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Abstract. In this work we study the effect of the symmetry energy on several properties of neutron stars.
First, we discuss its effect on the density, proton fraction and pressure of the neutron star crust-core tran-
sition. We show that whereas the first two quantities present a clear correlation with the slope parameter L
of the symmetry energy, no satisfactory correlation is seen between the transition pressure and L. However,
a linear combination of the slope and curvature parameters at ρ = 0.1 fm−3 is well correlated with the
transition pressure. In the second part we analyze the effect of the symmetry energy on the pasta phase.
It is shown that the size of the pasta clusters, number of nucleons and the cluster proton fraction depend
on the density dependence of the symmetry energy: a small L gives rise to larger clusters. The influence
of the equation of state at subsaturation densities on the extension of the inner crust of the neutron star
is also discussed. Finally, the effect of the effect of the density dependence of the symmetry energy on
the strangeness content of neutron stars is studied in the last part of the work. It is found that charged
(neutral) hyperons appear at smaller (larger) densities for smaller values of the slope parameter L. A linear
correlation between the radius and the strangeness content of a star with a fixed mass is also found.

PACS. 26.60.-c Nuclear matter aspects of neutron stars – 21.65.-f Nuclear matter

1 Introduction

Isospin asymmetric nuclear matter is present in nuclei, es-
pecially in those far away from the stability line, and in as-
trophysical systems, particularly in neutron stars. There-
fore, a well-grounded understanding of the properties of
isospin-rich nuclear matter is a necessary ingredient for
the advancement of both nuclear physics and astrophysics
[1,2,3]. Nevertheless, in spite of the experimental [4] and
theoretical [5] efforts carried out to study the properties of
isospin-asymmetric nuclear systems, some of these proper-
ties are not well constrained yet. In particular, the density
dependence of the symmetry energy is still an important
source of uncertainties. In this work, we study how the
density dependence of the symmetry energy affects the
equation of state (EOS) of asymmetric nuclear matter.
We will focus on three different problems.

In the first part the correlations of the slope and curva-
ture parameters of the symmetry energy with the density,
proton fraction and pressure at the neutron star crust-core
transition are analyzed. The analysis is done with the mi-

croscopic Brueckner–Hartree–Fock (BHF) approach and
several phenomenological Skyrme and relativistic mean
field (RMF) models to describe the nuclear EOS [6]. A
generalized liquid drop model (GLDM) based on a den-
sity development around a reference density is introduced
to allow the identification of possible existing correlations
between the crust-core transition and a limited set of the
coefficients of this development [7,8]. We show that the
transition density and the transition proton fraction are
correlated with the symmetry energy slope parameter L
and that the transition pressure shows no clear correlation
with the symmetry energy slope at saturation. Neverthe-
less, a correlation exists between the transition pressure
and a linear combination of the symmetry energy slope
and curvature defined at ρ = 0.1 fm−3.

In the second part the effect of the density dependence
of the symmetry energy on the pasta phase is discussed. It
is shown that the number of nucleons in the clusters, the
cluster proton fraction and the size of the Wigner Seitz
cell are very sensitive to the density dependence of the
symmetry energy, and that the symmetry energy slope

http://arxiv.org/abs/1307.1436v1
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parameter L may have quite dramatic effects on the cell
structure if it is very large or small [9,10,11]. Rod-like and
slab-like pasta clusters have been obtained in all models
except one, with a large slope parameter L. The effect of
L on the extension of the inner crust is also discussed.
In particular, it is shown that a smaller L favors a wider
slab phase. This phase may allow the propagation of low
frequency modes that will affect the specific heat in a non-
negligible way [12].

In the last part, the effect of the density dependence of
the symmetry energy on the strangeness content of a neu-
tron star is studied. The study is done with RMF models.
It is shown that there is still lacking information on the
nucleonic equation of state at supra-saturation densities
and, in particular, on the hyperon interactions in nuclear
matter. Therefore, the role of exotic degrees of freedom on
the interior of compact stars is still an open issue [13,14,
15,16].

Finally, we show that some star properties are affected
in a similar way by the density dependence of the symme-
try energy and the hyperon content of the star. A linear
correlation between the radius and the strangeness con-
tent of a star with a fixed mass is obtained [16].

In the following, before considering each one of these
issues, we briefly review the main features of the asym-
metric nuclear matter (ANM) equation of state and the
different models considered in this work.

2 Asymmetric Nuclear Matter EOS

Assuming charge symmetry of the nuclear forces, the en-
ergy per particle of ANM can be expanded on the isospin
asymmetry parameter, δ = (N−Z)/(N+Z) = (ρn−ρp)/ρ,
around the values of symmetric nuclear matter (δ = 0) in
terms of even powers of δ as

E(ρ, δ) ≃ ESNM (ρ) + Esym(ρ)δ2 , (1)

where ESNM (ρ) is the energy per particle of symmetric

matter and Esym(ρ) = 1
2
∂2E
∂δ2

∣

∣

∣

δ=0
is the symmetry energy.

It is common to characterize the density dependence
of the symmetry energy around the saturation density ρ0
in terms of a few bulk parameters by expanding it in a
Taylor series

Esym(ρ) = J + L

(

ρ− ρ0
3ρ0

)

+
Ksym

2

(

ρ− ρ0
3ρ0

)2

+O(3) ,

(2)
where J is the value of the symmetry energy at saturation
and the quantities L and Ksym are related to its slope and
curvature, respectively, at such density,

L = 3ρ0
∂Esym(ρ)

∂ρ

∣

∣

∣

ρ=ρ0

,Ksym = 9ρ20
∂2Esym(ρ)

∂ρ2

∣

∣

∣

ρ=ρ0

.

(3)

2.1 The BHF approach of ANM

The BHF approach of ANM [17] starts with the construc-
tion of all the G matrices which describe the effective in-
teraction between two nucleons in the presence of a sur-
rounding medium. They are obtained by solving the well
known Bethe–Goldstone equation , schematically written
as

Gτ1τ2;τ3τ4(ω) = Vτ1τ2;τ3τ4 +
∑

ij

Vτ1τ2;τiτj

×
Qτiτj

ω − ǫi − ǫj + iη
Gτiτj;τ3τ4(ω) (4)

where τ = n, p indicates the isospin projection of the two
nucleons in the initial, intermediate and final states, V
denotes the bare NN interaction, Qτiτj the Pauli opera-
tor that allows only intermediate states compatible with
the Pauli principle, and ω, the so-called starting energy,
corresponds to the sum of non-relativistic energies of the
interacting nucleons. The single-particle energy ǫτ of a nu-
cleon with momentum k is given by

ǫτ (k) =
h̄2k2

2mτ
+Re[Uτ(k)] , (5)

where the single-particle potential Uτ (k) represents the
mean field “felt” by a nucleon due to its interaction with
the other nucleons of the medium. In the BHF approxi-
mation, U(k) is calculated through the “on-shell energy”
G-matrix, and is given by

Uτ (k) =
∑

τ ′

∑

|k′|<kF
τ′

(6)

〈kk′ | Gττ ′;ττ ′(ω = ǫτ (k) + ǫτ ′(k′)) | kk′〉A

where the sum runs over all neutron and proton occupied
states and where the matrix elements are properly anti-
symmetrized. We note here that the so-called continuous
prescription has been adopted for the single-particle po-
tential when solving the Bethe–Goldstone equation [18].
Once a self-consistent solution of Eqs. (4)–(6) is achieved,
the energy per particle can be calculated as

E(ρ, δ) =
1

A

∑

τ

∑

|k|<kFτ

(

h̄2k2

2mτ
+

1

2
Re[Uτ (k)]

)

. (7)

The BHF calculation carried out in this work uses
the realistic Argonne V18 [19] nucleon-nucleon interaction
supplemented with a nucleon three-body force of Urbana
type which, for the use in BHF calculations, was reduced
to a two-body density dependent force by averaging over
the spatial, spin and isospin coordinates of the third nu-
cleon in the medium [20].

2.2 Phenomenological models

Phenomenological approaches, either relativistic or non-
relativistic, are based on effective interactions that are fre-
quently built to reproduce properties of nuclei. Skyrme in-
teractions [21] and RMF models [22] are among the most
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commonly used ones. They are briefly described in the
next.

