we will impose a tighter constraint on eq. (3.18) for specific

contact interactions, providing different bounds depending on their flavour structure.

Similar estimates can be made for dimension-eight four quark operators, with coef-

ficients 4πŝ/Λ4
8, or 4πv2/Λ4

8, where v is the “v.e.v” of the Higgs field. Focussing on the

former, because v2 ≪ M2
dijet, one obtains

dσ

dχ
∼ CQCD

α2
s

ŝ
+ C ′

4

αsŝ

Λ4
8

+ C8
ŝ3

Λ8
8

(3.20)

which can be interpreted in two ways. First, if there is New Physics at a scale M2 >∼ ŝ

which induces observable dimension six operators with coefficients 4π/Λ2
6, then comparing

– 7 –
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the last term of eq. (3.18) to the middle term of eq. (3.20), with C4 ≃ C ′
4, shows that

the contribution of dimension eight operators is relatively suppressed by αsΛ
4
6/Λ

4
8 [22].

Alternatively, if the coefficients of dimension 6 operators are suppressed, Λ6 ≫ Λ8, then

colliders could still be sensitive to the narrow window ŝ < Λ2
8 < ŝ/

√
αs, via dimension

eight operators.

The perturbative exchange of a boson of mass M , momentum p, and coupling g′ to

quarks is represented by an amplitude

A ∼ g
′2

p2 −M2 ± iMΓ
→ g

′2

M2
≡ 4π

Λ2
<∼

g2s
ŝ

(3.21)

where p2 can be ŝ, t̂ or û. For p2 ≪ M2, this gives the contact interaction after the

arrow, where also the estimated bound of (3.19) is included. Since this applies in the limit

M2 ≫ ŝ, there is almost no {g′,M} parameter space where both the limit is satisfied, and

colliders have sensitivity. So it is interesting to consider M2 ∼ ŝ. Equation (3.21) suggests

that such a boson can contribute a contact-like interaction in the t and u channels (recall

t, u ≤ 0), or in the s-channel for a broad boson with Γ ∼ M . So the common lore is that

collider contact interaction searches can be sensitive to bosons with

M >∼ Mdijet , g
′ >∼ gs

M

Mdijet
.

4 Contact interactions: flavour structure

4.1 Impact of flavour on the search for contact interactions

Each of the interactions given in the section 3.2 exists in a plethora of flavoured combi-

nations, only some of which can be constrained by colliders. The flavour indices have two

effects on the collider bounds: first, some flavours are more plentiful in the proton than

others, and second, the cross section can involve interferences with QCD or QED, which

depend on the flavours.

First, at the LHC, bounds can be set on contact interactions with two incoming valence

quarks (uu, dd, ud). This is because the density of sea quarks and antiquarks is very

suppressed. The incident partons should both carry a significant fraction of the proton

momentum, to produce a pair of jets of large combined mass (the last bin in dijet mass of

the CMS analysis [4] is Mdijet > 3TeV at the 7TeV LHC, corresponding to x1x2 ≥ 9/49).

At such large values of x, the density of all flavours of sea quark and anti-quark is of similar

size and about two orders of magnitude below the density of u quarks. It is therefore

doubtful, with current data, to set a bound on contact interactions with an initial sea

quark or anti-quark, because a huge cross section would be required to compensate the

relative suppression of sea pdfs.

The second effect of flavour indices is on the partonic cross section. For instance, the

cross section for ud → ud, mediated by QCD + contact interactions, is different from

uu → uu (see eqs. (A.4)–(A.9)). In particular, the singlet interactions mediating uu → uu

interfere with QCD, whereas there is not interference between QCD and singlet interactions

mediating ud → ud. Flavour-summed contact interactions constrained by the experimen-

tal collaborations have thus a reduced sensitivity to destructive interferences as they get

– 8 –
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(ηLL, ηRR, ηLR) operators

Λ±

LL (±1, 0, 0) ±[O1,LL
uuuu + 2O1,LL

uudd +O1,LL
dddd ]

Λ±

RR (0,±1, 0) ±[O1,RR
uuuu + 2O1,RR

uudd +O1,RR
dddd ]

Λ±

V V (±1,±1,±1) ±[
∑

m,n=u,d(O
1,LL
mmnn +O1,LR

mmnn +O1,RL
mmnn +O1,RR

mmnn)]

Λ±

AA (±1,±1,∓1) ±[
∑

m,n=u,d(O
1,LL
mmnn −O1,LR

mmnn −O1,RL
mmnn +O1,RR

mmnn)]

Λ±

V−A (0, 0,±1) ±[O1,LR=RL
uuuu +O1,LR

uudd +O1,LR
dduu +O1,LR=RL

dddd ]

Table 1. Sums of operators contributing (at the LHC) to some commonly studied contact inter-

actions (see eq. (4.1)). On the left, the sub/super-scripts for Λ indicate the choice of η coefficients.

On the right are given the corresponding interactions from section 3.2. In principle, contact inter-

actions studied in collider experiments have a sum over all flavours; however, the LHC is principally

sensitive to contact interactions with two incoming valence quarks, so the flavour sum is over u, d.

contributions from several flavour operators, most of them being positive contributions

coming from contact interactions alone that increase the cross sections. In the appendix,

we attempt to classify the possible flavour index combinations, and provide their partonic

cross sections.

Another comment is in order at this stage. The experimental final state considered

here is a pair of jets, so the final state quarks can be of any flavour other than top. This

means the LHC is sensitive to curious ∆F = 2 and ∆F = 1 flavour-changing operators

mediating processes like uu → cc or ud → ub. Flavour physics (e.g. meson mixing and B

decays) can impose more stringent bounds on some of them. In the following, we will give

the LHC bounds on the various flavour-changing operators.

