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Spectroscopy of charmed D
meson and form factor of
B → D∗ ` ν in LQCD

Mariam Atoui
Laboratoire de Physique Corpusculaire LPC
Université Blaise Pascal, Aubière, France

Semileptonic B decays are of primary importance since, for
example, they participate very strongly in the accurate determi-
nation of the CKM matrix element Vcb which represents a test
of the Standard Model. However, there are many puzzling fea-
tures associated with the semileptonic b → c data, which have
appeared during the last ten years such as the so-called "1/2
versus 3/2 puzzle" which corresponds to the difference bet-
ween theoretical predictions and experimental measurements
of semileptonic branching ratios of B̄ → D∗∗`ν.
In many theoretical approaches (HQET, heavy quark expan-
sion, quark model, Lattice QCD with quenched calculation,
etc...), branching ratios corresponding to the decay B̄ → D∗∗`ν

were calculated using the infinite mass limit. That is the rea-
son why, in order to address the aforementioned questions, we
propose to determine for the first time the physical parame-
ters and then the branching ratios using “real" charmed quarks
having a finite mass.

1.0.1 Spectroscopy

In a heavy meson rest frame, the total angular momen-
tum reads :

~J = ~sh + ~j

where

{
~sh spin of the heavy quark
~j angular momentum of the light cloud

In quark model, ~j has the following expression

~j = ~sl + ~l

where

{
~sl spin of the light quark
~j orbital angular momentum of the light cloud

In the infinite mass limit there are no interactions in-
volving the heavy quark spin. Therefore sh is a conser-
ved quantity and since ~J is also conserved, it is conve-
nient to use jP as an index to classify static-light meson
states where P is the parity.

P wave states (l = 1) : This case gathers the first
orbital excitations of heavy mesons M and they are re-
presented as M∗∗. j has two values 1/2 and 3/2. Each
of these values form a doublet. In the case where the
heavy quark is the charm c, we obtain the D∗∗ repre-
sented in the following table :

doublet JP values notation
0+ D∗0jP = 1/2+

1+ D∗1
1+ D1jP = 3/2+

2+ D∗2

S wave states (l = 0) : Heavy mesons satisfying this
property are classified as :

doublet JP values notation
0− D

jP = 1/2−
1− D∗

finite quark masses : a significant difference with
respect to the static approximation is that there is no
heavy spin degeneracy anymore, i.e. there are two S
wave states and there are four P wave states (notation
Dj
J : D1/2

0 , D
1/2
1 , D

3/2
1 , D

3/2
2 ). The angular momen-

tum of the light cloud j is not a good quantum number
anymore, i.e. states must be labeled by their total an-
gular momentum JP .

1.1 Lattice QCD (LQCD)
At short distances (or equivalently at high energies) the
quarks interact weakly, so that it is possible to study
the theory of the strong interaction (Quantum Chro-
modynamics QCD) with perturbative techniques. But
the growth of the coupling constant in the infrared -
the flip side of asymptotic freedom- requires the use of
non-perturbative methods to determine the low energy
properties of QCD. This is the case for many obser-
vables playing important role in the context of Flavor
Physics, as for example the form factors, the decay
constants, and numerous matrix elements involved in
meson mixings.
The only way to determine physical observables in a
non perturbative way and starting from first principles
is Lattice QCD or LQCD 1. Lattice gauge theory, pro-
posed by Wilson in 1974, is a way to regularize Field
Theory in which the continuum and infinite space-time
is replaced with a discretized grid of points x ∈ {n} in
a finite volume, of extent L in space and T in time and
a is the lattice spacing. Quark fields are placed on sites
and gauge fields on the links between sites. These links
represent the gluon field on the lattice (or “gauge link")

1. for further reading about Lattice QCD, I refer the reader
to [1, 2]
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6 QCD et ions lourds

Uµ(x) which is an element of the group SU(3).
The simplest expression which in the continuum limit
reduces to the gluon action has been found by Wilson
and expressed in terms of the plaquettes Un;µν , defined
as the ordered product of the four links variables lying
over the border of the square defined by the points x
and x+ µ̂+ ν̂ :

Ux;µν ≡ Ux;νUx+µ̂;νU
†
x+ν̂;µU

†
x;ν

The Wilson action for gauge fields reads

SG =
β

3

∑
x∈{n}

∑
µ<ν

Re tr [1− Uµν(x)] β = 6/g2

which is a gauge invariant quantity. In general, Wilson
discretized action of QCD is given by

SLQCD ≡
∑
f

SF + SG

where SF and SG are respectively the discretized fer-
mion and the gluon actions.

Fermions

Gluons

a

Plaquette

1.1.1 Simulation setup

The gauge action used in our simulation is tree-level
Symanzik improved [3] with β = 3.9 corresponding to
a lattice spacing a = 0.0855fm.

