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Abstract A search for a charged Higgs boson (H+)
in tt̄ decays is presented, where one of the top quarks

decays via t → H+b, followed by H+ → two jets (cs̄).

The other top quark decays toWb, where the W boson

then decays into a lepton (e/µ) and a neutrino. The

data were recorded in pp collisions at
√
s = 7 TeV by

the ATLAS detector at the LHC in 2011, and corre-

spond to an integrated luminosity of 4.7 fb−1. With no

observation of a signal, 95% confidence level (CL) up-

per limits are set on the decay branching ratio of top
quarks to charged Higgs bosons varying between 5%

and 1% for H+ masses between 90 GeV and 150 GeV,

assuming B(H+ → cs̄) = 100%.

PACS 12.60.Fr, 14.65.Ha, 14.80.Da, 14.80.Fd

1 Introduction

In the Standard Model (SM), electroweak symmetry

breaking (EWSB) occurs through a single complex scalar
doublet field and results in a single physical state, the

Higgs boson [1–3]. A particle with characteristics of the

SM Higgs boson has been discovered by both ATLAS [4]

and CMS [5]. Beyond the SM, many models have been
proposed, extending the Higgs sector to explain EWSB.

The newly discovered boson is compatible with many of

these models so that discovering its true nature is cru-

cial to understanding EWSB. Two Higgs-doublet mod-

els (2HDM) [6] are simple extensions of the SM with
five observable Higgs bosons, of which two are charged

(H+ and H−) and three are neutral (h0, H0 and A0).

The discovery of a charged Higgs boson would be a sig-

nal for new physics beyond the SM.

The Minimal Supersymmetric Standard Model
(MSSM) [7] is an example of a 2HDM. At tree level, the

MSSM Higgs sector is determined by two independent

parameters, which can be taken to be the mass mH+

and the ratio of the two Higgs doublet vacuum expec-

tation values, parametrized by tanβ. In the MSSM, a

light H+ (defined as mH+ < mt) decays predominantly

to cs̄, bb̄W+, and τ+ν, with the respective branch-

ing ratios depending on tanβ and mH+ . Charge con-
jugated processes are implied throughout this paper.

For tanβ < 1, cs̄ is an important decay mode with

B(H+ → cs̄) near 70% [8, 9] for mH± ≃ 110 GeV,

whereas for tanβ > 3, H+ → τ+ν dominates (90%).
For higher H+ masses at low tanβ, the decay mode

H+ → Wbb̄ can be dominant. A light MSSM charged

Higgs boson is viable at a relatively low tanβ ≈ 6 in

certain MSSM benchmark scenarios [10] that take into

account the discovery of a Higgs boson with a mass of
125 GeV at the LHC.

The LEP experiments placed lower limits on mH+

in any type-II 2HDM [11] varying between 75 GeV

and 91 GeV [12–16] depending on the assumed decay

branching ratios for the charged Higgs boson. At the
Tevatron, searches for charged Higgs bosons have been

extended to larger values ofmH+ . No evidence for aH+

was found and upper limits were set on the branching

ratio B(t → H+b) varying between 10% and 30% for
a light H+ under the assumption of B(H+ → cs̄) =

100% [17, 18]. The discovery of a Higgs boson at the

LHC is a weak constraint on many 2HDMs, and is com-

patible with the existence of a light charged Higgs de-

caying to two jets, especially in type I 2HDMs [19, 20].

In this paper, a search for a charged Higgs boson
produced in tt̄ decays is presented, where one of the top

quarks decays via t→ H+b with the charged Higgs bo-

son subsequently decaying to two jets (cs̄), where again

a 100% branching fraction is assumed. The other top
quark decays according to the SM via t̄ → W−b̄ with

the W boson decaying into a lepton (e/µ) and the cor-
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responding neutrino. The signal process therefore has
the same topology as SM tt̄ decays in the lepton + jets

channel, where one W decays to two jets and the other

to a lepton and corresponding neutrino, but the invari-

ant mass of the two jets from the H+ peaks at mH+ .

The search is performed by comparing the dijet mass
spectrum in the data with the prediction from SM top-

quark decays and with the expectation of a top quark

having a non-zero branching ratio for decay to H+b.

2 Detector description and event samples

The data used in the analysis were recorded by the

ATLAS detector in proton–proton (pp) collisions at a
centre-of-mass energy of

√
s = 7 TeV during the 2011

data-taking period of the Large Hadron Collider (LHC)

[21]. Events were required to pass a high-transverse mo-

mentum (pT) single-lepton (e/µ) trigger, and to have

been recorded when all detector systems critical to muon,
electron, and jet identification were operational. The

lepton triggers required in the different data taking pe-

riods had varying pT thresholds: 20–22 GeV for the

electron trigger and 18 GeV for the muon trigger. The
resulting dataset corresponds to an integrated luminos-

ity of 4.7 fb−1 [22, 23].