4.2 Comparing to the existing notation

Traditionally [15], collider searches for contact interactions quote bounds on the mass scale

Λ appearing in an interaction of the form:

LPythia =
4π

Λ2

∑

i,j=u,d,s,c,b

[

ηLL
2

(qiγ
µPLqi)(qjγµPLqj) +

ηRR

2
(qiγ

µPRqi)(qjγµPRqj)

+ ηLR(qiγ
µPRqi)(qjγµPLqj)

]

. (4.1)

Specifically, this is the contact interaction coded into pythia 8 [16, 17], where the η

coefficients can be chosen to be ±1 or 0. Some frequently studied combinations of η

coefficients are given in table 1.

With the aim of obtaining useful and conservative bounds, our constraints will differ

in three ways:

1. We include the octet operators O8 of section 3.2. They generally give smaller modi-

fications to the dijet rate, so the bound on Λ is lower, as can be seen from the tables

of section 5.
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2. We constrain each combination of flavour indices separately.

3. We only consider O1,LR (or O1,RL), and O1,LL (or O1,RR), but not the various linear

combinations available in table 1.

Turning on one effective interaction of given flavours at a time (as done here) gives

conservative bounds if two conditions are satisfied. First, the interactions should not inter-

fere among themselves, so that the contribution of the sum is the sum of the contributions.

This is almost the case for the interactions of section 3.2. Second, each bound should arise

from requiring that the operator not induce an excess of events (as opposed to a deficit of

events). This will be true for the bounds that we will derive.

Suppose now that one wishes to set a bound on a specific New Physics model, which

induces a sum of low-energy contact interactions — for instance the V V combination. It is

simple and conservative to take the strongest of the bounds obtained one-at-a-time for the

operators in the sum. However, the true limit should be better. It is not straightforward

to obtain the bound on Λ+
V V given the limits on Λ+

XX (X = R or L) and Λ+
LR. Despite

that the excess events induced by O1,V V are the sum of the excesses due to O1,XY and

O1,XX (for X 6= Y ∈ {L,R}), there are two hurdles to obtaining a bound on Λ+
V V : first,

one must calculate the partonic cross section for the V V operator combination, then one

must know how it is constrained by the data. To address the first hurdle, we collect in the

appendix the partonic cross sections for a variety of contact interactions. The second hurdle

is a problem, because it is clear that the experimental collaborations cannot constrain all

possible combinations of all contact interactions. However, contact interactions induce

excess high-mass dijets in the central part of the detector, so observables which measure

this, such as Fχ(Mdijet) [3] of the ATLAS collaboration, should be translatable to limits on

generic contact interactions.

5 Estimating bounds on flavoured contact interactions

5.1 From data to partonic cross sections

Suppose that an effective interaction has been selected, with incident flavours of the first

generation. The recipe to guess a bound on Λ, from the dijet distribution in M2
dijet and χ,

is simple:

1. look up the (flavoured) partonic cross section for the selected contact interaction plus

QCD, and evaluate at the χ corresponding to the bin.

2. integrate the pdfs of the incident partons over the y+ values which are consistent

with the experimental cuts.

3. multiply 1) by 2), and require that it agree with the QCD expectation for the bin.

We want to illustrate in detail the procedure in the case of the CMS analysis [4]. The CMS

collaboration measured the distribution of dijets in χ from 1 → 16, and Mdijet from 0.4 to

≥ 3TeV [4]. We focus on the highest Mdijet > 3TeV bin (obtained with 2.2 fb−1 of data),
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for which CMS plots the normalised3 differential cross sections (≡ 1
σ
dσ
dχ), corresponding to

the data, to the QCD expectation, and to the predictions of QCD plus contact interactions

(denoted QCD+CI). As indicated in section 2, the highest sensitivity to contact interactions

is obtained for the 1 ≤ χ ≤ 3 bin. A ratio which can be extracted for a specific bin is

1

σQCD+CI

dσQCD+CI

dχ

[

1

σQCD

dσQCD

dχ

]−1

, (5.1)

where all the cross sections are for pp → dijets (partonic cross sections will wear hats):

dσQCD+CI

dχ
=

∑

i,j,m,n

∫

dy+fifj

(

dσ̂QCD

dχ
(ij → mn) +

dσ̂QCD∗CI

dχ
(ij → mn)

+
dσ̂CI

dχ
(ij → mn)

)

, (5.2)

and are summed over the χ and ŝ ranges of the bin (we will return to these sums later).

Clearly, the prediction of contact interactions should be compared with the data, not

with the QCD prediction. However, we notice that the data [3, 4] agree with the QCD

prediction (for Mdijet > 3TeV they are marginally below the predictions for low-χ bins and

above for high-χ bins, in the case of ref. [4]). So we “normalise” our (incomplete) leading

order parton-level QCD cross section, to the QCD expectation obtained by ATLAS and

CMS at next-to-leading order (NLO) with hadronisation and detector effects. Then we

estimate bounds on contact interactions by requiring that they add <∼ 1.6σ to the QCD

contribution, where σ is the experimental statistical and systematic uncertainties for the

relevant bin, added in quadrature. On the basis of the results of ref. [4], we estimate that

this allows contact interactions to contribute from 1/3 to 1/2 of the QCD contribution

either positively or negatively. In other words, even though we base our analysis on the

most sensitive χ-bin (from 1 to 3) at maximal Mdijet, which has an observed value slightly

below the QCD prediction, we consider that the spread of data with respect to QCD in the

other bins prevents us from interpreting the deficit in the 1-3 bin as a negative contribution

from contact interactions. We thus take the more conservative approach to set a bound on

contact interactions as a fraction (positive or negative) from QCD (we will come back to

this point in section 5.3).

The ratio (5.1) can be related, in a series of steps, to a ratio of partonic cross sections.

• The first step consists in canceling σQCD+CI ≃ σQCD in the ratio. This is a self-

consistent approximation, because contact interactions only contribute in the low χ

bins, where they are bounded to be a fraction of QCD.