2.2.1 Skyrme interaction

The standard form of a Skyrme interaction reads

V (r1, r2) = t0 (1 + x0P
σ) δ(r)

+
1

2
t1 (1 + x1P

σ)
(

k′2δ(r) + δ(r)k2

)

+ t2 (1 + x2P
σ)k′ · δ(r)k

+
1

6
t3 (1 + x3P

σ) (ρ(R))
α
δ(r)

+ iW0 (σ1 + σ2) (k
′ × δ(r)k) , (8)

where r = r1 − r1,R = (r1 + r2)/2, k = (∇1 −∇2)/2i is
the relative momentum acting on the right, k′ its con-
jugate acting on the left and P σ = (1 + σ1 · σ2)/2 is
the spin exchange operator. The last term, proportional
to W0, corresponds to the zero-range spin-orbit term. It
does not contribute in homogeneous systems and thus will
be ignored for the rest of this article.

Most of these forces are, by construction, well behaved
close to the saturation density and moderate isospin asym-
metries. Nevertheless, only certain combinations of their
parameters are well determined empirically. Consequently,
there is a proliferation of different Skyrme interactions
that produce a similar EOS for symmetric nuclear matter
but predict a very different one for pure neutron matter. A
few years ago, Stone et al., [23] tested extensively and sys-
tematically the capabilities of almost 90 existing Skyrme
parametrizations to provide good neutron star candidates.
They found that only 27 of these parametrizations passed
the restricted tests they imposed, the key property being
the density dependence of the symmetry energy. These
forces are SLy0-SLy10 [24] and SLy230a [25] of the Lyon
group, SkI1-SkI5 [26] and SkI6 [27] of the SkI family, Rs
and Gs [28], SGI [29], SkMP [30], SkO and SkO’ [31],
SkT4 and SkT5 [32], and the early SV [33]. The results for
the Skyrme forces shown in this work have been obtained
with these 27 forces and the additional parametrizations
SGII [29], RATP [34], SLy230b [25], NRAPR [3], LNS
[35], BSk14 [36], BSk16 [37] and BSk17 [38]. We should
mention, however, that more stringent constraints to the
Skyrme forces have been very recently presented by Dutra
et al., in Ref. [39]. These authors have examined the suit-
ability of 240 Skyrme interactions with respect to eleven
macroscopic constraints derived mainly from experimen-
tal data and the empirical properties of symmetric nuclear
matter at and close to saturation. They have found that
only 5 of the 240 forces analyzed satisfy all the constraints
imposed. We note that among the parametrizations used
in this work, only the NRAPR and LNS ones belong to
this restricted set.

2.2.2 RMF models

RMF models are based on effective Lagrangian densities
where nucleons interact with and through an isoscalar-

scalar field σ, an isoscalar-vector field ωµ, an isovector-
vector field ρµ, and an isovector-scalar field δ. In this work
we consider models with constant couplings and non-linear
terms [40], and with density dependent couplings [41].
Within the first class of models, that we will designate
by Non Linear Walecka Models (NLWM), we consider
NL3 [42] and GM1, GM3 [45] with non linear σ terms,
NL3ωρ including also non-linear ωρ terms that allow the
modulation of the density dependence of the symmetry
energy [44], TM1 [43] with non linear σ and ω terms,
FSU [46] and IU-FSU [47] with non-linear σ, ω and ωρ
terms. The last two parametrizations were constrained by
the collective response of nuclei to the isoscalar monopole
giant resonance (ISGMR) and the isovector dipole giant
resonance (IVGDR). Within the second class of models
with density dependent couplings we consider TW [41],
DD-ME2 [48] and DD-MEδ [49]: DD-ME2, as all the non-
linear parametrizations considered, does not include the δ
meson, and was adjusted to experimental data based on fi-
nite nuclei properties; DD-MEδ contains the δ meson and
was fitted to microscopic ab-initio calculations in nuclear
matter and finite nuclei properties. Both models present
similar properties for the symmetry energy, however, DD-
ME2 has a larger incompressibility at saturation.

The Lagrangian density for these models typically reads

L =
∑

i=p,n

Li+Lσ+Lω+Lρ+Lδ+Lnl, (9)

where the nucleon Lagrangian is

Li = ψ̄i [γµiD
µ −M∗]ψi, (10)

with

iDµ = i∂µ − ΓωΩ
µ −

Γρ

2
τ · ρµ, (11)

M∗ = M − Γσσ − Γδτ · δ, (12)

and the meson Lagrangian densities are given by

Lσ =
1

2

(

∂µσ∂
µσ −m2

σσ
2
)

(13)

Lω =
1

2

(

−
1

2
ΩµνΩ

µν +m2
ωωµω

µ

)

(14)

Lρ =
1

2

(

−
1

2
Rµν ·Rµν +m2

ρρµ · ρµ

)

(15)

Lδ =
1

2
(∂µδ∂

µδ −m2
δδ

2) (16)

Lnl = −
1

3!
κσ3 −

1

4!
λσ4 +

1

4!
ξΓ 4

ω(ωµω
µ)2

+ ΛωΓ
2
ωΓ

2
ρωµω

µρµ · ρµ . (17)

In the above equations Γi (i = σ, ω, ρ, δ) denote, de-
pending on the model, the constant or density-dependent
coupling parameters. Finally, we note that the photon and
electron Lagrangian densities

Lγ = −
1

4
FµνF

µν (18)

Le = ψ̄e [γµ (i∂
µ + eAµ)−me]ψe, (19)
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and the term −e(1+ τ3)A
µ/2 should be added to Eqs. (9)

and (11), respectively, when describing non-homogeneous
matter. β-equilibrium matter requires the inclusion of the
lepton Lagrangian density only.

2.3 The Generalized Liquid-Drop Model (GLDM)

The liquid-drop model equation of state is based on a
density expansion around the saturation point, its main
features being: the saturation density ρ0, the energy per
nucleon at saturation E0, the incompressibility coefficient
K0 which characterizes the curvature of the EOS, and the
isovector coefficients, namely the symmetry energy J , its
slope L and the symmetry incompressibility Ksym. We fo-
cus on the bulk-matter equation of state, and no surface
effects are considered. In order to discuss the link that can
be drawn between laboratory constraints and EOS prop-
erties in situations quite away from the experimental data,
in particular, at high density or at low proton fraction, we
introduce a “generalized liquid-drop model” (GLDM) [7,
8], still addressing the bulk EOS, which expresses the EOS
as an expansion of arbitrary order around a chosen refer-
ence density ρref (not necessarily the saturation density
ρ0):

EGLDM(ρ, δ) =

N
∑

n=0

(

cIS,n + cIV,n δ
2
) xn

n!

+ (Ekin − Epara
kin ) , (20)

with x = (ρ− ρref)/3ρref . The coefficients cIS,n and cIV,n,
where the index ‘IS’ (‘IV’) stands for isoscalar (isovector),
are associated with the derivatives of the energy E(ρ, δ =
0) and of the symmetry energy Esym(ρ)

cIS,n(ρref) = (3ρref)
n ∂

nE

∂ρn
(ρref , 0)

cIV,n(ρref) = (3ρref)
n ∂

nEsym

∂ρn
(ρref).

For ρref = ρ0, the lower-order coefficients are usual nuclear
matter properties: cIS,0 = E0 (saturation energy), cIS,2 =
K0 (incompressibility), cIS,3 = Q0 (skewness), cIV,0 = J
(symmetry energy), cIV,1 = L (symmetry-energy slope),
cIV,2 = Ksym (symmetry incompressibility), cIV,3 = Qsym.
Since the effective laboratory constraints are rather re-
lated to subsaturation density, the coefficients of a GLDM
with reference density ρref < ρ0 are expected to be bet-
ter constrained than the standard saturation coefficients.
Also, the neutron-star core-crust transition properties are
better correlated with coefficients defined at subsatura-
tion density because the reference point is closer to the
transition point.

The isovector channel of the EOS in Eq. (20) has a
parabolic contribution accounted for by the isovector co-
efficients multiplied by δ2, and a minimal extra-parabolic
correction, the model-independent kinetic termEkin−E

para
kin ,

Ekin =
(3π2/2)5/3

10mπ2
ρ2/3

[

(1 + δ)5/3 + (1− δ)5/3
]

,

Epara
kin =

(3π2/2)5/3

10mπ2
ρ2/3

[

2 +
10

9
δ2
]

,

that introduces the divergence of energy-density curvature
in the proton-density direction at small proton density
and, therefore, avoids that the spinodal contour reaches
pure neutron matter. In the above equation m refers to
the nucleon mass.

