DOSIMAP: a high-resolution 2-D tissue equivalent dosemeter for linac QA and IMRT verification
Abstract
New generation of radiation therapy accelerators requires highly accurate dose measurements with high spatial resolution patterns. IMRT is especially demanding since the positioning accuracy of all the multi-leafs should be verified for each applied field and at any incidence. A new 2-D tissue equivalent dosemeter is presented with high spatial resolution that can fulfil these tasks. A plastic scintillator sheet is sandwiched between two polystyrene cubes, and the emitted light is observed by a high-resolution camera. A patented procedure allows efficient discrimination of the scintillation proportional to the dose from the parasitic Cerenkov radiation. This extraction made on the cumulated images taken during an irradiation field at a rate of 10 images s(-1) provides high-resolution mapping of the dose rate and cumulated dose in quasi real time. The dosemeter is tissue equivalent (ICRU-44) and works both for electrons and photons without complex parameter adjustment, since phantom and detector materials are identical. The calibration is simple and independent of the irradiation conditions (energy, fluence, quality and so on). The principle of the dosemeter and its calibration procedure are discussed in this paper. The results and, in particular, the dose depth profiles are compared with standard ionisation chamber measurements in polystyrene for both photons and electrons. Finally, the detector specifications are summarised and one example of complex IMRT field is discussed.