The ATLAS detector [24] consists of an inner track-

ing system immersed in a 2 T axial magnetic field pro-

vided by a thin solenoid; electromagnetic and hadronic
calorimeters; and a muon spectrometer (MS) embedded

in a toroidal magnet system. The inner detector track-

ing system (ID) comprises a silicon pixel detector clos-

est to the beamline, a silicon microstrip detector, and
a straw tube transition radiation tracker. The electro-

magnetic (EM) calorimeters are high-granularity liquid-

argon sampling calorimeters with lead as the absorber

material in the barrel and endcap regions, and copper in

the forward region. The hadronic calorimetry uses two
different detector technologies. The barrel calorimeter

(|η| < 1.7)1 consists of scintillator tiles interleaved with

steel absorber plates. The endcap (1.5 < |η| < 3.2) and

forward (3.1 < |η| < 4.9) calorimeters both use liquid
argon as the active material, and copper and tungsten

respectively as the absorber. The MS consists of three

large superconducting toroids each with eight coils, and

a system of precision tracking and fast trigger cham-

bers.

1ATLAS uses a right-handed coordinate system with its ori-
gin at the nominal interaction point (IP) in the centre of
the detector and the z-axis along the beam pipe. The x-axis
points from the IP to the centre of the LHC ring, and the
y-axis points upward. Cylindrical coordinates (r, φ) are used
in the transverse (x, y) plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms
of the polar angle θ as η = − ln tan(θ/2).

The largest background to the charged Higgs boson
signal is the SM production and decay of tt̄ pairs. Addi-

tional background contributions (referred to as non-tt̄

backgrounds) arise from the production of a single top

quark, of a W or Z boson with additional jets, of QCD

multi-jets, and of dibosons.
Top-quark pair and single top-quark events (Wt-

channel and s-channel) were generated using the mc@n-

lo 4.01 [25–28] Monte Carlo (MC) generator coupled

to Herwig 6.520.2 [29] to provide the parton shower-
ing and hadronization using the AUET2-CT10 [30, 31]

tune; Jimmy [32] was used to model the underlying

event. Single top-quark events in the t-channel were

generated using AcerMC 3.8 [33] coupled to Pythia

6.425 [34] with the AUET2-MRST2007LO** [30, 35]
tune. W/Z+jet and diboson events were generated us-

ing the leading-order (LO) Alpgen 2.13 [36] genera-

tor interfaced to Herwig with theAUET2-CTEQ6L1

[30, 37] tune. TheW/Z+jet simulated data include ded-
icated samples for heavy-flavour production (bb̄, cc̄ and

c). Signal samples of tt̄→ H+bW−b̄ were generated us-

ing Pythia 6.425 for seven different H+ masses from

90 GeV to 150 GeV.

The data are affected by the detector response to
multiple pp interactions occurring in the same or neigh-

bouring bunch crossings, known as pile-up. Minimum-

bias interactions generated byPythia 6.425 [34], which

has been tuned to data [38], were overlaid on the sim-
ulated signal and background events. The events were

weighted to reproduce the distribution of the number

of interactions per bunch crossing observed in the data.

A Geant4 simulation [39, 40] is used to model the re-

sponse of the ATLAS detector, and the samples are re-
constructed and analysed in the same way as the data.

3 Physics objects and event selection

Jets are reconstructed from topological clusters of calori-
meter cells [41] using the anti-kt algorithm [42, 43] with

a radius parameter R = 0.4. Topological clusters are

built using an algorithm that suppresses detector noise.

Jets are corrected back to particle (truth) level using
calibrations derived from Monte Carlo simulation and

validated with both test-beam [44] and collision-data

studies [45]. Events are excluded if they contain a high-

pT jet that fails quality criteria rejecting detector noise

and non-collision backgrounds [46]. To suppress the use
of jets originating from secondary pp interactions, a

jet vertex fraction (JVF) algorithm is used. Inner de-

tector tracks, with pT > 1 GeV, are uniquely associ-

ated with jets using ∆R(jet, track) < 0.4, where ∆R ≡
√

(∆φ)2 + (∆η)2. The JVF algorithm requires that at

least 75% of the sum of the pT of the tracks associated
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with the jet is from tracks compatible with originat-
ing from the primary vertex of the event. Tagging al-

gorithms identify jets originating from b-quark decays

by selecting jets with tracks from secondary vertices

or those with a large impact parameter significance. A

multivariate algorithm (MV1) [47], which uses a neural
network to combine the weights from multiple tagging

algorithms, is used to identify jets originating from b-

quarks. Jets passing the MV1 selection are referred to

as b-tagged jets. The selection on the discriminating
variable of the algorithm achieves an average per-jet ef-

ficiency of 70% to select b-jets in tt̄ events, with a prob-

ability to incorrectly tag light jets of less than 0.1% [48].