The EOS obtained with any nuclear model can be as-
sociated with its corresponding GLDM. In the limit of
an infinite expansion (GLDM∞), the symmetric matter
EOS E(ρ, 0) and the symmetry energy Esym(ρ) are ex-
actly equivalent to the complete model EOS, the only re-
maining difference, for the EOS of asymmetric matter,
being the extra-parabolic terms of the interaction part. In
the following, we will address the correlations that could
be found between GLDM coefficients and the neutron-star
core-crust transition properties, being focused, in partic-
ular, on the isovector coefficients.

3 Crust-core transition

The EOS of nuclear matter can be constrained by lab-
oratory data and astrophysical observations. It has been
shown in Refs. [7] and [8] that an accurate determination
of the symmetry energy and its slope and curvature at a
subsaturation density, ρ = 0.1 fm−3, allows a quite accu-
rate prediction of the core-crust transition properties.

Nuclear models could then be used to restrict the range
of the core-crust transition properties in neutron stars and
contribute to the interpretation of astrophysical observa-
tions. Pulsar glitches are an example [50], since the transi-
tion pressure is an essential input to infer the neutron-star
mass-radius relation from glitch observations.

In the present section we will show how some of the
EOS properties are correlated with the crust-core transi-
tion properties.

0 50 100 150
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-300

-200

-100

0

100

200
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m
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Skyrme
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DDH
Linear fit

Fig. 1. (Color online) Correlation between Ksym and L.
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3.1 Correlation between L and Ksym

When different nuclear models are compared, the GLDM
coefficients taken at saturation density present some cor-
relations between them. This is a manifestation of the fact
that the effective constraints from laboratory data do not
fix the nuclear properties at saturation, but rather at a
lower density. Indeed, the nuclei whose properties are used
to fit the effective nuclear density functionals have a mean
density that is lower than ρ0. Many different nuclear mod-
els tend to converge to a symmetry energy close to 25 MeV
at ρ ≃ 0.12 fm−3. A similar convergence can be observed
for the symmetry energy slope, whose value becomes close
to 100 MeV at ρ ≃ 0.06 fm−3 (see Refs. [7] and [8] for a
more detailed analysis of these features).

These convergent trends away from the saturation point
imply some correlations in the expansion coefficients around
saturation density. An example is the existing correlation
between J and L [7,8]: since the symmetry energy is bet-
ter constrained at subsaturation density, higher values of
L have to be compensated by higher values of J . Another
example is the correlation between L and Ksym shown in
Fig. 1. The remarkably strong L-Ksym correlation plays
an important role in the links that can be drawn between
the GLDM coefficients (namely, laboratory constraints)
and the core-crust transition pressure in neutron star, a
sensitive input for the interpretation of pulsar glitches.

3.2 Correlation between L and the core-crust
transition properties

New experimental perspectives for the measurement of
L have drawn interest in trying to correlate this quan-
tity to the core-crust transition properties. Such correla-
tions have to be considered with care, taking into account
that fake relations may appear when the study is lim-
ited to a restricted nuclear model or family of models,
with internal correlations that disappear if different kinds
of functional models are considered. Reliable correlations
between GLDM coefficients and the core-crust transition
properties have to remain true independently of the dif-
ference between nuclear models, as long as these models
account for the existing experimental constraints.

Studying the correlations between L and the core-crust
transition properties in the framework of various models
(effective relativistic and Skyrme models, and BHF cal-
culations), we arrive to the conclusion that: (i) L is well
correlated with the transition density and proton fraction
(ρt, Yp,t) and (ii) L is not satisfactorily correlated with
the transition pressure Pt. We have denoted the proton
fraction by Yp = ρp/ρ, and used the subscript t to refer to
the properties at the crust-core transition. We summarize
below the explanation of this situation (see Refs. [7,8] for
a more detailed analysis).
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Fig. 2. (Color online) Left panel: Comparison between the
thermodynamical (dashed line) and dynamical (full line) spin-
odals. The dotted line represents the β-equilibrium EOS and
the red square and blue dot define the crust-core transition
within, respectively, the dynamical and thermodynamical spin-
odal. Right panel: comparison of the transition density ob-
tained from different approaches (binodal, dynamical spinodal,
thermodynamical spinodal and Thomas Fermi calculation) for
two RMF models: DDME2 and NL3.

3.2.1 Core-crust transition: thermodynamical versus
dynamical calculations

We will next discuss how to determine the core-crust tran-
sition point in neutron stars. Cold neutron-star matter is
in β-equilibrium, and is transparent to neutrinos, thus,
for a given nuclear density, the proton fraction of homo-
geneous nuclear matter is essentially determined by the
symmetry energy at this density. The core-crust border is
the transition from the homogeneous matter of the core
to the clusterized matter of the inner crust. For the very
neutron-rich matter of a cold neutron star, this transition
is well approximated by the dynamical spinodal border
[51], as shown in Refs. [9,11] where it was compared with
pasta phase calculations. The dynamical spinodal is the
density region where the homogeneous nuclear matter is
unstable against finite-size density fluctuations, eventually
leading to cluster formation, and takes into account both
finite size effects and the Coulomb interaction.

In fact, it is expected that the transition density lies
in the metastable region between the binodal surface and
the dynamical spinodal surface. The binodal surface is de-
fined in the ρ, Yp, T phase space as the surface where the
gas and liquid phases coexist, and corresponds to an up-
per limit for the extension of the pasta phase because it
does not take into account neither Coulomb nor finite size
effects.

A simplified definition of the transition point is de-
termined by the crossing between the β-equilibrium line
and the thermodynamical spinodal border [52,53,54,55,
56,57]. The thermodynamical spinodal, the bulk liquid-
gas instability region in nuclear matter, touches the bin-
odal surface at the critical point, which, for a given tem-
perature, occurs at a density and proton fraction close to
the crust-core transition density and proton fraction. This
transition point is sensitively different from the real tran-
sition point, since the thermodynamical spinodal region is
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larger than the dynamical one, as can be seen in Fig. 2.
The bulk (thermodynamical) instability of nuclear matter
is at the origin of the instability against clusterization that
affects star matter. This second instability region, named
dynamical spinodal, takes into account surface terms and
the Coulomb interaction [58], both leading to a reduction
of the dynamical spinodal with respect to the bulk one. As
a result, the transition point calculated on the basis of the
thermodynamical spinodal (that will be denoted by the in-
dex tt) is at a significantly higher density than the actual
transition point, well approximated on the basis of the dy-
namical spinodal (this transition point will be denoted by
the index td). However, we have verified that the proper-
ties of both transition points are well correlated [8]. Since
the tt point allows to study more directly the link between
the GLDM coefficients and the transition properties, we
start by discussing this thermodynamical transition point,
keeping in mind that it represents a shifted version of the
core-crust transition. The correlation effects observed in
the case of the tt transition are expected to apply as well
to the more realistic td transition point.

3.2.2 Correlations between L and the transition density
(ρt, Yp,t)

The correlation between L and the transition density point
(total density and proton fraction) is quite robust, as can
be seen in Fig. 3 (left and middle panels). This results from
two effects that reinforce each-other: a) a larger value of L
means a smaller symmetry energy at subsaturation den-
sity, i.e. a more neutron-rich β-equilibrium (lower proton
fraction Yp,t). According to the shape of the spinodal, this
also means a lower density ρt; b) the value of L also has
an impact on the spinodal border: a larger L is associated
with a spinodal border at lower density. To explain this
second effect, let us consider the energy-density curvature
of neutron matter, taken at the symmetric matter spin-
odal density ρs. This particular density is chosen in order
to cancel the isoscalar terms, and to concentrate on the

isovector ones. Thus, this quantity reads:

CNM,s =
2

3ρ0
L+

1

3ρ0

∑

n≥2

cIV,n
xn−2
s

(n− 2)!

