Fission fragment mas distribution as a probe of the shape-dependent congruence energy term in the macroscopic models - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Conference Papers Year : 2013

Fission fragment mas distribution as a probe of the shape-dependent congruence energy term in the macroscopic models

K. Mazurek
  • Function : Author
P.N. Nadtochy
  • Function : Author
A. Maj
P. Wasiak
  • Function : Author
M. Kmiecik
  • Function : Author
B. Wasilewska
  • Function : Author

Abstract

The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parameterizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential energy surface (PES), in the deformation space, is observed to be different within these two approaches. When incorporated in the dynamical calculation, the FRLDM and LSD models are observed to give similar results in the heavy mass region, whereas the predictions can be strongly dependent on the PES for fission of medium-mass nuclei. The shape-dependent congruence energy is only slightly modulated on the top of the bulk LD part although it changes the PES and the barrier height.
No file

Dates and versions

in2p3-00804361 , version 1 (25-03-2013)

Identifiers

Cite

K. Mazurek, C. Schmitt, P.N. Nadtochy, A. Maj, P. Wasiak, et al.. Fission fragment mas distribution as a probe of the shape-dependent congruence energy term in the macroscopic models. Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape", Aug 2012, Zakopane, Poland. pp.293-297, ⟨10.5506/APhysPolB.44.293⟩. ⟨in2p3-00804361⟩
27 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More