• The second step amounts to writing the ratio

dσQCD+CI

dχ

[

dσQCD

dχ

]−1

= 1 + ǫ (5.3)

3At this stage, we suppress the M2
dijet dependence; dσ

dχ
means

∫
dy+

d3σ

dy+dM2
dijet

dχ
, and σ =

∫
dχdy+

d3σ

dy+dM2
dijet

dχ
.
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where

ǫ =

∑

m,n

∫

dŝ
∫

dy+fifj δ
dσ̂
dχ(qiqj → qmqn)

∑

i,j,m,n

∫

dŝ
∫

dy+fifj
dσ̂QCD

dχ (qiqj → qmqn)
, (5.4)

where the partonic differential cross section δ dσ̂
dχ is the modification to (qiqj → qmqn)

induced by contact interactions (alone or through interference with QCD, corre-

sponding to the last two terms inside the parentheses of eq. (5.2)). The denominator

amounts to the QCD contribution which is summed over the possible initial flavour

combinations (limited to uu, dd , ud and ug). The integral over the ŝ = M2
dijet range

of the bin has been reinstated.

• The third step corresponds to factorising the integrals in the ratio 1+ ǫ. As discussed

in section 2, the partonic cross sections depend on M2
dijet and χ, and the pdfs depend

on M2
dijet and y+. We now want to factor the partonic cross section out of the integral

across the Mdijet > 3TeV bin. This will be an acceptable approximation, because

the pdfs drop rapidly with large increasing x, so contribute most of the integral in a

narrow range of Mdijet ∼ 3TeV.

We factorise in two steps, starting with the denominator of eq. (5.4). All the QCD

cross sections scale as 1/ŝ, so the cross sections evaluated at ŝmin = (3TeV)2 can

be factored out of the integrals and replaced by ŝmin/ŝ as far as the s-dependence is

concerned (see appendix). We are left to integrate for N = −1

INij =

∫ max

min
dŝ

(

ŝ

ŝmin

)N ∫

dy+fi(x1)fj(x2) , x1 = ey+

√

ŝ

s
, x2 = e−y+

√

ŝ

s
, (5.5)

over the y+ region consistent with the CMS cuts (y+ < 1.1) and the value of M2
dijet

(corresponding to 2y+ < ln s/ŝ), and over the range of energy from ŝmin = (3TeV)2

to ŝmax = (6TeV)2. We use CTEQ10 [18] pdfs (at NLO) at a scale of 3TeV. The

results, normalised to I−1
uu , are given in table 2. The ratios in the table change by

only a few percent when we change ŝmax to (4.5TeV)2.

The second step is to take δ dσ̂
dχ , evaluated at ŝ = (3TeV)2, out of the integral in the

numerator of eq. (5.4). We have then to evaluate INij for N = 1, 0, which corresponds

to the ŝ dependence of the |CI|2 and interference contributions respectively. For

ij = uu, dd or ud, these integrals can be up to 20% larger than for N = −1. We

conservatively neglect this effect, and use the rij given in table 2.

In the end, as desired, we have obtained an analytic formulation of the experimental

bound on contact interactions. The data gives ǫ <∼ 1/3 or 1/2. For a contact interaction

selected from section 3.2, with incoming flavours ij,

ǫ =
rijδ

dσ̂
dχ(qiqj → qmqn)

(1 + rdd)
dσ̂QCD

dχ (uu → uu) + rud
dσ̂QCD

dχ (ud → ud) + rug
dσ̂QCD

dχ (ug → ug)
(5.6)

where rij is from table 2, δ dσ̂
dχ is the parton-level excess with respect to QCD induced by

contact interactions (given by the appendix), whereas the cross sections in the denominator

are induced by QCD (see eqs. (A.4), (A.3) and (A.9)).
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incoming partons ij rij = integrated density

(normalised to uu)

u u 1

d d 0.085

u d 0.56

u g 0.22

Table 2. The ratios of integrated pdfs, rij = I−1
ij /I−1

uu , which allow translating the experimental

bound on σ(pp → dijets) to a bound on partonic cross sections. rud and rug are multiplied by 2

because the u valence quark could come from either incoming proton.

5.2 Bounds on flavoured operators

We are now in a position to translate the CMS results in terms of flavoured operators. The

recipe to guess a bound on Λ, as given in the previous section, can now be reformulated

analytically:

1. look up in the appendix the contribution to the partonic cross section of the se-

lected contact interaction(s) plus interference with QCD, and evaluate it at the χ

corresponding to the bin of interest.4 The same must be done for the QCD cross

sections (A.4), (A.3) and (A.9).

2. weight the various contact interactions by the appropriate rij factor from table 2,

and the QCD cross sections as given in the denominator of eq. (5.6).

3. impose that the ratio of eq. (5.6), ǫ ≤ 1/3 (or 1/2), which gives a quadratic polynomial

for ŝ/Λ2 whose root gives the estimated bound on Λ for ŝ taken at the lower end of

the range allowed in the highest dijet mass bin.

In practice, we integrate the partonic cross sections over 1 ≤ χ ≤ 3, and plot 1 + ǫ in

figures 2, 3 and 4. Imposing ǫ ≤ 1/3 or 1/2 gives the bounds on Λ in the tables 3 to 8,

stemming from the ratio M2
dijet/Λ

2, by taking Mdijet = 3TeV [4].

The bound that we obtain on Λ is the solution of a quadratic polynomial in ŝ/(αsΛ
2)

(see eq. (3.18)), so depends on the numerical value of αs. We take αs(3TeV) ≃ 0.09, in

agreement with the leading order running, since we do a leading order calculation (this is

analogous to using αs(mZ) = .139 in pythia [19, 20]). If instead, we take the Particle

Data Group value [21] αs(mZ) ≃ .12, then αs(3TeV) ≃ 0.08. If the scale of evaluation

of αs is changed by a factor of two, αs varies by about 0.005. We conclude that varying

αs between 0.08 and 0.09 gives some notion of the NLO uncertainties, and take the larger

value, since this yields the more conservative limit.