[

n+ 1

n− 1
xs +

1

3

]

+
∂2 [ρ(Ekin − Epara

kin )]

∂ρ2
(21)

with xs = (ρs−ρ0)/(3ρ0). The leading term is proportional
to L, and the following only has a quite weak effect (see
Ref. [8]).

3.2.3 Lack of correlation between L and the transition
pressure Pt

In the case of the transition pressure Pt, no satisfactory
correlation with L emerges when different kinds of mod-
els are involved, as can be seen on Fig. 3 (right panel).
To understand this result, it is useful to express P as a
development in terms of the GLDM coefficients :

P (ρ, δ) =
ρ2

3ρ0



Lδ2 +
∑

n≥2

(

cIS,n + cIV,nδ
2
) xn−1

(n− 1)!





+ ρ2
∂(Ekin − Epara

kin )

∂ρ
. (22)

The lack of L-Pt correlation that is observed results from
three main effects, which are opposed and compensate
each-other: a) the leading term of the density development
of the pressure is proportional to L, so Pt should increase
with L ; b) the transition density ρt has been shown to
decrease with L, and the pressure should decrease if the
density decreases; c) the second term of the development,
whose sign is negative, is proportional to the symmetry in-
compressibility Ksym, which is larger for larger L. Effects
b) and c) are opposite to a).

This conclusion has been reached by analyzing the dif-
ferent contributions to the link between L and Pt through
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Fig. 4. (Color online) Correlation obtained between Ptd and
a linear combination of L0.1 and Ksym,0.1 [see text, Eq. (24)].

a variational study of Eq. (22). Two kinds of variations
were considered: (i) variations of the transition point (den-
sity and proton fraction) and (ii) variations of the GLDM
coefficients; both kinds of variations are correlated with
L.

Thus, for a given L value, the transition pressure ob-
tained will essentially depend on the nuclear model that
is used. Different models may predict either an increas-
ing or decreasing correlation of Pt with L [8], and indeed
opposite predictions exist in the literature [55,59].

3.3 Correlations between transition pressure and
GLDM coefficient combinations

Although the link between the transition pressure and the
GLDM coefficients is quite delicate, as it has been shown
in the previous section, it is important to find a way to get
a reliable estimation of Pt in relation with quantities that
could be constrained by laboratory data. For this reason,
we looked beyond a simple correlation with L, which we
did not obtain, and investigated the role of other GLDM
coefficients (see Ref. [8] for a detailed discussion). One of
the most promising correlations involves a linear combina-
tion of L0.1 and Ksym,0.1, denoting, respectively, the sym-
metry energy slope and curvature taken at the reference
density ρref=0.1 fm−3 instead of ρ0. We have considered
the pressure at the crossing of the dynamical spinodal,
Ptd, and performed a linear fit with two variables:

Ptd(L01,Ksym,01) = a× L01 + b×Ksym,01 + c , (23)

The following relation was obtained

Ptd(L01,Ksym,01) = 9.59× 10−3 × [L01 − 0.343×Ksym,01]

−0.328 MeV fm−3 . (24)

This correlation is represented on Fig. 4, where it is com-
pared with corresponding Ptd versus L plot. A similar rela-
tion has been verified recently by the authors of Ref. [60],
although a different slope coefficient is obtained, which
they attribute to the different method used to determine
the transition point.

4 Symmetry energy and the pasta phase

Neutron stars and proto-neutron stars are believed to have
in the inner crust a special non-homogeneous matter known
as pasta phase. The pasta phase is a frustrated system
that arises from the competition between the strong and
the electromagnetic interactions [61,62,63,64,65] and ap-
pears at densities of the order of 0.001 - 0.1 fm−3 [56,65]
in neutral nuclear matter or in a smaller density range
[57,66] in β-equilibrium stellar matter. The basic shapes
of these structures (droplets (bubbles), rods (tubes) and
slabs for three, two and one dimensions respectively) were
first discussed in [61], where the authors joked on the re-
semblance with lasagna, spaghetti and so on, from which
the phase name was chosen. It was shown in [67] that the
EOS of the inner crust is particularly sensitive to the den-
sity dependence of the symmetry energy, and, therefore,
it is expected that the pasta phase structure will depend
on it.

In the following we discuss how the density depen-
dence of the symmetry energy affects the pasta phase
and the inner-crust structure within a nuclear relativistic
mean-field approach.We adopt, in line with many authors,
the following simplifying view: for some given conditions
(temperature, density, proton fraction or chemical equilib-
rium) a single geometry will be the physical one. That is,
in practice, we compute the free energy of homogeneous
matter and the five structures and choose as the physical
one that with the smaller free energy. The denser regions
(clusters) will form a regular lattice that we study in the
Wigner-Seitz (WS) approximation.

First, we will discuss the pasta phase properties within
a naive picture that uses the Gibbs conditions of coexisting
phases and includes by hand the surface and Coulomb
contributions [10,56,57]. This description will be denoted
by the coexisting phases (CP) method and will allow the
identification of the main pasta features that depend on
the symmetry energy.

Next, we will present a complete self-consistent calcu-
lation of the pasta phase within a relativistic mean field
density dependent Thomas-Fermi approach (TF) [56]. What
before was described as a two-density system with a sharp
interface, is now described as a system with smoothly
varying densities. In Ref. [9] we compared the TF and
CP approaches and found that the TF method confirms
the main trends given by the more naive CP method, but
predicts a wider and richer pasta phase. It is worth em-
phasizing that other approaches are available to build the
pasta phase, each with its advantages and disadvantages.
For example, a Hartree-Fock-Bogoliubov (HFB) calcula-
tion would allow to include the shell effects, neglected in
the RMF approach, however, within this framework only
the spherical symmetry could be addressed. For a com-
parison of HFB and TF results in this context see Ref.
[11].

Finally, we will use the TF EOS for the pasta phase as
an ingredient to compute the star structure, and we will
discuss how the presence of the pasta phase affects the
inner crust.
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Fig. 5. (Color online) a) Symmetry energy vs density and
b) surface tension at T = 0 vs the proton fraction for NL3,
NL3ωρ, FSU, IU-FSU, DD-ME2 and DD-MEδ.

4.1 Surface tension and symmetry energy

Before entering the discussion of the pasta phase, and in
order to compare the models used in this part, namely
NL3, NL3ωρ, FSU, IU-FSU, DDME2 and DDMEδ, we
plot in Fig. 5 the symmetry energy vs density, and the
surface tension σ vs the proton fraction for all of them.
The surface tension coefficient σ (shown here for T = 0)
was obtained in the TF approach along the lines explained
in Ref. [10] and it is used in a parametrized form as an
input in our CP calculation. The properties of the pasta
phase in the CP approach depend crucially on σ; also in
the TF approach, where surface terms are generated self-
consistently, it is a useful guideline to interpret the results.

NL3 NL3ωρ FSU IU-FSU DDME2 DDMEδ

ρ0 0.148 0.148 0.148 0.155 0.152 0.152
J 37.3 31.7 32.6 31.3 32.3 32.4
L 118.3 55.2 60.5 47.2 51.4 52.9
K0 270.7 272.0 230.0 231.2 250.8 219.1

Table 1. Properties at saturation: density ρ0 (fm−3), symme-
try energy value J (MeV) and slope L (MeV), and incompress-
ibility K0 (MeV), for the models discussed in Sec. 4.

To help the discussion of this section, we present in Ta-
ble 1 the isovector properties at saturation predicted by

the six models considered here. As shown in the table the
six models predict very similar values for the symmetry
energy at saturation, namely, J varies between 31.3 and
32.6 MeV, except for NL3 that has a quite high value,37.3
MeV. However, there is a larger dispersion of the symme-
try energy slope at saturation, L, with values that go from
47.2 MeV (IU-FSU), to 118.3 MeV for NL3.

The properties of the pasta will reflect these facts, with
IU-FSU and NL3 behaving in a quite different way, while
all the other models show similar results. The slope L
has a direct influence on the surface tension and surface
thickness of the clusters. A smaller L corresponds gener-
ally to a larger surface tension and smaller neutron skin
thickness [44], as can be seen by comparing the surface
tensions of the above models. The decrease of the surface
tension with the slope L may be understood from the fact
that the neutron pressure at a density close to 0.1 fm−3,
a typical density at the nucleon surface, is essentially pro-
portional to the slope L [6,68]. Therefore, a larger value
of L will favor neutron drip and a smaller surface tension,
i.e., particles at the surface are not so tightly bound to
the nucleus.