Studies have shown that this working point has a 20–

40% efficiency to tag a c-jet, depending on the pT of
the jet [49].

Muons are required to be identified in both the ID

and MS, and their momentum is obtained through a

combined fit of all hits in both systems. Muons are also
required to satisfy isolation criteria to reject those origi-

nating from heavy-flavour decays and hadrons misiden-

tified as muons. The sum of the transverse momenta

of ID tracks within a cone of ∆R = 0.3 around the

muon, excluding the muon track itself, is required to
be less than 2.5 GeV. The transverse energy measured

in the calorimeters within a cone of ∆R = 0.2, exclud-

ing the energy associated with the muon, is required to

be less than 4 GeV. In addition, muons are removed
if they are found within ∆R < 0.4 of a jet that has

pT > 25 GeV [50, 51].

The reconstruction of electron candidates starts from

a seed cluster in the second layer of the EM calorime-

ter. The cluster is matched to a track found in the ID
and a set of selection criteria are applied to reject elec-

tron candidates originating from jets [52]. Electrons are

required to be isolated in order to suppress the QCD

multi-jet background. The calorimeter isolation is per-
formed using a cone of∆R = 0.2 and the track isolation

uses a cone of radius ∆R = 0.3. The calorimeter and

track isolation cut values are chosen to achieve 90% effi-

ciency with respect to selected electron candidates [53].

As in the case of muons, the electron itself is excluded
from the sum over the isolation cone.

Energy deposits in the calorimeter are expressed as

four-vectors (E,p), where the direction is determined

from the position of the calorimeter cluster and the

nominal interaction point (x = y = z = 0). The clus-
ters are formed assuming E = |p|. The missing trans-

verse momentum (Emiss
T ) is given by the negative of the

vector sum of the calorimeter four-momenta, projected

into the (x, y) plane. The Emiss
T calculation uses the en-

ergy scale appropriate for each physics object described

above. For muons, the momentum measured from the

combined tracking is used as the energy. The remaining
calorimeter cells not associated with any physics object

are included at the electromagnetic energy scale of the

calorimeter [54].

A set of requirements is imposed to select events

containing tt̄ decays in the lepton+jets channel [50].

First, events are required to contain a primary vertex

with at least five associated tracks to suppress non-

collision backgrounds. Exactly one electron with a large
transverse energy (ET > 25 GeV) and |η| < 2.5, exclud-

ing the barrel–endcap transition region 1.37 < |η| <
1.52, or one muon with large transverse momentum

(pT > 20 GeV) and |η| < 2.5 is required. The selected
lepton must match a lepton trigger object that caused

the event to be recorded. Jets present inW/Z+jet events

tend to originate from soft gluon emissions. These back-

grounds are therefore reduced by requiring at least four

jets with pT > 25 GeV and |η| < 2.5. At least two
jets must be identified as originating from a b-decay us-

ing the MV1 algorithm. To suppress backgrounds from

QCD multi-jet events, the missing transverse momen-

tum is required to be Emiss
T > 20(30) GeV in the muon

(electron) channel. Further reduction of the multi-jet

background is achieved by requiring the transverse mass2

(mT) of the lepton and Emiss
T to satisfy mT > 30 GeV

in the electron channel and (Emiss
T +mT) > 60 GeV in

the muon channel. These requirements favour the pres-
ence of a W boson, decaying to ℓν, in the final state.

The selections are more stringent in the electron chan-

nel because of the larger multi-jet background.

4 Kinematic fit

In the selected events, the two jets originating from

the decay of the H+ must be identified in order to re-

construct the mass. A kinematic fitter [17] is used to
identify and reconstruct the mass of dijets fromW/H+

candidates, by fully reconstructing the tt̄ system. In the

kinematic fitter, the lepton, Emiss
T (assumed to be from

the neutrino), and four jets are assigned to the decay
particles from the tt̄ system. The longitudinal compo-

nent of the neutrino momentum is calculated from the

constraint that the invariant mass of the leptonicW bo-

son decay products must be the experimental value

(80.4 GeV) [55]. This leads to two possible solutions
for this momentum. When complex solutions are re-

turned, the real part of the solution is used in the fit.