SG =
β

6
(b0

∑
x,µ,ν

Tr(1− P 1×1(x;µ, ν))

+ b1
∑
x,µν

Tr(1− P 1×2(x;µ, ν))

where b0 = 1− 8b1 and b1 = −1/12.
The fermionic action used in our simulation is Wil-

son Twisted-mass Lattice QCD (tmLQCD) with two
flavors of mass-degenerate quarks, tuned at maximal
twist in the way described in full details in Ref. [4] :

SF [χ, χ̄, U ] = a4
∑
x

χ̄(x)(DW + iµqγ5τ3)χ(x)

where

DW =
1

2
(γµ(∇µ + ∇∗µ)− a∇∗µ∇µ) +m0

is the Wilson Dirac operator, χ = (χ(u), χ(d)) are the
fermionic fields in the twisted basis. They are obtai-
ned from an axial rotation of ψ, ψ̄ (fermion fields in the
physical basis where the continuum QCD action takes
the standard form) [5]. TmLQCD action reduces the
discretization error and improves the current compu-
tation. ∇µ and ∇∗µ are the standard gauge covariant
forward and backward derivatives, m0 and µq are the
bare untwisted and twisted quark masses.
We use an ensemble of 100, Nf = 2 flavor, 243 × 48
Wilson Twisted mass gauge configurations produced
by the European Twisted Mass Collaboration (ETMC).
We consider 5 valence quark masses : one light quark
mass (aµl = 0.0085), one corresponding to the charm
quark (aµc = 0.25) and the others to the beauty quark
mass (aµb = 0.34, 0.45, 0.67). Here, we perform par-
tially quenched calculations since the masses of the va-
lence quarks (u, d, c, b) and the sea quarks (u, d) differ.

1.2 Charmed meson masses in
LQCD

The simplest quantities involving fermions that one can
compute on the lattice are the masses of hadrons. I
first discuss how to construct operators with the cor-
rect quantum numbers and their correlation functions.
I continue with the analysis of the resulting mesonic
correlation functions and discuss how to obtain the cor-
responding masses.

1.2.1 Meson creation operators

A meson creation operator has the following form :

O(t) = ψ̄(t, ~xQ) Pt(~xQ, ~xq)Γ ψq(t, ~xq)

where ψ̄(t, ~xQ) creates an antiquark at position ~xQ,
ψq(t, ~xq) creates a quark at position ~xq and Pt(~xQ, ~xq)Γ
is a suitable combination of gauge links and γ matrices
which defines the spin structure of the operator.
The simplest creation operators are called “ local opera-
tors" :

O(t) = ψ̄(t, ~xQ) Γ ψq(t, ~xq)

where the quantum numbers are determined by the
choice of the gamma matrix Γ. Local operators allow
access only to the set JPC = (0, 1)

±±. In order to
consider higher spins, one must consider “nonlocal ope-
rators" [6] and, to this end, one strategy is based on
group theory and particularly on the irreducible repre-
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J Subduced representations
0 A±1

1 T±1

2 E± ⊕ T±2
3 A±2 ⊕ T±1 ⊕ T±2

Table 1.1 – Subduced representations tabulated up to
J = 3 of Oh

sentations of the cubic group Oh (the symmetry group
on lattice) : 1-dimensional representation called A, 2-
dimensional E and 3-dimensional T . The strategy aims
to relate the total angular momentum of the state to the
irreducible representations of Oh by looking for what
we call the “Subduced representations" listed in table
1.1. Now, By choosing different path combination and
appropriate choices of Γ one can obtain, for example,
different J = 2 states which transform under E± and
T±2 representations. Thus, the appropriate operators for
JP = 2+ charmed mesons are :

E+ :

{
γ1D1 + γ2D2 − 2γ3D3

γ1D1−γ2D2

T+ :

 γ1D2 + γ2D1

γ1D3+γ3D1

γ2D3+γ3D2

where Di are the covariant derivative on lattice in di-
rection i.

1.2.2 Two-point correlation functions
In Lattice QCD, the mesonic masses are determined
from the exponential fall of two-point correlation func-
tion (or vacuum expectation value) of appropriate me-
son creation operators O(t) at large time separation.

C(2)(T ) = 〈Ω|O†t+TOt|Ω〉 (1.1)

T � 0 ≈ |〈0|O|Ω〉|2︸ ︷︷ ︸
ZD

exp(− (E0 − EΩ)︸ ︷︷ ︸
Mmeson

T )

Masses of D(JP = 0−) and D∗
0(J

P = 0+) :
when we are looking for charm scalar masses (D∗0), we
do not take into account the scalar correlators only
because of the mixing between scalar and pseudos-
calar states due a drawback of the tmLQCD action
which is the parity violation. So instead, we consider
a 2 × 2 correlation matrix C(2)

jk (T ) composed of sca-
lar and pseudoscalar operators in the twisted basis, i.e
Oj ∈ {χ̄(c)γ5χ

(u), χ̄(c)χ(u)}. Then, we resolve the Ge-
neralized Eigenvalue Problem (GEVP) [10] in or-
der to find the corresponding eigenvectors and eigenva-
lues of the system :∑
k

Cjk(t)v
(n)
k (t, t0) =

∑
k

λ(n)(t, t0)Cjk(t0)v
(n)
k (t, t0)