4.2 Pasta phase

4.2.1 Coexisting phases (CP) method

As first approximation, the pasta phase is calculated within
the CP method [56]. In this section we focus on nuclear
matter with a fixed proton fraction Yp and impose charge
neutrality by setting ρe = ρp. However, the same scheme
could be applied to β-equilibrium stellar matter: in this
case, the species fractions would be defined by the condi-
tions of chemical equilibrium and charge neutrality.

As in [56,63], for a given total density ρ, the pasta
structures are built with different geometrical forms in a
background nucleon gas. This is achieved by calculating
from the Gibbs conditions P I = P II , µI

i = µII
i where I

and II label the high and low density phase respectively,
the density and the proton fraction of the pasta and of
the background gas. The density of electrons is considered
uniform. The total pressure and total energy density of the
system are given, respectively, by P = P I + Pe and

E = fEI + (1− f)EII + Ee + Esurf + ECoul, (25)

where f is the volume fraction of phase I, the proton frac-
tion can be obtained from

fρIp + (1− f)ρIIp = Ypρ,

and Ee, Esurf and ECoul denote electron, surface and Cou-
lomb energy densities. By minimizing Esurf + ECoul with
respect to the size of the droplet/bubble, rod/tube or slab
we get [63] Esurf = 2ECoul, and

ECoul =
2F

42/3
(e2πΦ)1/3

(

σD(ρIp − ρIIp )
)2/3

, (26)
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Fig. 6. (Color online) Pasta phases in the CP method for
T = 5 MeV and Yp = 0.2. Results for NL3, NL3ωρ, FSU,
IU-FSU.

where F = f for droplets and F = 1− f for bubbles, σ is
the surface energy coefficient, D is the dimension of the
system and Φ is the geometric factor:

Φ =

(

2−DF 1−2/D

D − 2
+ F

)

1

D + 2
, D = 1, 2, 3.

In the following discussion the parameter sets for the
models NL3, NL3ωρ, FSU and IU-FSU will be considered
and the effect of the symmetry energy on the pasta phase
discussed. One expects, generally speaking, two types of
effects: a smaller L corresponds to a larger surface tension
for asymmetric matter [10] and a larger J leads to a more
isospin-symmetric liquid phase. In models with a larger
surface tension the pasta phase sets in at higher densi-
ties and neutron drip is unfavored, giving rise to a lower
density background gas.

In Fig. 6 the range of the different pasta phases for
matter with a proton fraction Yp = 0.2 and temperature
T = 5 MeV is plotted for these four models. Some com-
ments are in order: for the proton fraction considered no
model presents the bubble configuration, and for NL3 the
tube configuration is also missing; the onset of the rod and
slab configurations are quite model independent, while the
transition to the core reflects the symmetry energy be-
havior, in particular, the transition density is smaller for
larger values of L, as discussed above.

In Fig. 7 we show some pasta properties, mainly for the
droplet phase. Let us denote by Adrop the number of nu-
cleons belonging to a droplet (the type of structure that
appears at the lowest densities in the non-homogeneous
phase) and by Zdrop its charge content. Notice that we
adopt the prescription to define both quantities as ex-
cesses with respect to the background nucleon gas. In the
left panel we display the results for a) Adrop and b) Zdrop

for the above parametrizations. The onset of the droplet
phase is characterized by a discontinuity on the number of
nucleons inside the cluster: a minimum number of nucle-
ons is necessary to compensate the surface energy, which

is larger for models with a smaller L. It should be referred,
however, that in a TF calculation, where the surface en-
ergy is calculated self-consistently, this discontinuous be-
havior will not occur. A change in the isovector channel of
the model NL3 as in NL3ωρ leads to a large effect on the
number of nucleons in the droplet, increasing this num-
ber to more than the double. In fact, a smaller symmetry
energy slope corresponds to a larger surface energy and
neutrons do not drip out so easily. The number of nucle-
ons obtained within NL3ωρ is consistent with the results
of [69] within a statistical model. The other two models,
FSU and IU-FSU, also present larger nuclei than NL3, the
heaviest ones corresponding to the model IU-FSU, which
bears the smallest slope L.

The radius of the Wigner Seitz cell together with the
cluster radius is plotted in the middle panel of Fig. 7
as a function of density. The ordering of the radii ob-
tained in the different parametrizations reflects perfectly
the ordering of their surface tensions [10], that, in turn, is
closely linked to the symmetry energy density dependence.
NL3 has by far the smallest surface energy at Yp = 0.2,
while IU-FSU has the largest: correspondingly, NL3 has
the smallest Wigner Seitz cell and droplets and IU-FSU
the largest ones.

In the right panel of Fig. 7 the ratio Zdrop/Adrop is
plotted as a function of density. This ratio decreases with
density and is model dependent. A decrease of the pro-
ton fraction of the clusters with density was also obtained
in [70]. The models with a smaller symmetry energy slope
have smaller proton fractions. A smaller slope implies that
neutrons drip out of the cluster with more difficulty giv-
ing rise to neutron richer clusters. Also, a smaller slope
corresponds to a smaller J , and, thus, a smaller L favors
less symmetric clusters.

In summary, within the coexistence method we have
shown that models with a smaller symmetry energy slope
have larger clusters with a smaller proton fraction and
larger Wigner-Seitz cells. We will next discuss the predic-
tions of a Thomas Fermi calculation of the pasta phase
[11], which generally agree with the above conclusions.

4.2.2 Thomas-Fermi (TF) approach

In the Thomas-Fermi approximation of the non-uniform
npe matter, the fields are assumed to vary slowly so that
the baryons can be treated as moving in locally constant
fields at each point [63,56]. We obtain the finite tempera-
ture semiclassical TF approximation based on the density
functional formalism [10] and start from the grand canon-
ical potential density:

ω = ω({fi+}, {fi−}, σ0, ω0, ρ0, δ0) = Et−TSt−
∑

i=p,n,e

µiρi ,

(27)
where {fi+}({fi−}), i = p, n, e stands for the protons, neu-
trons and electrons positive (negative) energy distribution
functions and St = S + Se , Et = E + Ee are the total en-
tropy and energy densities respectively [9]. The equations
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of motion for the meson fields (see Ref. [56]) follow from
the variational conditions:

δ

δσ0(r)
Ω =

δ

δω0(r)
Ω =

δ

δρ0(r)
Ω =

δ

δδ0(r)
Ω = 0 , (28)

where Ω =
∫

d3r ω.
The numerical algorithm for the description of the neu-

tral npe matter at finite temperature is a generalization
of the zero temperature case which was discussed in detail
in [9,56]. The Poisson equation is always solved by using
the appropriate Green function according to the spatial
dimension of interest and the Klein-Gordon equations are
solved by expanding the meson fields in a harmonic oscil-
lator basis with one, two or three dimensions based on the
method presented in [9,56].

We next present results for the pasta phase of β-equili-
brium matter obtained within a TF calculation at T=0.
Due to the β-equilibrium condition the proton fraction is
very small and only three different shapes occur: droplet,
rod and slab. The transition densities between the shapes
are compared in Fig. 8 for the six models mentioned above.
All of the three shapes appear in the inner crust except
for NL3, which only predicts the existence of droplets. In
fact, in [67] it was shown that models with a large L, like
NL3, would not predict the existence of non-droplet pasta
shapes in β-equilibrium matter. As discussed before, the
slope L defines the crust-core transition within models
in the same framework. It is seen, however, that although
IU-FSU has the largest crust-core transition density to the
core, it also has the smallest transition density to the rod
and slab configurations. This behavior probably reflects
the large surface energy of IU-FSU that favors smaller
surface to volume geometries.

In Fig. 9 we show the neutron density at the cell cen-
ter and at the cell border (left panel), the cluster proton
fraction at the cluster center (middle panel) and the total
atomic number of a cluster (right panel) [11]. As in the
CP method, also here the background nucleon gas is sub-
tracted when defining the cluster properties Yp,drop and A.
Notice that the number of nucleons belonging to a cluster
or to a cell (A, N and Z), are univocally determined by the
calculation only in the case of droplets. For the slab and
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Fig. 8. (Color online) Pasta phases in TF method at T=0
in β-equilibrium matter. Results for NL3, NL3ωρ, FSU, IU-
FSU, plus two density dependent hadronic parametrizations,
DDME2 and DDMEδ.

rod phases, by construction, the problem is only solved
in one or two dimensions. The values of A, Z and N for
these shapes were obtained assuming representative sizes
for the rod length and for the slab cross-section [11].