The fitter also constrains the invariant mass of the two

systems (bℓν, bjj) to be within Γt = 1.5 GeV of the

2mT =
√

2pℓ
T
Emiss

T
(1 − cos∆φ) where ∆φ is the azimuthal

angle between the lepton and the missing transverse momen-
tum
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top-quark mass 172.5 GeV, which is consistent with the
measured top-quark mass [56]. When assigning jets in

the fitter, b-tagged jets are assumed to originate from

the b-quarks. The best bbjj combination is found by

minimizing a χ2 for each assignment of jets to quarks

and for the choice of solution for the longitudinal neu-
trino momentum, where the five highest-pT jets are con-

sidered as possible top-quark decay products. Since the

b-jets are only allowed to be assigned to the b-quarks,

and the two untagged jets are assigned to quarks from
the same charged boson, there are two possible jet con-

figurations overall for events with four jets, two of which

are b-tagged. For events with at least five jets, the two

highest-pT jets are always assumed to be from the top-

quark decay products (W/H+ boson or b-quark) to re-
duce the combinatorics in the fit procedure. The com-

bination with the smallest χ2 value, χ2
min, is selected as

the best assignment. The function minimized in the fit

is:

χ2 =
∑

i=ℓ,4jets

(pi,fitT − pi,meas
T )2

σ2
i

+
∑

j=x,y

(pSEJ,fit
j − pSEJ,meas

j )2

σ2
SEJ

+
∑

k=jjb,bℓν

(mk −mt)
2

Γ 2
t

.

(1)

In the first term, the fitted transverse momenta of
the lepton and the four jets currently under consider-

ation are allowed to vary around the measured values

using the corresponding measured resolutions (σi). In

the fit only the magnitudes of the object pTs are var-
ied; the angles of the jets and leptons are assumed to

be measured with good precision. The vector sum of

the momenta of the remaining jets (pT > 15 GeV) in

the event, labelled SEJ, is allowed to vary in the sec-

ond term. The resolution for this term is taken from
the nominal jet resolution. Letting the SEJ vary allows

the Emiss
T to be recalculated from the fitted values of its

dominant components. Jets with lower pT and energy

from calorimeter cells not associated with any physics
object are both minor contributions to the Emiss

T and

are held fixed in the re-calculation of the Emiss
T . The

third term constrains the hadronic (jjb) and leptonic

(bℓν) top-quark candidates to have a mass close to the

top-quark mass.
The χ2

min distribution for selected events in the data

agrees well with the expectation from the simulation

(see Fig. 1). Events are required to have χ2
min < 10 to

remove poorly reconstructed tt̄ events. This selection
has an efficiency of 63% for SM tt̄ events. The fit re-

sults in a 12 GeV dijet mass resolution, as shown in

Fig. 2. This is a 20–30% improvement, depending on the
mass of the boson studied, compared to the resolution

obtained when the same jets are used with their origi-

nal transverse momentum measurements. After the fit,

there is better discrimination between the mass peaks

of the W boson from SM decays of tt̄ and a 110 GeV
H+ boson in this example.

min 2χFit 

0 10 20 30 40 50 60 70 80 90

E
ve

nt
s 

/ b
in

0
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12000

14000

-1
 Ldt = 4.7 fb∫ = 7 TeV : s

Data

tSM t

tNon-t
SM with uncertainty

ATLAS

Fig. 1 Comparison of the distribution of χ2
min from the

kinematic fitter for data and the expectation from the back-
ground estimates for the combined electron and muon chan-
nels. The MC simulation is normalized to the expectation for
the SM (B(t → H+b) = 0). The uncertainty shown on the
background estimate is the combination in quadrature of the
±1σ systematic uncertainties. The final bin also contains the
overflow entries.

Table 1 shows the number of events observed in the

data and the number of events expected from the SM

processes after the selection requirements. The SM tt̄

entry includes events from both the lepton + jets and
dilepton tt̄ decay modes, where the dilepton events can

pass the event selection if the events contain additional

jets and the second lepton is not identified. Good agree-

ment is observed between the data and the expectation.

The table also shows the number of signal events ex-
pected for B(t → H+b) = 10%. The signal prediction

accounts for acceptance differences due to the different

kinematics of the t → H+b events relative to the SM

t→Wb events.