The study performed here neglects several effects, such as hadronisation (partons are

not jets), and NLO corrections (calculated for O1,LL in ref. [14]). We also do not consider

dimension 8 operators: as pointed out by ref. [22], matrix elements to which QCD con-

tributes could also have an O(1/Λ4) term from QCD interference with a dimension 8 oper-

ator. This interference is in principle suppressed with respect to dimension 6-contributions

by a factor αs.

4For instance, 1 ≤ χ ≤ 3 corresponds to the range in (−t̂,−û) between ( 3
4
ŝ, 1

4
ŝ) and ( 1

4
ŝ, 3

4
ŝ).
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Operator flavours minj ŝ/Λ2 Λ <

+O8,XY uuuu .64 .72 3.8− 3.5 TeV

−O8,XY uuuu .20 .28 6.7− 5.7 TeV

+O1,XX uuuu .19 .21 6.9− 6.5 TeV

−O1,XX uuuu .06 .09 12.2− 10 TeV

+O1,XY uuuu .19 .23 6.9− 6.3 TeV

−O1,XY uuuu .15 .19 7.7− 6.9 TeV

+O1,XX dddd .43 .52 4.6− 4.2 TeV

−O1,XX dddd .31 .39 5.4− 4.8 TeV

+O1,XY dddd .60 .74 3.9− 3.5 TeV

−O1,XY dddd .56 .70 4.0− 3.6 TeV

+Opythia,XX .15 .17 7.7− 7.3TeV

(8.4TeV)

−Opythia,XX .06 .07 12.2− 11.3 TeV

(11.7TeV)

+Opythia,XY .17 .20 7.3− 6.7TeV

(8.0TeV)

−Opythia,XY .13 .17 8.3− 7.3TeV

(8.0TeV)

Table 3. Estimated bounds on the contact interaction scale, obtained from figure 2. The inter-

actions of the first column are from section 3.2, and Opythia is the flavour-summed operator of

eq. (4.1) for comparison. The flavour indices of the second column are in the order of the fields

in the operator, and correspond to ij → mn. The bounds are for αs(Mdijet) = 0.09. In the third

column are given the bounds on ŝ/Λ2 from requiring that the relative excess of dijets induced by

contact interactions be |ǫ| < 1/3 or |ǫ| < 1/2. The bound in the last column is obtained with

ŝ = M2
dijet = (3TeV)2, for the two values of ǫ. The bounds in parentheses on Opythia are those of

CMS [4].

We do include interference between QED and contact interactions, when there is no

interference with QCD, but we neglect effects of weak interactions. There are (almost) no

gluon contributions in this analysis: we include the gq → gq contribution to the QCD cross

section, but neglect gg → gg (because we assume fg <∼ fd/3 <∼ fu/9). We hope to consider

ggq̄q contact interactions [23] in a later analysis.

5.3 Extrapolating to higher energy or luminosity

The reach of the future LHC for the usual flavour-summed contact interactions has been

studied in ref. [24], who find expected limits Λ >∼ 20TeV. If the LHC with more energy and

luminosity still does not find contact interactions, how would our flavoured estimates scale?
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Operator flavours minj ŝ/Λ2 Λ <

+O8,XX dduu .59 .67 3.9− 3.7 TeV

−O8,XX dduu .21 .28 6.4− 5.7 TeV

−O8,XY dduu .50 .66 4.1− 3.7 TeV

OS8 dduu .60 .74 3.9− 3.5 TeV

+O1,XX dduu .17 .22 7.1− 6.4 TeV

−O1,XX dduu .16 .20 7.3− 6.7 TeV

+O1,CC uddu .27 .31 5.8− 5.4 TeV

−O1,CC uddu .10 .14 9.5− 8.0 TeV

+O1,XY dduu .33 .41 5.1− 4.7 TeV

−O1,XY dduu .31 .39 5.2− 4.8 TeV

OS1 dduu .39 .48 4.8− 4.3 TeV

Table 4. Estimated bounds on the contact interaction scale, obtained from figure 3 for the inter-

actions of the first column with ij → mn = ud → ud flavour structure. In the third column are

given the bounds on ŝ/Λ2 from requiring |ǫ| < 1/3 or |ǫ| < 1/2. The last column is obtained with

ŝ = M2
dijet = (3TeV)2.

Operator flavours minj ŝ/Λ2 Λ <

O8,XY cucu .35 .44 5.1− 4.5 TeV

O1,XX cucu .11 .13 9.0− 8.3 TeV

O1,XY cucu .17 .21 7.3− 6.5 TeV

O1,XX sdsd, bdbd .37 .45 4.9− 4.5 TeV

O1,XY sdsd, bdbd .59 .71 3.9− 3.6 TeV

O1,XX sdbd .30 .37 5.5− 4.9 TeV

O1,XY sdbd .59 .71 3.9− 3.6 TeV

Table 5. Estimated bounds on the contact interaction scale, obtained from figure 4, for the

interactions of the first column with ij → mn flavour structure, ij = uu or dd, and ∆F = 2. In the

third column are given the bounds on ŝ/Λ2 from requiring |ǫ| < 1/3 or |ǫ| < 1/2. The bound in the

last column is obtained with ŝ = M2
dijet = (3TeV)2.

