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The geometry of the shears mechanism in nuclei is derived from the nuclear shell model. This
is achieved by taking the limit of large angular momenta (classical limit) of shell-model matrix
elements.
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A central theme in the study of quantum many-body
systems is the understanding of its elementary modes of
excitation. Of particular interest is the competition be-
tween single-particle and collective degrees of freedom. In
general, single-particle motion gives rise to irregular level
sequences, associated with the unique properties of the
individual particles. Collective motion generates more
regular structures, a typical example being that of rota-
tional bands which follow closely a J(J + 1) sequence,
characteristic of a quantum rotor.

In atomic nuclei, the energy scales of these modes are
somewhat comparable, leading to a rich and complex
structure [1]. 208Pb is considered a paradigm of a doubly-
closed-shell nucleus with collective states based on an
octupole phonon. Neighboring nuclei provided a wealth
of important information for the shell model, on single-
particle levels and residual interactions at the Z = 82,
N = 126 shell closure, as well as on the role of particle-
vibration coupling [2].

The observation in 199Pb of a regular sequence of γ
rays resembling, at first look, a rotational band came as a
surprise [3–6]. A closer inspection of the data established
that these transitions were of magnetic character, in con-
trast to the quadrupole nature in the well-known nuclear
rotors [1]. The answer to this puzzle was provided by
Frauendorf [7], who based on the Titled Axis Cranking
Model proposed the so-called “shears mechanism”. He
showed that for a weakly deformed system, there exist
low-energy configurations in which neutrons and protons
combine into stretched structures (“blades”) and the an-
gular momentum is generated by the re-coupling of these
blades, resembling the closing of a pair of shears. As dis-
cussed in Ref. [8], the breaking of the rotational symme-
try in this case originates in an anisotropic distribution
of nucleonic current loops (rather than electric charge),
and thus it is usually referred as magnetic rotation. Fur-
ther experiments not only confirmed this picture in the
lead region, but also established the mechanism in other
regions of the Segré chart, near doubly-magic closures.

While an interpretation in terms of the shears mecha-
nism provides an appealing, intuitive picture of these nu-
clear states, the question remains whether this geometric
character is borne out by microscopic calculations. In
numerical shell-model calculations Frauendorf et al. [9]
showed that the shears picture is valid in the lead iso-

topes. A direct derivation of the geometry of the shears
mechanism from the shell model has, however, to our
knowledge never been given. Providing such a derivation
is the purpose of the present Letter.
Let us assume that two nucleons of one type (say neu-

trons) occupy particle-like orbits j1ν and j2ν , while two
nucleons of the other type (protons) occupy hole-like or-
bits j−1

1π and j−1
1π [10]. The neutrons and protons are cou-

pled to angular momenta Jν and Jπ, respectively, which
are close to stretched, Jρ ≈ j1ρ+j2ρ (ρ = ν, π). The two-
particle (2p) and two-hole (2h) states are represented as
|N〉 = |j1νj2ν ; Jν〉 and |P−1〉 = |j−1

1π j−1
2π ; Jπ〉, and we as-

sume that the states are Pauli allowed, i.e., that Jρ is
even if j1ρ = j2ρ. A shears band consists of the states
|NP−1; J〉 where J results from the coupling of Jν and
Jπ.
We ask the following questions: How do the energies of

the members of this band evolve as a function of J , and
how does this evolution depends on the angular momenta
of the single-particle orbits and the angular momenta of
the blades? We answer these questions by adopting a
shell-model hamiltonian of the generic form H = Hν +
Hπ + Vνπ and computing 〈NP−1; J |H |NP−1; J〉, which
will be referred to as the (2p-2h) shears matrix element.
The shell-model hamiltonian is specified by the single-

particle energies, the single-hole energies, the neutron-
neutron and proton-proton (two-body) interaction ma-
trix elements, and the neutron-proton (np) interaction
matrix elements V R

jν jπ ≡ 〈jνjπ;R|Vνπ|jνjπ;R〉. One finds
that the energy contribution of Hν and Hπ is constant
for all members of the shears band and that any J depen-
dence originates from the np interaction Vνπ . A multipole
expansion of the latter interaction leads to the following
expression for the shears matrix element:

〈NP−1; J |Vνπ |NP−1; J〉

= −P Ĵν Ĵπ
∑

R

R̂ V R
j1ν j1π







j1ν Jν Jπ j1π
j2ν J j2π R

j1ν Jν Jπ j1π







,(1)

where x̂ ≡ 2x + 1 and P ≡ PνPπ with Pρ an operator
defined from Pρf(j1ρ, j2ρ) = f(j1ρ, j2ρ) + f(j2ρ, j1ρ) for
any function f . The object in curly brackets is a 12j
symbol of the first kind, a quantity which is scalar under
rotations and depends on twelve angular momenta. The
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result (1) is obtained by expressing the shears matrix
element as a sum over four 6j symbols, which can be
related to a 12j symbol, see Eq. (19.1) of Ref. [11].
It is now a simple matter to introduce in the sum (1)

values for the np interaction matrix elements and to de-
rive the J dependence of the shears matrix element. For
any reasonable nuclear interaction and for Jρ ≈ j1ρ+j2ρ,
it is found that the sum (1) has an approximate parabolic
behavior around its minimum around J2 ≈ J2

ν + J2
π.

To understand better this numerical finding, the geom-
etry of the expression (1) can be studied by taking the
limit of large angular momenta in the recoupling coeffi-
cients. Such limits are known since the seminal study of
Wigner on the classical limit of 3j and 6j symbols (see
chapter 27 of Ref. [12]), subsequently refined by Ponzano
and Regge [13] whose work was put on a mathematically
solid footing by Schulten and Gordon [14]. The classi-
cal limit of a 3j symbol is associated with the area of
a (projected) triangle while that of a 6j symbol involves
the volume of a tetrahedron, with the lengths of the sides
determined by the angular momenta. Classical limits not
only yield approximate expressions for (re)coupling coef-
ficients but in addition provide an insight into their geo-
metrical significance. The study of the classical limit of

3nj symbols with n > 2 is still a topic of active research
with ramifications in fields as diverse as quantum gravity
and quantum computing (see, e.g. Refs. [15–17] and ref-
erences therein), well beyond the standard applications
in, for example, atomic or nuclear physics.

Since at this moment only partial results are known
for 9j (let alone 12j) symbols, a classical limit of the
expression (1) for arbitrary interactions is difficult to ob-
tain. We consider instead the surface delta interaction
(SDI) [18], V SDI(i, j) = −4πa′T δ(r̄i−r̄j)δ(ri−R), which is
known to be a reasonable approximation to the nucleon-
nucleon interaction [19]. The np matrix element V R

jν jπ of
the SDI is [18]

−
̂ν ̂π
2

[

a01

(

jν jπ R
1
2 − 1

2 0

)2

+ a0

(

jν jπ R
1
2

1
2 −1

)2
]

, (2)

with a01 = (a0+ a1)/2− (−)ℓν+ℓπ+R(a0 − a1)/2 in terms
of the strengths aT = a′TC(R0), where C(R0) equals
R4

nνℓν
(R0)R

2
0 = R4

nπℓπ
(R0)R

2
0.

When the SDI np matrix elements (2) are introduced
in the shears matrix element (1), one encounters sums of
the type

σ(λ)
n ≡ (2Jν + 1)(2Jπ + 1)

∑

R

(−)λR(2R+ 1)

(

j1ν j1π R
1
2 n− 1

2 −n

)2






j1ν Jν Jπ j1π
j2ν J j2π R

j1ν Jν Jπ j1π







, (3)

for (λ, n) = (0, 0), (0,1) and (1,0). These reduce to simple expressions in the classical limit. For example, for λ = 0,
the sum can be exactly rewritten as

σ(0)
n = (2Jν + 1)(2Jπ + 1)

∑

mνMν

mπMπ

(

j1ν j2ν Jν
1
2 mν Mν

)2 (
j1π j2π Jπ

−n+ 1
2 mπ Mπ

)2 (
Jν Jπ J
Mν Mπ mν +mπ − n+ 1

)2

. (4)

The classical approximation consists of replacing the last
3j symbol in Eq. (4) according to [12]

(

Jν Jπ J
Mν Mπ M

)2

7→
(

4πAJνJπJ
MνMπM

)