5 Systematic uncertainties

The background estimates and the estimate of the sig-

nal efficiency are subject to a number of systematic

uncertainties. The QCD multi-jet background is esti-
mated using a data-driven method [57] that employs

a likelihood fit to the Emiss
T distribution in the data,
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Fig. 2 Comparison of the dijet mass distribution before
(upper part) and after (lower part) the kinematic fit and the
χ2 < 10 selection criterion. The distribution is shown for MC
simulations of SM tt̄ decays and the mH+ = 110 GeV signal
(tt̄ → H+bW−b̄). The curves are normalized to the same
area.

using a template for the multi-jet background and tem-

plates from MC simulations for all other processes. The

uncertainty on the QCD multi-jet background is evalu-

ated to be 50% by studying the effect of pile-up events
on the fit results and by performing likelihood fits on

the mT(W ) distribution. The dijet mass distribution of

multi-jet events is obtained from a control region in the

data, where leptons are required to be semi-isolated,
such that the transverse momentum of the inner de-

tector tracks in a cone of radius ∆R = 0.3, excluding

the lepton, satisfies 0.1 < p∆R=0.3
T /pT(e, µ) < 0.3. Lep-

tons in the control region are also required to have a

large impact parameter with respect to the identified
primary vertex (0.2 mm < |d0| < 2 mm) and an impact

parameter significance |d0|/σd0
> 3.

The rate of W+jets events is estimated by a data-

driven method [58] that uses the observed difference in

the number of W+ and W− bosons in the data and the
charge asymmetry (W+ − W−)/(W+ + W−), which

is calculated to good precision by the MC simulation

Channel Muon Electron

Data 10107 5696

SM tt̄ → W+bW−b̄ 8700±1800 5000±1000
W/Z + jets 420±120 180±50
Single top quark + Diboson 370±60 210±30
QCD multi-jet 300±150 130±60

Total Expected (SM) 9800±1800 5500±1000

mH+ = 110 GeV

B(t → H+b) = 10% :
tt̄ → H+bW−b̄ 1400±280 800±160
tt̄ → W+bW−b̄ 7000±1400 4000±800

Total Expected (B = 10%) 9500±1700 5300±1000

Table 1 The expected numbers of events from SM pro-
cesses, integrated over the full range of dijet masses and the
observed number of events in the data after all the selection
requirements. The expected number of events in the case of a
signal with mH+ = 110 GeV and B(t → H+b) = 10% is also
shown. The tt̄ → W+bW−b̄ numbers include both the lep-
ton + jets and dilepton decay channels. The uncertainties are
the sum of the contributions from statistics and systematic
uncertainties.

of W+jets events. The heavy flavour fraction of the
W+jets MC simulation is calibrated using W + 1 jet

or W + 2 jets events in the data. The uncertainty on

the W+jets background is 26% (28%) for the electron

(muon) channel, which includes the uncertainty from
the charge asymmetry and heavy flavour fraction com-

ponents. The shape of the mjj distribution for W+jets

events is obtained from simulation.

Uncertainties on the modelling of the detector and

on theory give rise to systematic uncertainties on the
signal and background rate estimates. The following

systematic uncertainties are considered: integrated lu-

minosity (3.9%) [22, 23], trigger efficiency (3.5%/1%

for electron/muon), jet energy scale (1–4.6%) [45], jet

energy resolution (up to 16% smearing) [59], and b-jet
identification efficiency (5–17%). The last three uncer-

tainties depend on the pT and η of the jets. Uncer-

tainties on lepton reconstruction and identification ef-

ficiency are determined using a tag and probe method
in samples of Z boson and J/ψ decays [60]. The mo-

mentum resolution and scales are determined from fits

to samples of W boson, Z boson, and J/ψ decays [53,

61]. Additional pT-dependent uncertainties are placed

on the b-jet (up to 2.5%) and c-jet (up to 1.3%) en-
ergy scales [45]. Uncertainties on the modelling of the

tt̄ background are estimated using a second MC gener-

ator (Powheg [62–64]) and comparing the effect of us-

ing Pythia and Herwig to perform the parton show-
ering and hadronization. Uncertainties on initial and

final state radiation (ISR/FSR) are assessed using Ac-
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erMC interfaced to Pythia and examining the effects
of changing the ISR/FSR parameters in a range con-

sistent with experimental data [65]. The predicted SM

tt̄ cross-section for pp collisions at
√
s = 7 TeV, ob-

tained from approximate next to next to LO QCD cal-

culations, is σtt̄ = 167+17
−18 pb for a top-quark mass

of 172.5 GeV [66]. The uncertainty on the predicted

value includes the uncertainty in the renormalization

and factorization scales, parton density functions, and

the strong coupling constant. An additional uncertainty
on the tt̄ cross-section (4.5%) is included due to the