The bounds obtained here are on the dimensionless variable ŝ/Λ2, and they depend on the

experimental uncertainty via ǫ, as well as the scale at which the pdfs were evaluated. There

are two useful approximations/assumptions:

1. suppose that the ratios of integrated pdfs, rij , given in table 2, will not change

significantly in going from the 8 to 14TeV LHC.
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Operator flavours minj ŝ/Λ2 Λ <

O8,XY cuuu, uucu .35 .44 5.1− 4.5 TeV

O1,XX cuuu .09 .11 10− 9.0 TeV

O1,XY cuuu, uucu .16 .21 7.5− 6.5 TeV

O1,XX qddd .30 .37 5.5− 4.9 TeV

O1,XY qddd, ddqd .59 .71 3.9− 3.6 TeV

Table 6. Estimated bounds on the contact interaction scale from figure 4, for the interactions of

the first column with flavour structure ij → mn, ij = uu or dd, and ∆F = 1. In this table, q = b, s.

In the third column are given the bounds on ŝ/Λ2 from requiring |ǫ| < 1/3 or |ǫ| < 1/2. The bound

in the last column is obtained with ŝ = M2
dijet = (3TeV)2.

Operator flavours minj ŝ/Λ2 Λ <

O8,XX cuqd .36 .43 5.0− 4.6 TeV

O8,XY cuqd, qdcu .67 .84 3.7− 3.3 TeV

O1,XX ,O1,CC cuqd .20 .25 6.7− 6.0 TeV

O1,XY cuqd, qdcu .32 .40 5.3− 4.7 TeV

OS1 −cuqd+ qucd .56 .67 4.0− 3.7 TeV

Table 7. Estimated bounds on the contact interaction scale from figure 4, for the interactions of

the first column with flavour structure ij → mn, ij = ud, and ∆F = 2. In this table, q = b, s. In

the third column are given the bounds on ŝ/Λ2 from requiring |ǫ| < 1/3 or |ǫ| < 1/2. The bound

in the last column is obtained with ŝ = M2
dijet = (3TeV)2.

Operator flavours minj ŝ/Λ2 Λ <

O8,XX cudd, uuqd .36 .43 5.0− 4.6 TeV

O8,XY cudd, ddcu

uuqd, qduu .66 .84 3.7− 3.3 TeV

O1,XX ,O1,CC uuqd, cudd .20 .25 6.7− 6.0 TeV

O1,XY cudd, ddcu

uuqd, qduu .32 .40 5.3− 4.7 TeV

OS1 −cudd+ ducd

−uuqd+ quud .56 .67 4.0− 3.7 TeV

Table 8. Estimated bounds on the contact interaction scale from figure 4, for the interactions of

the first column with flavour structure ij → mn, ij = ud, and ∆F = 1. q = b or s. In the third

column are given the bounds on ŝ/Λ2 from requiring ǫ < 1/3 or ǫ < 1/2. The bound in the last

column is obtained with ŝ = M2
dijet = (3TeV)2.
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Figure 2. Ratio 1 + ǫ (see eq. (5.6)) as a function of ŝ/Λ2 for uu → uu (up) and dd → dd (down)

contact interactions. Continuous (dashed) lines correspond to interactions with the same (opposite)

chiral projector in the two currents, and thick (thin) lines are for a positive (negative) coefficient

in the Lagrangian. The lines for O8 are red, blue is O1, and Black are the flavour-summed Opythia

for comparison (The clockwise colour order for uu → uu at the origin is Black,blue,B,b,r,B,b,r,B,b.

For dd → dd at the border, it is :B,B,B,B,b,b,b,b,r,r). The bounds derived on Λ are obtained by

requesting that ŝ/Λ2 should be small enough to give 1 + ǫ <∼ 1.33 → 1.5.
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Figure 3. Ratio 1 + ǫ (see eq. (5.6)) as a function of ŝ/Λ2 for ud → ud contact interactions.

Continuous (dashed) lines correspond to interactions with the same (opposite) chiral projector in

the two currents, and thick (thin) lines are for a positive (negative) coefficient in the Lagrangian.

Red lines are for O8, blue for O1, green for O1,CC , yellow for OS1, pink for OS8 (The colour order

clockwise at the border is g,b,b,g,r,b,b,y,r,r,p,r).

2. suppose the last bin in dijet mass will always have an experimental uncertainty of

20%-30% and remain compatible with the QCD prediction. This may be reasonable,

because the bound on contact interactions profits more from going to a larger ŝ than

from reducing the statistical uncertainties to the size of the systematics. So ǫ would

remain approximately 1/3 (or 1/2).

Then the estimated bounds we quote on ŝ/Λ2 remain valid, and the bound on Λ will be

multiplied by a factor M
(new)
dijet /(3TeV), where M

(new)
dijet is the lower bound on the dijet mass

of the highest bin of a future analysis.

In relation with this issue, we come back to the interpretation of the current result of

CMS in the lowest-χ bin for Mdijet > 3TeV [4]. Up to now, we have considered that the

spread of data below and above the QCD predictions precluded explaining with contact

interactions the ∼ 30% deficit in the 1 ≤ χ ≤ 3 bin. Let us however entertain this

possibility, which requires a negative contribution coming from a negative interference

between QCD and contact interactions. As already discussed earlier and explicitly seen

from figures 2, 3 and 4, and in the appendix, the sign and size of the interference depend

on the flavour considered. It turns out that one can reduce the number of events by around

10% in the case of O1,XX
uuuu , O1,CC

uddu , O
8,XY
uuuu and O8,XX

uudd (with a scale of around 11TeV for the

singlet operators and a scale around 7TeV for the octet operators). These operators show a

similar behaviour once extrapolated to higher Mdijet. They yield a deficit of events around
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Figure 4. Ratio 1+ ǫ (see eq. (5.6)) as a function of ŝ/Λ2 for flavour changing contact interactions

uu → cc (up) or ud → cs (down). Continuous (dashed) lines correspond to interactions with

the same (opposite) chiral projector in the two currents. There is no interference with QCD, so

the sign of the contact interactions does not matter. Black are the flavour-summed Opythia (for

comparaison), red are for O8, blue for O1, yellow for OS1, and pink for OS8 (The colour order at

the border is, for uu → cc: Black,B,blue,B,B,b,r, and for ud → cs: B,B,B,B,b,b,r,y,r,p).
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10% in the bin 2.4–3TeV (where CMS data are in very good agreement with QCD), and of

around 7% in the bin 1.9–2.4TeV. The effect is within QCD uncertainties at lower Mdijet.