−1

, (5)

where AJνJπJ
MνMπM

is related to the Caley determinant,

(

AJνJπJ
MνMπM

)2

= −
1

16

∣

∣

∣

∣

∣

∣

∣

0 aJνMν
aJπMπ

1
aJνMν

0 aJM 1
aJπMπ

aJM 0 1
1 1 1 0

∣

∣

∣

∣

∣

∣

∣

, (6)

with aJM ≡ (J + 1
2 )

2 − M2. While the 3j symbol in
Eq. (5) usually is a rapidly oscillating function of Mν

and Mπ, its classical approximation is smooth. Many os-
cillations occur except when J is close to its minimum or

maximum value, J = |Jν − Jπ| or J = Jν + Jπ, respec-
tively. The approximation (5) in the sum (4), therefore,
can be expected to be reasonable in most cases, in partic-
ular in the region of physics interest where J2 ≈ J2

ν +J2
π.

Since Jρ ≈ j1ρ + j2ρ, a classical approximation cannot
be made for the first two 3j symbols in Eq. (4). From
the explicit expressions for the 3j symbols one can show
that the sum over Mν and Mπ can be restricted to the
region around Mν = Mπ = 0. Since the classical ap-
proximation (5) is nearly constant for small values of Mν

and Mπ, the classical limit for the 3j symbols with zero
projections on the z axis can be taken, to obtain

σ
(0)
0 ≈ σ

(0)
1 ≈

(2Jν + 1)(2Jπ + 1)

4π(2j1ν + 1)(2j1π + 1)A
, (7)

where A ≡ AJνJπJ
000 is the area of a triangle with sides of

lengths Jν +
1
2 , Jπ + 1

2 , and J + 1
2 [20]. We may alterna-
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tively express this sum in terms of the shears angle,

θνπ = arccos
J(J + 1)− Jν(Jν + 1)− Jπ(Jπ + 1)

2
√

Jν(Jν + 1)Jπ(Jπ + 1)
, (8)

leading to

σ
(0)
0 ≈ σ

(0)
1 ≈

2

π(2j1ν + 1)(2j1π + 1) sin θνπ
. (9)

A similar derivation yields the classical approximation

σ
(1)
0 ≈ −(−)jν+jπ

2

π(2j1ν + 1)(2j1π + 1) tan θνπ
. (10)

Introducing the preceding approximations into the ex-
pression for the shears matrix element (1), we obtain

〈NP−1; J |V SDI
νπ |NP−1; J〉 ≈

s2
2π sin θνπ

+
t2

2π tan θνπ
,

(11)
where

s2 = 4(3a0 + a1), t2 = ϕ(a0 − a1),

ϕ = P(−)ℓ1ν+j1ν+ℓ1π+j1π . (12)

The classical limit of the shears matrix element for the
SDI does not depend on the individual single-particle an-
gular momenta but only on the shears angle, which is
defined by the angular momenta Jν and Jπ of the blades
and the total angular momentum J .
In Fig. 1 the exact shears matrix elements of the

SDI are compared with their classical approximation for
the neutron and proton angular momenta of the blades
Jν = Jπ = 20. The approximation is good for the
stretched case, Jρ = j1ρ+ j2ρ, but deteriorates rapidly as
Jρ diminishes. However, in the region of interest, where
the two angular momenta Jν and Jπ are close to orthog-
onal, J2 ≈ J2

ν + J2
π , the classical approximation is good,

also for Jρ = j1ρ + j2ρ − 1, and the geometric picture
underlying the shears mechanism remains valid.
This analysis also reveals the limits of the validity of

this geometric picture, as is illustrated in Fig. 2 which
shows the shears matrix element of the SDI for the neu-
tron and proton angular momenta Jν = Jπ = 12. In one
case these arise from aligned single-particle angular mo-
menta (j1ρ = 11

2 and j2ρ = 13
2 ) and the classical approx-

imation is seen to be reasonable. In the second case the
single-particle angular momenta are larger (j1ρ = j2ρ =
21
2 ) and they are not aligned (Jρ = j1ρ+ j2ρ− 9), leading
to a breakdown of the shears interpretation. The align-
ment of the particles in high-j orbits, introduced here by
hand, is in a more realistic shell-model calculation due to
their interaction with particles in low-j orbits [9].
The classical expression (11) is reminiscent of the in-

terpretation of nuclear matrix elements in terms of the
angle between the vectors of the single-particle angular
momenta (see, e.g., Schiffer and True [21]). In fact, it
can be shown that the classical limit of the 1p-1h ma-
trix element 〈jνj