uncertainty on the top-quark mass. The uncertainty

on the top-quark mass is 0.9 GeV from the combined

measurement [56] at the Tevatron. However, this re-

sult would be biased in the presence of a H+ → cs̄
signal in the lepton + jets channel, so a larger uncer-

tainty of 1.5 GeV is taken, which is consistent with

the latest top-quark mass measurement in the dilep-

ton channel from the CMS experiment [67]. Changing
the top-quark mass leads to altered event kinematics,

which results in a final uncertainty on the event rate of

1.9%. The effects of these systematic uncertainties on

the overall normalization are listed in Table 2. The jet

energy calibration, b-jet identification, tt̄ background
modelling, and ISR/FSR uncertainties also modify the

shape of the dijet mass distribution and are therefore

determined as a function of mjj . The systematic un-

certainties that affect the shape of the mjj distribu-
tion (top half of Table 2) are more important than

the shape-independent uncertainties. The effects of the

systematic uncertainties are comparable, within 10%,

between the SM and signal tt̄ samples. The combined

uncertainty on the single top-quark and diboson back-
grounds is 15%, which comes mostly from the uncer-

tainties on the cross-section, jet energy scale, and b-

tagging. The total uncertainty on the overall normal-

ization of the non-tt̄ backgrounds is 30%.

6 Results

The data are found to be in good agreement with the

distribution of the dijet mass expected from SM pro-

cesses (see Fig. 3). The fractional uncertainty on the
signal-plus-backgroundmodel is comparable to the back-

ground only model. Upper limits on the branching ratio

B(t→ H+b) are extracted as a function of the charged

Higgs boson mass. The upper limits are calculated as-
suming the charged Higgs always decays to cs̄. The fol-

lowing likelihood function is used to describe the ex-

Systematic Source

Shape dependent

Jet energy scale ±9.5%
b-jet energy scale +0.3,−0.6%
c-jet energy scale +0.1,−0.3%

Jet energy resolution ±0.9%
MC generator ±4.3%
Parton shower ±3.1%

ISR/FSR ±8.8%

Shape independent

b-tagging efficiency (b-jets) ±11%
b-tagging efficiency (c-jets) ±2.4%

b mistag rate ±1.8%
Lepton identification ±1.4%
Lepton reconstruction ±1.0%

t-quark mass ±1.9%
tt̄ cross-section +10,−11%
Luminosity ±3.9%

Table 2 Effect of the systematic uncertainties on the event
rate of tt̄ background and signal (mH+ = 110 GeV) events be-
fore any reduction from the likelihood fit, described in Sect. 6.
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tSM t

tNon-t
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Fig. 3 The dijet mass distribution from data and the ex-
pectation from the SM (B = 0). The error bars represent the
statistical uncertainty on the data. The uncertainty shown
on the background estimate is the combination in quadrature
of the ±1σ systematic uncertainties, accounting for the con-
straint from the profile likelihood fit. The first and last bins
contain the underflow and overflow events respectively.

pected number of events as a function of the branching

ratio:

L(B, α) =
∏

i

νi(B, α)nie−νi(B,α)

ni!

∏

j

1√
2π
e−

α2
j
2 , (2)

where ni is the number of events observed in bin i
of the dijet mass distribution and j labels the sources of

systematic uncertainty. The number of expected signal
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plus background events in each bin, νi(B, α), is given
by

νi(B, α) = 2B(1− B)σtt̄ LAH+

SH+

i

∏

j 6=b

ρH
+

ji (αj)

+(1− B)2 σtt̄ LAWSW
i

∏

j 6=b

ρWji (αj) + nN
i ρ

N
bi (αb)

(3)

where nN
i is the expected number of non-tt̄ back-

ground events, σtt̄ is the cross-section for tt̄ produc-

tion, L is the integrated luminosity, B is the branching
ratio of t → H+b, and AH+

and AW are the accep-

tances for signal (tt̄ → H+bℓνb̄) and SM tt̄ (tt̄ → jjbℓνb̄

and tt̄ → ℓν̄bℓνb̄) events respectively. The decay mode

tt̄ → H+bH−b̄ does not contribute to the expectation
because this mode does not produce a single isolated

lepton and hence has a negligible efficiency to pass the

selection requirements. The SH+

i (SW
i ) parameter de-

scribes the shape of the mjj spectrum (normalized to

one) for H+ (W ) boson production. It gives the rela-
tive number of events in bin i according to the normal-