At higher Mdijet, of interest in the context of the LHC upgraded to 14TeV, the con-

tribution from contact interactions-squared becomes larger and starts dominating over the

interference with QCD: for 4TeV, the total contribution from contact interactions approx-

imately vanishes, and becomes positive at higher dijet mass, with an excess of 30% at

5TeV, and more than 100% at 6TeV. In this particular scenario, the slight deficit cur-

rently observed in the Mdijet > 3TeV bin is not enough to draw definite conclusions on

the presence or absence of contact interactions, and this situation will still hold with the

increase of the dijet energy, up to the point where one reaches so high dijet masses that the

(now positive) contribution from contact interactions yields a significant, non ambiguous,

sign of their presence.

On the other hand, going to such high dijet masses, one could in principle discriminate

between singlet and octet cases, since the latter case corresponds to a scale Λ ∼ 6TeV

and should thus be resolved in terms of intermediate massive states, whereas the former,

linked with a scale Λ ∼ 11TeV, could still remain a contact interaction if studied by a LHC

running at 14TeV.

6 Discussion

Contact interactions can be induced by the exchange of new resonances which are not

resolved as mass eigenstates, because they are either broad or heavier than the exchanged

four-momentum. For instance, the tree-level exchange of an off-shell boson of mass Mnew >∼
Mdijet, interacting with the quarks via a coupling g′, would give 4π/Λ2 ∼ g

′2/M2
new. As

discussed in section 3.3, the dijet spectrum at hadron colliders could be sensitive to contact

interactions with 4π/Λ2 >∼ g2s/M
2
dijet, provided that M2

new
>∼ M2

dijet. So colliders can seach

for contact interactions mediated by heavy particles with O(1) couplings to quarks.

Heavy particles interacting with quarks can evade LHC bounds on contact interactions

in various ways. For instance, if new particles have a conserved parity (as is convenient to

obtain dark matter), they can generate contact interactions via a closed loop of heavy new

particles, with a coefficient

4π/Λ2 ∼ g
′4/(16π2M2

new) . (6.1)

For M2
new

>∼ M2
dijet, this is unobservably small at the LHC (unless g

′2 ∼ 4π), whereas for

M2
new < M2

dijet, the new particles could be produced in pairs. Heavy new bosons that are

less strongly coupled to quarks can also evade contact interaction bounds. For instance, a

Z ′ with Standard Model couplings induces various four-quark contact interactions with a

coefficient 4π/Λ2 ∼ g2/(8c2WM2
Z′) ≪ g2s/M

2
dijet, for M

2
Z′

>∼ M2
dijet.

It is interesting to compare the collider bounds on four-quark contact interactions to

limits from precision flavour physics, despite that a contact interaction could be present

at lower energies while absent at 3TeV. The first step should be to evolve the operator

coefficients between the TeV scale and low energy (e.g. mb):

4π

Λ2

∣

∣

∣

∣

mb

≃ c
4π

Λ2

∣

∣

∣

∣

3 TeV

∼
(

αs(3 TeV)

αs(mb)

)γ/2β0 4π

Λ2

∣

∣

∣

∣

∣

3 TeV
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where β0 = (11Nc − 2Nf )/12π. For a few cases where we know the anomalous dimension

γ of the contact interaction, 0.5 < c < 2 [25, 26], so we neglect the running and use at low

energy the bound on 4π/Λ2 obtained at 3TeV. Due to the importance of Fermi interaction

in low-energy precision physics, it is convenient to define the parameter β as

4π

Λ2
= β

4GF√
2

⇒ β =
4πv2

Λ2
=

(

0.6 TeV

Λ

)2

so the collider bounds discussed previously, ranging from 3 to 11 TeV, imply β <∼ 4×10−2 →
3× 10−3. Let us add that flavour physics and collider searches do not have the same scope

in probing the flavour structure of contact interactions. As discussed above, proton-proton

collider searches have the potential to search four-quark contact interactions involving at

least two quarks of the first generation, but the two other quark lines are left free (and

perhaps could be identified through jet tagging). In flavour physics, neutral-meson mixing

is a sensitive probe of flavour off-diagonal (∆F = 2) contact interactions [26–28], with

particularly stringent bounds on Λ for operators inducing kaon mixing (assuming, as we

have done here, that the coefficients η are O(1)). Bounds on other four-quark operators

could in principle come from processes where a meson decays into two lighter mesons non-

leptonically — however, such processes are very challenging from the theoretical point of

view, and can hardly be considered as useful to set constraints on contact interactions.

If a signal for contact interactions was observed at the LHC, it could indicate strongly

coupled New Physics at a scale just beyond the reach of the LHC, or the (perturbative)

exchange of a (broad) resonance in t or s-channel. In either case, it would be interesting

to identify the flavour of the final state jets — not only to distinguish gluons and heavy

flavours (b, c) from light quarks, but even to distinguish u from d jets using jet charge.

This would allow one to predict the expected rate for the crossed process. For instance,

if a t-channel Z ′ mediates uu → uu, then it could also be searched for as a bump in

uū → uū whereas an s-channel diquark inducing the contact interactions ud → cs is not

worth searching for in t channel.

7 Summary

Many models with new particles at high energy have contact interactions as their low-

energy footprints. As such, contact interactions are a parametrisation of New Physics,

so it is important that constraints on upon them be as widely applicable as possible.

Current collider bounds are calculated for a palette of colour-singlet interactions (no colour

matrices in the vertex), summed on flavour. In this paper, we estimate bounds on an almost

complete basis of four-quark contact interactions, with specified flavour indices mediating

qiqj → qmqn, where qi, qj are first-generation quarks.