−1
π ; J |V SDI

νπ |jνj
−1
π ; J〉 leads to the same

JΡ = j1 Ρ + j2 Ρ

a0 = 0.5 a1 a0 = a1
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FIG. 1: The exact expression (1) for the 2p-2h shears ma-
trix element of the SDI (dots) compared with its classical
approximation (11) (lines) for neutron and proton angular
momenta Jν = Jπ = 20. The single-particle angular mo-
menta are j1ρ = 19

2
and j2ρ = 21

2
(top), and j1ρ = j2ρ = 21

2

(bottom). Results are shown for three choices of the ratio
a0/a1. The matrix element is in units a1.
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FIG. 2: Same as Fig. 1 for neutron and proton angular mo-
menta Jν = Jπ = 12 and single-particle angular momenta
j1ρ = 11

2
and j2ρ = 13

2
(top), and j1ρ = j2ρ = 21

2
(bottom).
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FIG. 3: Experimental (points) and calculated (lines) B(M1)
values for band 1 in 199Pb as a function of twice the angular
momentum J . The red line is the exact expression and the
blue line is its classical limit (13).

dependence on the angle θνπ as in Eq. (11) but with coef-
ficients s1 and t1 that depend differently on the strengths
aT of the interaction.
The present results make contact with the semi-

classical analysis [5, 6] in terms of an interaction V0 +
V2P2(cos θνπ), assumed to exist between the blades of
the shears bands. In line with the intuitive picture one
has of the shears mechanism, this interaction necessar-
ily implies a shears-band head with cos θ0νπ ≈ 0 or, al-
ternatively, a minimum energy for J2 ≈ J2

ν + J2
π when

the angular momentum vectors J̄ν and J̄π are orthogo-
nal. Our analysis shows that this is not generally valid
since a minimum energy is obtained from Eq. (11) for
cos θ0νπ ≈ −t2/s2 = ϕ(a1 − a0)/4(3a0+ a1). Therefore, if
the isoscalar and isovector interaction strengths are dif-
ferent, a minimum energy is found for a non-orthogonal

configuration.
Shears bands are characterized by strong M1 transi-

tions that decrease with increasing angular momentum
J . For a general configuration |NP−1; J〉, where |N〉 is
an m-particle neutron and |P−1〉 an m′-hole proton con-
figuration with angular momenta Jν and Jπ, respectively,

standard recoupling techniques [22] lead to the following
classical expression for the B(M1) values:

B(M1; J → J − 1)

≈
3

4π
(gν − gπ)

2 (2Jν + 1)2(2Jπ + 1)2

16J(2J + 1)
sin2 θνπ, (13)

where gν and gπ are the g factors of the neutron and
proton configurations |N〉 and |P−1〉, respectively. This
expression can be tested in 199Pb where lifetimes of some
shears-band levels have been measured [23]. In particu-
lar, the states in band 1 with 43

2 < J < 55
2 have the sug-

gested [24] configuration ν(1i−3
13/2)33/2×π(1h9/21i13/2)11,

from where the g factors can be obtained, gν = −0.29 µN

and gπ = 1.03 µN. Application of Eq. (13) with Jν = 33
2

and Jπ = 11 leads to the result shown in Fig. 3 (in blue),
which is seen to be close to the exact result (in red). In
the spin region 47

2 ≤ J ≤ 53
2 , where the above configura-

tion is thought to apply, agreement is obtained.
The data on M1 transitions indicate that fixed neu-

tron and proton configurations do not apply to an en-
tire shears band but only to part of it. For this reason
it will be difficult to use energy formulas like Eq. (11)
with constant coefficients s2 and t2 for an entire band.
The present analysis suggests however that, under certain
conditions of angular-momentum alignment, the generic
form of the expression (11) is approximately valid with
coefficients si and ti depending on the structure of the
neutron and proton configurations that apply to certain
ranges of the total angular momentum J . This problem
is currently under study.
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