ized mjj distribution. The αj variables are nuisance

parameters representing the systematic uncertainties,

which are constrained via the Gaussian terms in Eq. 2.
The effect of the systematic uncertainties on the non-tt̄

background can be obtained by calculating the effect of

each source of uncertainty on each non-tt̄ background

component, and combining them in quadrature. Since

this sum is dominated by the uncertainties on the data-
drivenW+jets and multi-jet background estimates, the

combined variation is treated as a single nuisance pa-

rameter (αb, b ∈ j) and is assumed to be uncorrelated

from the other systematic uncertainties. The ρji func-
tions account for the effect of nuisance parameters on

the yields and are defined such that ρji(αj = ±1σ) rep-

resents the 1±1σ fractional change in the number of en-

tries in bin i of the dijet mass spectrum due to system-

atic uncertainty j. The physics measurement involves a
sufficiently large number of events that this likelihood

can constrain the αj parameters beyond the precision of

the subsidiary measurements. The effects of systematic

uncertainties are applied coherently in signal and back-
ground distributions. The subsidiary measurements of

the αj parameters are taken to be uncorrelated. The

fit uses 17 nuisance parameters in total. None of them

are shifted by more than one sigma compared to the

original values obtained in subsidiary measurements.
Maximal reduction of uncertainty is obtained for the

jet energy scale parameter which is reduced by 50%.

The limits on the branching ratio are extracted us-

ing the CLs technique at 95% confidence level [68, 69].
The consistency of the data with the background model

can be determined by comparing the value of the test

Higgs Mass Expected limit Observed limit
(stat.⊕ syst.) (stat.⊕ syst.)

90 GeV 0.080 0.051
100 GeV 0.034 0.034
110 GeV 0.026 0.025
120 GeV 0.021 0.018
130 GeV 0.023 0.014
140 GeV 0.020 0.013
150 GeV 0.015 0.012

Table 3 Expected and observed 95% CL limits, including
systematic uncertainties, on the branching ratio for a top-
quark to decay to a charged Higgs boson and a b-quark, as-
suming that B(H+ → cs̄) = 100%. The limits shown are
calculated using the CLs limit-setting procedure.

 [GeV]+Hm
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b)+
 H

→
95

%
 C

L 
on

 B
(t
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0.04
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0.08

0.1
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0.14

Expected Limit
σ 1±Expected 
σ 2±Expected 

Observed Limit

Limits at 95% CL:

-1
 Ldt = 4.7 fb∫ = 7 TeVs

) = 100%s c→+B(H

ATLAS

Fig. 4 The extracted 95% CL upper limits on B(t → H+b),
assuming that B(H+ → cs̄) = 100%, are shown for a range
of charged Higgs masses from 90 GeV to 150 GeV. The limits
shown are calculated using the CLs limit-setting procedure.

statistic (a profile likelihood ratio based on Eq. 2) in
the data with the expectation from background-only

Monte Carlo simulated experiments. The correspond-

ing probability (p-value) for the background to produce

the observed mass distribution varies from 67% to 71%

as a function of mH+ , indicating that there is no signif-
icant deviation from the background hypothesis. The

expected and observed limits, shown in Table 3 and

Fig. 4, are calculated using asymptotic formulae [68].

The expected limits on B, including both statistical
and systematic uncertainties, vary between 1–8% de-

pending on mH+ ; if only the statistical uncertainty is

considered these limits are 1–3%. The observed limits,

including both statistical and systematic uncertainties,

vary between 1–5%. The extracted limits are the most
stringent to date on the branching ratio B(t → H+b),

assuming B(H+ → cs̄) = 100%. These results can be

used to set limits for a generic scalar charged boson

decaying to dijets in top-quark decays, as long as the
width of the resonance formed is less than the experi-

mental dijet resolution of 12 GeV.
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7 Conclusions

A search for charged Higgs bosons decaying to cs̄ in

tt̄ production has been presented. The dijet mass dis-

tribution is in good agreement with the expectation

from the SM and limits are set on the branching ra-

tio B(t → H+b), assuming B(H+ → cs̄) = 100%.
The observed limits range from B = 5% to 1% for

mH+ = 90 GeV to 150 GeV. These are the best lim-

its to date on charged Higgs boson production in this

channel.
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J. Goncalves Pinto Firmino Da Costa42, L. Gonella21, S. González de la Hoz167, G. Gonzalez Parra12,
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L.J. Levinson172, A. Lewis118, G.H. Lewis108, A.M. Leyko21, M. Leyton16, B. Li33b, B. Li83, H. Li148, H.L. Li31,