We start from a basis of dimension six, Standard Model gauge-invariant, four-quark

operators. After electroweak symmetry breaking, each operator induces one or several four-

quark interactions. We constrain the coefficients of these effective interactions by turning

them on one at a time. We prefer to constrain the coefficients of the effective interactions,

rather than the gauge-invariant operators, because this allows us to apply the bounds
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to a different operator basis. The effective interactions (almost) do not interfere among

themselves, so that the bounds obtained by turning them on one at a time are conservative.

A more stringent bound could apply in the presence of several contact interactions.

The bounds profit from a convenient choice of variables made by the experimental

collaborations, which allows one to approximate the pp → dijets cross section as an integral

over parton distribution functions multiplying a partonic cross section. We estimate the

expected limit on contact interactions by comparing their partonic cross sections to the

leading order QCD prediction. The data agree with QCD, so we require that the contact

interactions contribute less than 1/3 or 1/2 of the QCD expectation. Our bounds are listed

in tables 3–8. Our flavoured estimates are generically lower than the limits of ATLAS and

CMS, who constrain a flavour-sum of contact interactions given in eq. (4.1). Our estimate

for this flavour-summed operator is comparable to the experimental bounds.

The original aim of this paper was to identify “classes” among the large collection of

contact interactions, such that a bound obtained on a representative of the class could

be translated by some simple rule to the others. The situation is however more compli-

cated: the obstacle seems to be the interference between QCD and the contact interaction,

which precludes any simple scaling of the limit on ŝ/Λ2 from one interaction to another.5

An interesting feature of our analytic recipe is that it constrains the dimensionless ratio

M2
dijet/Λ

2 for each contact interaction. The future LHC, with more energy and luminos-

ity, will be able to probe a higher dijet mass than the Mdijet = 3TeV [4] used here to

extract bounds on Λ. The estimated bounds on Λ from tables 3–8 should therefore scale

as Mdijet(new)/(3TeV), under assumptions given in section 5.3.

Finally, we discussed briefly which contact interactions could explain a moderate deficit

of events in the current data for the 1 ≤ χ ≤ 3 and Mdijet > 3TeV bin, and how this

would extrapolate to higher dijet masses. It will be particular interesting to see how the

spread of results obtained by the experimental collaborations evolve as luminosity and

energy increase.
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A Kinematics and cross sections

This appendix gives the contact interaction correction, in sections labeled by flavour struc-

ture, for a larger set of contact interactions than the basis of section 3.2 (in particular, we

give cross sections for octet interactions involving four u- or d-type quarks,although these

are not in the list of section 3.2). The formulae are labeled to the right by the contact inter-

5It is mildly surprising that a limit on contact interactions at a hadron collider can be estimated ana-

lytically; however, in practice, it may be just as simple to use Madgraph5 [29].
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action to which they apply. The partonic cross sections mediated by contact interactions

are given in several references [22, 30],6 and are collected below for convenience.

A.1 Definitions

For momenta as given in the first diagram of figure 1, with time running left to right, the

Mandelstam variables are defined as

ŝ = (k1 + k2)
2 = 2k1 · k2 = 2p1 · p2 = 4E∗2

t̂ = (k1 − p1)
2 = −2k1 · p1 = −2p2 · k2 = −2E∗2(1− cos θ∗)

û = (k1 − p2)
2 = −2k1 · p2 = −2p1 · k2 = −2E∗2(1 + cos θ∗) (A.1)

where the last expressions are in the parton centre-of mass frame. If time runs upwards in

the same diagram, it describes qq̄ annihilations, and the Mandelstam variables exchange

their definitions:

ŝscat = ûann , t̂scat = ŝann , ûscat = t̂ann . (A.2)

In the following, we give various partonic differential cross sections,

dσ̂

dt̂
=

|M|2

16πŝ2
−→ dσ̂

dχ
=

t̂2

ŝ

(

dσ̂

dt̂
(ŝ, t̂, û) +

dσ̂

dt̂
(ŝ, û, t̂)

)
∣

∣

∣

∣

θ∗<π/2

where |M|2 is averaged over incoming spins and colours, and contains a factor 1/2 when the

final state particles are identical. Since the change of variables to χ is simple for cosθ∗ > 0,

we restrict 0 ≤ θ∗ ≤ π/2, and add dσ̂/dt̂ with t̂ ↔ û.

We include the QCD contribution, the contact-interaction interference with QCD (and

sometimes QED), and the contact interaction squared. We neglect the pure QED contri-

bution (subdominant with respect to QCD), but include QED-contact interference when

there is no QCD-contact interference. Indeed the interference term ∝ αemŝ/Λ2 can reduce

the cross section and have a minor effect on the bound.

A.2 qig → qig — QCD only

dσ

dt̂
=

4πα2
s

9ŝ2

[

− û

ŝ
− ŝ

û
+

9

4

ŝ2 + û2

t̂2

]

. (A.3)

A.3 qiqj → qmqn

A.3.1 qq → qq, (i = j = m = n)

dσ̂

dt̂
(qq → qq) =

2πα2
s

9ŝ2

[

ŝ2 + û2

t̂2
+

t̂2 + ŝ2

û2
− 2

3

ŝ2

t̂û

]

≡ QCD (A.4)

6These formulae do not always agree with ref. [31], and disagree on the sign of some interferences with

respect to ref. [32].
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dσ̂

dt̂
(qq → qq) = QCD − η8,XX

Λ2

4παs

27

ŝ

ût̂
+

|η8,XX |2
Λ4

4π

27
O8,RR, O8,LL

(A.5)

= QCD +
η8,XY

Λ2

4παs

9ŝ2
û3 + t̂3

t̂û
+

|η8,XY |2
Λ4

2π

9

(û2 + t̂2)

ŝ2
O8,RL = O8,RL

(A.6)

= QCD − η1,XX

Λ2

4παs

9

ŝ

ût̂
+

|η1,XX |2
Λ4

4π

3
O1,LL, O1,RR

(A.7)

= QCD+η1,XY
2παem

Λ2

(

û2

t̂
+
t̂2

û

)

1

ŝ2
+
|η1,XY |2

Λ4
π
(t̂2+û2)

ŝ2
O1,RL = O1,RL .