These results are coherent with the ones calculated
within the coexisting phases method. The density of drip-
ped neutrons is smallest for IU-FSU, the model with the
smallest slope L. Moreover, IU-FSU (NL3) has the largest
(smallest) number of nucleons in the clusters, correspond-
ing to the smallest (largest) slope L, and at the cluster
center the proton fraction is largest for models with the
largest symmetry energy J .

In Fig. 10 we show some properties of the WS cells: the
proton (a) and neutron (b) content of each cell (N and Z),
and the cell radius (c).

The properties of the models used are reflected on the
cluster structure. A small symmetry energy slope L gives
rise to larger cells, with a larger proton and neutron num-
ber, while the opposite occurs for a large L. Models with
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Fig. 10. (Color online) a) Proton number, b) neutron number and c) radius of a WS cell in the pasta phase regions. Same
models as in Fig. 8.

a similar symmetry energy (∼ 31− 32 MeV) and slope L
(∼ 50−60 MeV) at saturation density behave in a similar
way, both in the droplet phase and the non-droplet pasta
phase regions. On the other hand, models like NL3, with
a very large symmetry energy and slope L, and IU-FSU,
with a quite small L, have quite different behaviors. NL3
does not present any non-droplet pasta phase in the inner
crust of β-equilibrium matter, predicts the smallest pro-
ton and neutron numbers and the Wigner-Seitz radius in
almost all the inner crust range of densities.

All of the models, except NL3, predict the existence
of slab like configurations in β-equilibrium matter. These
lasagna-like structures may have an important contribu-
tion to the specific heat of the crust [12].

4.3 Inner crust structure

In this section we analyse how the EOS at subsaturation
densities affects the inner-crust extension.

The Tolman–Oppenheimer–Volkov (TOV) equations
are solved to determine the density profile of neutron stars
with masses 1, 1.44, 1.6M⊙. These are stars with represen-
tative masses: the lowest one is smaller than the smallest
neutron stars detected until now, 1.44 M⊙ is the mass of
the Hulse-Taylor pulsar, and the largest mass is chosen to
be smaller than the maximummass described by FSU. Be-
sides these three values, the TOV equations are also solved
for the maximum mass star. The stellar matter EOS’s are
built according to the following scheme [71]: a) the EOS
in the core is obtained including only nucleonic degrees
of freedom, electrons and muons, solving the equations

for the meson fields in the mean-field approximation and
imposing both β-equilibrium and charge neutrality; b) for
the outer crust, the BPS (Baym-Pethick-Sutherland) EOS
[72] is considered; c) the inner crust, corresponding to the
range of densities between the neutron drip (∼ 2 × 10−4

fm−3) and the crust-core transition, is obtained from the
TF calculation of β-equilibrium non-homogeneous matter
[10,11,56,57].

In Table 2 we display some of the features of the inner
crust structure according to different models. All models
considered have a slab and a rod phase which together de-
fine the non-droplet pasta extension, except for NL3. For
this model the inner crust is only formed by droplets in a
neutron gas background. For the sake of readability, some
of the results given in Table 2 are plotted in Fig. 11 and
12. In Fig. 11 the thickness of the crust (full symbols) and
inner crust (empty symbols) are given in the left panel,
the thickness of the total non-droplet pasta phase (full
symbols) and the slab phase (empty symbols) are plotted
in the middle panel, and the fraction of the inner crust
with respect to the total crust is given in the right panel.
The different models are ordered according to the magni-
tude of the slope L, which increases from left to right. In
Fig. 12 we represent instead the crust profile, identifying
the transition between the different configurations with
marks (black lines and symbols). In the same figure, it is
also shown the crust profile calculated with an EOS ob-
tained joining the BPS EOS directly to the homogeneous
stellar matter EOS (red dashed lines). In this last case the
transition from the BPS to the homogeneous matter EOS
is shown by a red full point.
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The extension of the total crust is mainly defined by
the incompressibility of the EOS (cfr Table 1). However,
the fraction of the crust occupied by the inner crust is of
the order of 50% or less and depends on the symmetry en-
ergy. This quantity increases with the star mass, resulting
in a difference of ∼ +5% between stars of mass 1.6 and
1.0 M⊙.

The strong differences existing between NL3 and NL3ωρ
allow us to identify the effect of the symmetry energy, since
these two models only differ with respect to the density
dependence of the symmetry energy. It has already been
shown that there is an anti-correlation between the crust-
core transition density and the slope L at saturation [6,
8] and, therefore, it could be expected a larger crust for
NL3ωρ. We point out, however, that this correlation does
not exist with the total crust thickness, but only with the
inner crust. In a 1.0 M⊙ star the non-droplet pasta ex-
tension is smaller than 200 m. Generally the stars with
smaller mass have smaller relative pasta phases. The slab
fraction corresponds to ∼ 35% of the total pasta phase

for all the models, apart from IU-FSU, where it is almost
60%. The different behavior of IU-FSU is mainly due to
the small value of the symmetry energy slope at subsat-
uration densities, which affects the surface tension giving
quite high surface tension for different proton fractions,
see [11]. A large surface tension favors the slab geome-
try with respect to the rod geometry. On the contrary, a
smaller surface tension favors the formation of droplets,
clusters with the largest surface for the same volume, in a
larger density range.

In Fig. 12 we have plotted the last ∼ 2 km of the star
profile closer to the surface. A larger mass corresponds
to a steeper profile as expected, due to the larger grav-
itational force. For NL3 and NL3ωρ, both with a large
incompressibility, the star with the larger mass has the
inner crust at a larger distance from the center. In the
case of FSU and IU-FSU there is a larger concentration
of mass at the center because the EOS is softer, and the
crust is pushed more strongly towards the center of the
star: this explains why for IU-FSU the profiles of the 1.44
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M ǫc Rhs Rsr Rrd RdBPS R
(M⊙) (fm−4) (km) (km) (km) (km) (km)

FSU

1.00 1.81 11.09 11.14 11.23 11.93 12.80
1.44 3.07 11.25 11.28 11.33 11.75 12.28
1.60 4.39 10.92 10.94 10.99 11.30 11.66
1.66 7.04 10.27 10.29 10.32 10.56 10.84

IU-FSU

1.00 1.78 10.82 10.90 10.96 11.64 12.46
1.44 2.61 11.29 11.34 11.38 11.81 12.30
1.60 3.18 11.26 11.31 11.34 11.69 12.09
1.80 6.69 10.48 10.50 10.52 10.74 11.00

NL3

1.00 1.12 12.57 - - 13.38 14.53
1.44 1.39 13.34 - - 13.89 14.63
1.60 1.49 13.53 - - 14.01 14.66
2.78 4.42 12.78 - - 13.12 13.29

NL3ωρ

1.00 1.28 11.40 11.47 11.59 12.46 13.42
1.44 1.52 12.37 12.42 12.50 13.11 13.75
1.60 1.62 12.63 12.67 12.75 13.28 13.84
2.68 4.62 12.49 12.50 12.52 12.70 12.87

Table 2. Central energy density, distance to the center of the
star at the phase transitions: homogeneous matter–slab phase
(Rhs), slab phase–rod phase (Rsr), rod-phase–droplet phase
(Rrd), droplet phase–outer crust (RdBPS) and radius of a 1.0,
1.4, and 1.6 M⊙ star for several EOS, for different models. For
each model, the maximum mass configuration is also shown.

and 1.6 M⊙ stars are almost coincident, and for FSU the
profiles of the 1.0 and 1.44M⊙ stars cross, while the crust
of the 1.6 M⊙ one has the smallest distance to the star
center. One interesting conclusion is that taking into ac-
count the correct description of the inner crust in the total
stellar EOS is more important for the softer EOS and with
smaller slopes L. However, on the whole, using the BPS
EOS for the outer crust and an EOS of homogeneous stel-
lar matter for the inner crust and core gives good results
for the stellar profiles.