S. Li33b,u, X. Li87, Z. Liang118,v, H. Liao34, B. Liberti133a, P. Lichard30, K. Lie165, W. Liebig14, C. Limbach21,

A. Limosani86, M. Limper62, S.C. Lin151,w, F. Linde105, J.T. Linnemann88, E. Lipeles120, A. Lipniacka14,

T.M. Liss165, D. Lissauer25, A. Lister49, A.M. Litke137, D. Liu151, J.B. Liu33b, L. Liu87, M. Liu33b, Y. Liu33b,

M. Livan119a,119b, S.S.A. Livermore118, A. Lleres55, J. Llorente Merino80, S.L. Lloyd75, E. Lobodzinska42,
P. Loch7, W.S. Lockman137, T. Loddenkoetter21, F.K. Loebinger82, A. Loginov176, C.W. Loh168, T. Lohse16,

K. Lohwasser48, M. Lokajicek125, V.P. Lombardo5, R.E. Long71, L. Lopes124a, D. Lopez Mateos57, J. Lorenz98,

N. Lorenzo Martinez115, M. Losada162, P. Loscutoff15, F. Lo Sterzo132a,132b, M.J. Losty159a,∗, X. Lou41,

A. Lounis115, K.F. Loureiro162, J. Love6, P.A. Love71, A.J. Lowe143,g, F. Lu33a, H.J. Lubatti138, C. Luci132a,132b,
A. Lucotte55, D. Ludwig42, I. Ludwig48, J. Ludwig48, F. Luehring60, G. Luijckx105, W. Lukas61, L. Luminari132a,

E. Lund117, B. Lund-Jensen147, B. Lundberg79, J. Lundberg146a,146b, O. Lundberg146a,146b, J. Lundquist36,

M. Lungwitz81, D. Lynn25, E. Lytken79, H. Ma25, L.L. Ma173, G. Maccarrone47, A. Macchiolo99, B. Maček74,
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A.C. Schaffer115, D. Schaile98, R.D. Schamberger148, V. Scharf58a, V.A. Schegelsky121, D. Scheirich87,

M. Schernau163, M.I. Scherzer35, C. Schiavi50a,50b, J. Schieck98, M. Schioppa37a,37b, S. Schlenker30, E. Schmidt48,

K. Schmieden21, C. Schmitt81, S. Schmitt58b, B. Schneider17, U. Schnoor44, L. Schoeffel136, A. Schoening58b,
A.L.S. Schorlemmer54, M. Schott81, D. Schouten159a, J. Schovancova125, M. Schram85, C. Schroeder81,

N. Schroer58c, M.J. Schultens21, J. Schultes175, H.-C. Schultz-Coulon58a, H. Schulz16, M. Schumacher48,

B.A. Schumm137, Ph. Schune136, A. Schwartzman143, Ph. Schwegler99, Ph. Schwemling78, R. Schwienhorst88,

J. Schwindling136, T. Schwindt21, M. Schwoerer5, F.G. Sciacca17, E. Scifo115, G. Sciolla23, W.G. Scott129,

J. Searcy114, G. Sedov42, E. Sedykh121, S.C. Seidel103, A. Seiden137, F. Seifert44, J.M. Seixas24a,
G. Sekhniaidze102a, S.J. Sekula40, K.E. Selbach46, D.M. Seliverstov121, B. Sellden146a, G. Sellers73,

M. Seman144b, N. Semprini-Cesari20a,20b, C. Serfon30, L. Serin115, L. Serkin54, R. Seuster159a, H. Severini111,

A. Sfyrla30, E. Shabalina54, M. Shamim114, L.Y. Shan33a, J.T. Shank22, Q.T. Shao86, M. Shapiro15,

P.B. Shatalov95, K. Shaw164a,164c, D. Sherman176, P. Sherwood77, S. Shimizu101, M. Shimojima100, T. Shin56,
M. Shiyakova64, A. Shmeleva94, M.J. Shochet31, D. Short118, S. Shrestha63, E. Shulga96, M.A. Shupe7,

P. Sicho125, A. Sidoti132a, F. Siegert48, Dj. Sijacki13a, O. Silbert172, J. Silva124a, Y. Silver153, D. Silverstein143,

S.B. Silverstein146a, V. Simak126, O. Simard136, Lj. Simic13a, S. Simion115, E. Simioni81, B. Simmons77,

R. Simoniello89a,89b, M. Simonyan36, P. Sinervo158, N.B. Sinev114, V. Sipica141, G. Siragusa174, A. Sircar25,
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ICREA, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of

Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United

States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern,

Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul;
(c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul

Technical University, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
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