(A.8)

A factor of 1/2 for identical fermions in the final state is included in eqs. (A.4), (A.5)

and (A.7), When the final state quarks have opposite chirality, they are not identical, but

the operators ORL = O,RL are, so its the same to include one operator for distinct fermions,

or two operators for identical fermions.

Interference with QED is included for the singlet operators involving quarks of different

chirality: O1,RL + O1,RL. The interference with QCD is absent because the spinor traces

vanish: a non-zero trace must contain an even number of colour matrices, so both the QCD

vertices must appear in the trace. Therefore there is only one trace, in which appear both

contact vertices, with conflicting chiral projection operators. However, QED has no colour

matrices, so there is an interference term with two spinor traces.

A.3.2 qq′ → qq′, i = m 6= j = n

dσ̂

dt̂
(ud → ud) =

4πα2
s

9t̂2
ŝ2 + û2

ŝ2
≡ QCD′ (A.9)

= QCD′ +
η8,XX

Λ2

4παs

9t̂
+

|η8,XX |2
Λ4

2π

9
O8,XX (A.10)

= QCD′ +
η8,XY

Λ2

4παs

9

û2

t̂ŝ2
+

|η8,XY |2
Λ4

2π

9

û2

ŝ2
O8,XY (A.11)

(A.12)

= QCD′ + 2πη1,XX
αem

Λ2

1

t̂
+ π

|η1,XX |2
Λ4

O1,RR (A.13)

= QCD′ + 2πη1,LL
αem

Λ2

1

t̂
+

8π

9
η1,CC

α

Λ2

1

t̂

+ π

( |η1,LL|2
Λ4

+
2

3

η1,CCη1,LL
Λ2Λ2

+
|η1,CC |2

Λ4

)

O1,LL +O1,CC (A.14)

= QCD′ + 2πη1,XY
αem

Λ2

û2

t̂ŝ2
+ π

|η1,XY |2
Λ4

û2

ŝ2
O1,XY (A.15)

= QCD′ +
π

6Λ4

4û2 + 4t̂2 − ŝ2

ŝ2
OS1 (A.16)

= QCD′ +
π

27Λ4

2û2 + 2t̂2 + ŝ2

ŝ2
OS8 . (A.17)
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Notice that for ud → ud, O1,LR is different from O1,RL. so their contributions are not

summed in the above formulae.

Interference with QED is included when there is no interference with QCD, and the

interference between O1,LL and O1,CC is given, although we constrain the two operators

separately.

A.3.3 q′q′ → qq

If the quark flavour changes at the contact interaction, there is no interference with QCD.

However, there are two contact interaction diagrams, and an interference term when the

initial and final states contain identical quarks. At the LHC, this can describe uu → cc,

dd → ss, and dd → bb.

dσ̂

dt̂
=

|η8,XX |2
Λ4

4π

27
O8,XX (A.18)

=
|η8,XY |2

Λ4

2π

9

(t̂2 + û2)

ŝ2
O8,XY = O8,Y X (A.19)

=
|η1,XX |2

Λ4

4π

3
O1,XX (A.20)

=
|η1,XY |2

Λ4
π
(t̂2 + û2)

ŝ2
O1,XY = O1,Y X . (A.21)

A factor of 1/2 for identical fermions in the final state is included. In practice, this list is

just last terms from qq → qq.

A.3.4 q′q
′′

→ qq, or qq → q′q
′′

In the case where there are identical fermions in either the initial or final states, but not

both (at the LHC: uu → uc, dd → ds, dd → db, dd → sb), there are still two diagrams, but

no interference term:

dσ̂

dt̂
(dd → sb) =

|η8,XX |2
Λ4

4π

9
O8,XX (A.22)

=
|η8,XY |2

Λ4

2π

9

(t̂2 + û2)

ŝ2
O8,XY (A.23)

=
|η1,XX |2

Λ4
2π O1,XX (A.24)

=
|η1,XY |2

Λ4
π
t̂2 + û2

ŝ2
O1,XY (A.25)

and in the case where the identical fermions are in the final state, the given formulae should

be multiplied by 1/2.

– 25 –



J
H
E
P
0
5
(
2
0
1
4
)
0
6
6

A.3.5 q
′′

q → qq′ and any vertex with more than three different flavours

At the LHC this can describe ud → cs, ud → cb, and also ud → us, ud → ub, ud → cd:

dσ̂

dt̂
=

|η8,XX |2
Λ4

2π

9
, O8,XX (A.26)

=
|η8,XY |2

Λ4

2π

9

û2

ŝ2
, O8,XY (A.27)

=
|η1,XX |2

Λ4
π , O1,XX , O1,CC (A.28)

=
|η1,XY |2

Λ4
π
û2

ŝ2
, O1,XY (A.29)

=
π

12Λ4

4û2 + 4t̂2 − ŝ2

ŝ2
OS1 (A.30)

=
π

54Λ4

2û2 + 2t̂2 + ŝ2

ŝ2
OS8 . (A.31)

A.4 qiq̄m → q̄jqn

For contact interactions with two incident first generation quarks, the best bounds arise

from qq → qq. However, a “flavour diagonal” interaction involving a quark and anti-quark

of the first generation, going to a quark and anti-quark of a higher generation, is better

constrained by the Tevatron, who had valence q1q1 in the initial state. The cross sections

for contact interactions in quark-anti-quark collisions, can be obtained by crossing (A.2),

the previous formulae, and removing, if neccessary, the factor of 1/2 for identical fermions

in the final state.
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