In [73] the effect of the nuclear pasta on the crustal
shear phenomena was studied. In particular, two limits
have been considered, namely the pasta as an elastic solid
and as a liquid. In the first case the shear modulus is cal-
culated from the crust-core transition while in the second
case at the transition from the droplet to the pasta phase.
For models with no pasta phase, as NL3, there is no dif-
ference between these two pictures. However, models with
a symmetry energy slope L below 80 MeV have a pasta
phase and the ratio shear modulus to pressure may be as
high as two times larger if the first picture is considered
for L = 40 MeV.

5 Symmetry energy and the strangeness
content of a neutron star

For stellar matter with hyperonic degrees of freedom, as
the one described in this section, the electromagnetic-field
is switched off, the sum over nucleons in Eq. (9) is replaced
by a sum over the octet of lightest baryons (n, p, Λ, Σ−,
Σ0, Σ+, Ξ−, Ξ0), and the couplings of the mesons to the
baryons are baryon dependent. Due to the Pauli principle
the nucleon Fermi energy increases and, if the Fermi en-
ergy of nucleons becomes larger than the hyperon masses,
energy and pressure are lowered by conversion of some
nucleons into hyperons. This softens the equation of state
and has some direct consequences on the properties of
compact stars: maximum star masses become smaller and
neutrino fractions in neutrino trapped matter are larger.

To fix the model, we need to define the couplings gij ,
where i is any meson and j any baryon of the octet. For
the nucleonic sector, we use the IU-FSU [47] and TM1 [43]
parametrizations. The latter is a parametrization that sat-
isfies the heavy-ion flow constraints for symmetric matter
at 2-3ρ0 [74]. To better understand the effect of the sym-
metry energy on the strangeness content, the mass and
radius of the stars, we will consider a modified version
of IU-FSU with Λω as a free parameter. Analogously, for
TM1, we will discuss a modified version obtained includ-
ing a non-linear ω − ρ term (TM1ωρ) that will allow to
change the density dependence of the symmetry energy,
as presented in [16], when Λω runs from 0 (TM1) to 0.03.
For the slope of the symmetry energy at saturation den-
sity we have the following values: Λω = 0 (L = 110 MeV),
Λω = 0.01 (L = 80 MeV), Λω = 0.02 (L = 70 MeV) and
Λω = 0.03 (L = 55 MeV).

For the hyperons, we consider two different sets of
hyperon-meson couplings, that we name A and B. Within
the coupling set A [75] the ω and ρ meson-hyperon cou-
pling constants are obtained using the SU(6) symmetry:
1
2
gωΛ = 1

2
gωΣ = gωΞ = 1

3
gωN , 1

2
gρΣ = gρΞ = gρN , gρΛ =

0, where N means ‘nucleon’ (giN ≡ gi). The coupling con-
stants gσY of the hyperons with the scalar meson σ are
constrained by choosing the hypernuclear potentials in nu-
clear matter to be consistent with hypernuclear data [76].
Namely, we impose (see Ref. [76]) UΛ = −28 MeV, UΣ =
30 MeV , UΞ = −18 MeV, being Uj = xωj Uω − xσj Uσ

where xij ≡ gij/gi, Uω ≡ gωω0 and Uσ ≡ gσσ0 are the
nuclear potentials for symmetric nuclear matter at satu-
ration.

In order to show how results are sensitive to the hy-
peron couplings we consider a quite different set of cou-
plings proposed in [45], set B, with xσY =0.8 and equal for
all the hyperons. The fraction xωY is determined using
UY = −28 MeV for all the hyperons. For the hyperon-
ρ-meson coupling we consider xρY = xσY . This choice
implies that the interaction of all hyperons in symmetric
nuclear matter is attractive, and is restricted by accept-
able maximum mass star configurations.

The onset density of the nucleon Direct Urca (DU)
process is plotted as a function of the slope L for the
IU-FSU and modified versions in Fig. 13. The effect of
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Fig. 13. (Color online) Onset density of the direct Urca pro-
cess in stellar matter for nucleonic matter (gray squares), hy-
peron coupling set A (red circles) and hyperon coupling set
B (blue triangles) for IU-FSU and modified versions with
L = 47−99 MeV.

the symmetry energy and the hyperon interaction on the
DU onset density can be summarized as follows a) for
non-strange matter the larger the slope L the smaller the
neutron-proton asymmetry above the saturation density
and, therefore, the smaller the DU onset density; b) gen-
erally, for a low value of L the presence of hyperons de-
creases the onset density. This is always true if the hyperon
onset occurs with a negatively charged hyperon because
the proton fraction increases. However, if the hyperon on-
set occurs with a neutral hyperon, both the proton and
the neutron fractions decrease and it is the net effect that
defines the behavior.

In Fig. 14 the strangeness fraction (fs =
∑

j |sj |nj/3nB

with sj and nj the strangeness, partial density of the
baryon jand nB the total baryonic density) for IU-FSU
and the modified IU-FSU model with L = 99 MeV is
plotted as a function of density. A smaller symmetry en-
ergy slope hinders the formation of hyperons because it
gives rise to a softer EoS. The conditions for the onset of
hyperons depend on the charge of the hyperon and on the
hyperon interaction: Λ is the first hyperon to appear with
set A and occurs at larger densities for a smaller slope L,
on the contrary, with set B, Σ− will occur first and at
smaller densities for smaller values of L [13].
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Fig. 14. (Color online) Strangeness fraction with the hyperon-
meson coupling sets A and B for IU-FSU (L = 47 MeV) and
a modified version with L = 99 MeV.
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From now on, we focus on the TM1 parametrization,
and, for the hyperon couplings, on the set A. However,
we allow some variations in it. In fact, while the bind-
ing of the Λ in symmetric nuclear matter is well settled
experimentally, the binding values of the Σ− and Ξ−

still have a lot of uncertainties [77]. We, therefore, en-
large the set A by allowing UΞ = −18, 0,+18 MeV and
UΣ = −30, 0, 30 MeV. Finally, we also consider the inclu-
sion of the strange mesons σ∗, φ to take into account the
YY interactions. According to recent experimental Λ−Λ-
hypernuclear data, the Λ − Λ interaction is only weakly
attractive [78]. The effect of the small attractiveness of the
hyperon-hyperon coupling will be considered by choosing
a) a weak gσ∗Y coupling according to Eq. 5 of [79]; b)
the extreme value gσ∗Y = 0. In both cases, the φ meson
couplings are fixed according to 2gφΛ = 2gφΣ = gφΞ =

− 2
√
2

3
gωN .

As mentioned above, the symmetry energy also affects
the onset of hyperons. In Fig. 15 it is shown that the
different hyperons are affected in a different way by the
symmetry energy. In this figure we plot the onset of the
Λ, Σ− and Ξ− as a function of the coupling Λω, where
Λω = 0 (0.03) corresponds to L = 110(55) MeV. It is seen
that the onset of Σ− always decreases with the decrease of
L, due to its larger isospin. On the other hand, the onset
of Λ occurs at larger densities. The Ξ− is never the first
hyperon to appear due to its large mass, but, according
to the attractiveness of its potential in nuclear matter, it
can appear as the second hyperon. If the repulsiveness of
the Σ− in nuclear matter is confirmed we may expect that
the Λ is the first hyperon to set on and, therefore, with a
smaller slope L the onset of strangeness occurs at larger
densities. However, if the optical potential of the Σ− in
nuclear matter is only slightly repulsive there may be a
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Fig. 16. (Color online) Radius of a star with mass 1.67M⊙ as
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km). For a given L, each point corresponds to a choice for the
hyperon couplings within the extended set A.

competition between the onset of Λ and Σ− depending on
the L, with smaller values of L favoring the Σ− hyperon
(see top figure of the right column).