Finally, we obtain the corresponding two masses as a
function of time from the ratio of the eigenvalues at

consecutive times :

λ(n)(t, t0)

λ(n)(t+ 1, t0)
=

e−m
(n)(t,t0) t

+ e−m
(n)(t,t0) (T−t)

e−m
(n)(t,t0) (t+1)

+ e−m
(n)(t,t0) (T−(t+1))

The effective mass plateaus shown in figure 1.1 corres-
pond to the soughtmeson masses. The difference bet-

 0

 0.5

 1

 1.5

 2

 5  10  15  20

M
ef

f

t

GEVP (SS−SP−PS−PP) Sm−Sm charmed meson correlators 100 gauge conf

massSc
1.010576 ± 0.017792

massPS
0.828947 ± 0.008437

Figure 1.1 – Effective masses, of scalar and pseudoscalar
charm meson, as a function of time in lattice unit calculated
at one value of lattice spacing a.

ween scalar and pseudoscalr masses (MD∗
0
−MD), at

this value of lattice spacing, differs about 30% to what
was found experimentally. But when extrapolated to
the continuum, the difference between masses is about
10% and this slight difference between LQCD and ex-
periment comes from to finite lattice spacing effect in
LQCD.

1.3 Hadronic matrix elements in
LQCD

Hadron spectrum is explored by matrix elements of sui-
table operators between hadronic states or the vacuum.
The matrix elements of vector or axial vector currents
between single hadron states lead to the weak form fac-
tor. Further matrix elements provide information on se-
mileptonic decays, quark and gluon structure functions,
etc...

ti tft

~xi, ~pi ~xf , ~pf

~x, ~p

Jµ

b̄ c̄

D∗ B

Figure 1.2 – Sketch of the valence quark flow in the form factor
of the B → D∗`ν.

To access matrix elements on the lattice, one com-
putes the following three- and two-point correlation
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(1.1) functions

C(3)(t, ti, tf , ~pi, ~pf ) =
∑

positions

〈O†D∗(tf , ~xf ) Jµ(t, ~x) OB(ti, ~xi)〉

· ei(~x−~xf )·~pf · e−i(~x−~xi)·~pi

where O†D∗ , OB are respectively the creation and anni-
hilation operators of D∗ and B mesons, Jµ is the vector
or axial current.
From the asymptotic behavior of the three-point cor-
relation function, it is obvious that the removal of the
exponential factors can be achieved by considering the
ratio

R(t) =
C(3)(t, ti, tf , ~pi, ~pf )

C(2)
(B)(t− ti, ~pf ) · C(2)

(D)(tf − t, ~pi)

·
√
ZB ·

√
ZD

(1.2)

where ZM = |〈0|OM |M〉|2 is obtained from the fit
with asymptotic behavior of the two-point correlation
functions.

C(2)(t) −−−→
t→∞

ZM
2EM

−EM t

When the operators in the ratio (1.2) are sufficiently se-
parated, one observes the stable signal (plateau), which
is the desired matrix element :

R(t)
tf−t→∞−−−−−−→
t−ti→∞

〈D(~pf )|(Aµ, Vµ)|B(~pi)〉

Form factor of B → D∗`ν at zero recoil
(~pi = ~0) : In order to calculate the form factor at
zero recoil of B → D∗ `ν : F0(1), we choose to work in
the rest frame of D∗ (~pf = ~0) . This form factor is an
essential ingredient for the determination of the CKM
matrix element Vcb in an exclusive way and is obtai-
ned from the corresponding hadronic matrix element
〈D∗(~0)|(Aµ, Vµ)|B(~0)〉.
So, using the ratio of the corresponding three point
functions over the two-point functions of B and D∗

mesons (1.2), we extract the plateaus of hadronic ma-
trix element from the fit in t ∈ [4, 9].
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Figure 1.3 – Plateaus of the hadronic matrix element for different
b quark masses as a function of time in lattice unit calculated at one
value of lattice spacing a. mb3 corresponds to the heaviest quark
mass.

aµb F0(1)

0.35 0.94 ±0.06

0.45 0.95 ±0.06

0.67 0.96 ±0.07

Table 1.2 – F0(1) for different values of b quark mass aµb

Using [7, 8], the expression of F0(1) reads :

F0(1) =
〈D∗(~0)|Ai|B(~0)〉

2
√
MB ·MD∗

Once calculated, this result should be multiplied by the
renormalisation constant ZA = 0.730 [9] in order to get
the physical value of the form factor. At the moment,
the result of table 1.2 has not yet been extrapolated
but it does not show any contradiction with what was
already found using Lattice QCD with a different fer-
mionic action and different approximations.

Conclusion and perspective : In the last ten years,
techniques and algorithms in LQCD had been develo-
ped and computing power had been increased and this
is really encouraging for Lattice community where some
important parameters in B physics are and will be cal-
culated. In the near future, we aim to calculate the form
factors of B → D∗0 , D

∗
2 . We have some preliminary re-

sults, not refined yet. When finished, we hope to discuss
their impact on the “puzzle 1/2 versus 3/2" and see if
it is still confusing or not anymore.
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