As discussed in [13,14], a smaller slope L implies a
softer increase of the strangeness fraction with density.
However, once the central density of these stars is larger,
it is important to study their total hyperon content.
This will be done by calculating for each star the total
strangeness number

NS = 4π

∫ R

0

ρs r
2

√

1− 2m(r)/r
dr,

where m(r) is the mass inside the radius r.
In Fig. 16 we plot the radius of a star with a mass

1.67M⊙ similar to the mass of the pulsar PSR J1903+0327
(1.67± 0.02M⊙) [80] as a function of its strangeness con-
tent. The largest strangeness fractions were obtained con-
sidering an attractive potential for the Σ− meson. It is
interesting to notice that two almost parallel straight lines
are obtained: for L = 110 MeV the slope is -11.27 ±4%
km and for L = 55 MeV the slope is -10.62 ±1% km. The
straight lines cross the vertical axis for a nucleonic star
with no hyperons. The slope is almost independent of L.

Finally, in Fig. 17 we show some properties of maxi-
mum mass stars. Some general conclusions may be drawn
with respect to the strangeness content: a) the maximum
star mass changes with L, stars with an intermediate L
have the smallest masses and, generally, have the largest
central densities (see panels a) and e)). There are two
competing factors that define this behavior: on one hand a
larger L corresponds to a harder EOS because the symme-
try energy increases faster with the density, on the other
hand a larger L favors larger strangeness fractions which
softens the EOS. The first one gives rise to smaller central
densities and larger radii, while the second one leads to
the opposite; b) the strangeness content depends on the
hyperon interaction, and, in particular, on the Ξ poten-
tial in the present study. If UΞ = +18 MeV (triangles) the
masses are larger and the strangeness fractions generally

smaller; c) the inclusion of the strange mesons gives rise
to more massive stars that may have larger strangeness
contents. In this case the strangeness content is always
smaller for a smaller slope L, and its maximum value is
of the order 0.04-0.05 according to the hyperon interac-
tion if L = 55 MeV. The upper limit can reach 0.07-0.08
if L = 110 MeV, Fig. 17d). Larger fractions may be ob-
tained if the UΣ is considered attractive.

6 Conclusions

We have studied the effect of the density dependence of the
symmetry energy on several properties of neutron stars. In
particular, we have discussed the properties of the crust-
core transition, the pasta phase, and a possible existing
competition between the effects of the symmetry energy
and exotic degrees of freedom in the EOS.

The problems have been investigated within different
nuclear matter approaches, namely the BHF one, several
Skyrme forces, RMF models and a generalized liquid drop
model.

First, we have analyzed the correlations of the slope
parameter L with the core-crust transition from homoge-
neous to clusterized matter in neutron stars, using a sim-
plified definition of this transition, namely the crossing
between the line of beta equilibrium and the thermody-
namical spinodal. It was shown that the core-crust transi-
tion density and proton fraction appear clearly correlated
with L [7,8]. On the other hand no clear correlation was
observed between L and the transition pressure.

We have shown that the determination of the core-
crust transition by the crossing between the dynamical
spinodal and the β-equilibrium corresponds to a realistic
approximation, with results very similar to the TF predic-
tion. It takes place at a density lower than expected if the
thermodynamical spinodal approach is applied, however,
it was confirmed that the correlations obtained within the
thermodynamical approach are still valid using the dy-
namical spinodal approach.

We have verified that the predictivity of the transi-
tion pressure is considerably improved in terms of selected
pairs of coefficients. In particular, a strong correlation ap-
pears between the transition pressure and a combination
of the symmetry energy slope and curvature parameters
at the same reference density, ρ = 0.1 fm−3. This cor-
relation indicates that the relation between nuclear ob-
servables and the liquid drop model coefficients should be
investigated at subsaturation densities.

In the second part, we have studied the inner-crust
properties of neutron stars within a self-consistent Thomas-
Fermi approach developed in Refs. [56,57] for relativistic
nuclear models, and the coexisting-phases method [10,56].
Several relativistic nuclear models have been used, with
nonlinear meson terms and constant couplings, or with
density-dependent coupling constants.

The properties of the models used are reflected in the
cluster structure. It was seen that a small symmetry en-
ergy slope L gives rise to larger cells, with a larger proton
and neutron number, while the opposite occurs for a large
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L. In particular, it was shown that the NL3 model, with
a very large symmetry energy and slope, and the IU-FSU
one, with a quite small slope, have very different behav-
iors. NL3 does not present non-droplet pasta phases in
the inner crust of β-equilibrium matter, and predicts the
smallest proton and neutron numbers and Wigner-Seitz
radii in almost all the inner-crust range of densities. On
the contrary, IU-FSU predicts a quite low density for the
onset of the non-droplet pasta phase, the largest crust-core
transition density, and the largest clusters.

All models, except NL3, predict the existence of lasagna-
like structures that may have an important contribution
to the specific heat of the crust [12].

The effect of the inner crust EOS on the neutron star
profile was also analysed. It was verified that a smaller
slope gives rise to a steeper crust density profile and a
larger inner crust with respect to the total crust. It may
also enhance the slab phase extension as observed in IU-
FSU.

Finally, in the last part we discussed the joint effect of
strangeness and the symmetry energy on some properties
of the neutron stars, such as the hyperon content, DU and
radius.

It was shown that the smaller the slope L, the larger
the onset density of the DU process. However, the DU on-
set also depends on the hyperon content and the hyperon-
meson couplings. The DU may be hindered or favored
according to a balance between the neutron and proton
reductions if a neutral hyperon sets on first. Negatively
charged hyperons favor the DU onset due to a decrease of
the neutron fraction and an increase of the proton frac-
tion.

It was also shown that, for a star with a fixed mass,
the radius of the star decreases linearly with the increase
of the total strangeness content. In particular, a 1 km
decrease of the radius of a 1.67M⊙ star may be explained
if the slope of the symmetry energy decreases from 110
to 55 MeV or the strangeness to baryon fraction increases
from zero to 0.09.

A softer symmetry energy corresponds to a slower in-
crease of the hyperon fraction with density. However, the
onset of strangeness depends on the charge of the hyper-
ons. Negatively charged hyperons set on at smaller densi-
ties while neutral hyperons appear at larger densities for
smaller values of the slope.

If a repulsive hyperon-hyperon interaction is consid-
ered, although a larger slope L gives rise to a larger strangeness
content, the extra repulsion between hyperons compen-
sates the extra hyperon fraction and the effect of the sym-
metry energy is almost not seen on the central density of
the maximum mass configuration.

We conclude that some star properties are affected in
a similar way by the density dependence of the symmetry
energy and the hyperon content of the star. To disentan-
gle these two effects it is essential to have a good knowl-
edge of the EOS at suprasaturation densities. There is still
lack of information about the nucleonic EOS at supra-
saturation densities as well as on the hyperon interactions
in nuclear matter that may allow for an unambiguous an-
swer to whether the mass of the pulsars J1614-2230 [81] or
J0348+0432 [82] could rule out exotic degrees of freedom
from the interior of compact stars.

The symmetry energy density dependence and its slope
have been topics of intense investigation in the latest years.
The work we have just presented in this paper is intrinsi-
cally related to other topics also discussed in this special
volume. The search for constraints to the huge variety of
equations of states used to describe neutron star matter in-
volves astrophysical observations, heavy ion collision data,
nuclear reactions [83,84], nuclear structure, bulk matter
empirical values [39] and finite nuclei properties, as the
neutron skin thickness [85,86]. On the other hand, the
strangeness content of different equations of state, shown
above to be related to the symmetry energy, has important
consequences on both the liquid-gas phase transition and
the transition at high densities [87]. Hence, further inves-
tigation towards a better understanding of the symmetry
energy density dependence is still required.
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J.R. Stone and P.D. Stevenson, Phys. Rev. C 85, 035201
(2012).

40. J. Boguta and A. R. Bodmer, Nucl. Phys. A 292, 413
(1977).

41. S. Typel and H. H. Wolter, Nucl. Phys. A656, 331 (1999).
42. G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55,

540 (1997).
43. Y. Sugahara and H. Toki, Nucl. Phys. A 579, 557 (1994).
44. C. J. Horowitz and J. Piekarewicz, Phys. Rev. C 64 062802

(2001); C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett.
86, 5647 (2001)

45. N. K. Glendenning and S. A. Moszkowski, Phys. Rev Lett.
67, 2414 (1991).

46. B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett. 95,
122501 (2005).

47. F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G.
Shen, Phys. Rev. C 82, 055803 (2010).

48. G. A. Lalazissis, T. Niksić, D. Vretenar, and P. Ring, Phys.
Rev. C 71, 024312 (2005).
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