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Abstract

We show how to transform the problem of finding d + 1 mutually unbiased bases in C
d

into the one of finding d(d+1) vectors in C
d2 . The transformation formulas admit a solution

when d is a prime number.
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1 INTRODUCTION

The determination of mutually unbiased bases (MUBs) is of pivotal importance in the theory of

information and in finite quantum mechanics. Let us recall that two orthonormal bases of a unitary

space are said to be unbiased if the modulus of the inner product of any vector of one basis with

any vector of the other is independent of the considered vectors (see Section II for a definition of

MUBs in Cd). Such bases are useful in classical information (network communication protocols)

[1] and quantum information (quantum state tomography and quantum cryptography) [2] as well

as for the construction of discrete Wigner functions [3], the solution of the mean King problem

[4] and the understanding of the Feynman path integral formalism [5]. They are at the root of a

formulation of the Bohr complementarity principle for finite quantum systems.

There exist numerous ways of constructing sets of MUBs. Most of them are based on discrete

Fourier transform over Galois fields and Galois rings, quadratic discrete Fourier transform of

qudits, discrete Wigner distribution, generalized Pauli operators, generalized Hadamard matrices,

mutually orthogonal Latin squares, finite geometry methods, angular momentum theory, Lie-like

approaches, and phase states associated with a generalized Weyl-Heisenberg algebra (see [6] and

[7] for a review on the subject).

The aim of this note is to introduce a transformation that makes possible to replace the search

of d+ 1 MUBs in Cd by the determination of d(d+ 1) vectors in Cd2 .

2 MUTUALLY UNBIASED BASES IN C
d

Two distinct orthonormal bases

Ba = {|aα〉 : α = 0, 1, . . . , d− 1} (1)

and

Bb = {|bβ〉 : β = 0, 1, . . . , d− 1} (2)

(with a 6= b) of the d-dimensional Hilbert space Cd (d ≥ 2) are said to be unbiased if

|〈aα|bβ〉| = 1√
d
, (3)

where 〈 | 〉 denotes the inner product in Cd. It is well-known that the maximum number of MUBs

in Cd is d+ 1 and that a complete set of d+ 1 MUBs exists if d is prime or the power of a prime

number [1], [8], [9]. On the other hand, it is not known if it is possible to construct a complete set

of d + 1 MUBs in C
d in the case where d is not the nth power (n ∈ N

∗) of a prime. However, in

this case there exists at least 3 MUBs, a well-known result for d = 6. In spite of a great number

of numerical studies, no more than 3 MUBs were obtained for d = 6 [10], [11], [12], [13], [14],

in agreement with the fact that it is widely believed that only 3 MUBs exist for d = 6.
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If we include the a = b case, Eq. (3) leads to

|〈aα|bβ〉| = δα,βδa,b +
1√
d
(1− δa,b) (4)

or equivalently

|〈aα|bβ〉|2 = δα,βδa,b +
1

d
(1− δa,b). (5)

We note the presence of a modulus in Eqs. (4) and (5). This modulus certainly constitutes a

handicap when performing numerical calculations.

3 PASSING FROM C
d TO C

d2

The problem of finding a complete set of d+1 MUBs in Cd amounts to find d(d+1) vectors |aα〉
satisfying Eq. (5), where a = 0, 1, . . . , d and α = 0, 1, . . . , d−1 (the indexes of type a refer to the

bases and, for fixed a, the index α refers to one of the d vectors of the basis corresponding to a).

By following the approach developed in [15] for positive operator valued measures and MUBs,

we can transform this problem into a (possibly) simpler one (not involving a square modulus like

in Eq. (5)). The idea of the transformation is to introduce a projection operator associated with

the |aα〉 vector.

Let us suppose that it is possible to find d+ 1 sets Ba (with a = 0, 1, . . . , d) of vectors of Cd

such that Eq. (5) is satisfied. It is thus possible to construct d(d+ 1) projection operators

Πaα = |aα〉〈aα|, a = 0, 1, . . . , d, α = 0, 1, . . . , d− 1. (6)

From Eq. (5), it is clear that the Πaα operators satisfy the trace condition

Tr (ΠaαΠbβ) = δα,βδa,b +
1

d
(1− δa,b), (7)

where the trace is taken over Cd. Each operator Πaα can be developed on an orthonormal basis

{Epq : p, q = 0, 1, . . . , d− 1} of the space of linear operators on Cd (orthonormal with respect to

the Hilbert-Schmidt inner product). In other words

Πaα =
d−1
∑

p=0

d−1
∑

q=0

wpq(aα)Epq. (8)

The Epq operators are generators of the GL(d,C) complex Lie group. Their main properties are

E†
pq = Eqp, EpqErs = δq,rEp,s, Tr

(

E†
pqErs

)

= δp,rδq,s, p, q, r, s ∈ Z/dZ (9)

and they can be represented by the projectors

Epq = |p〉〈q|, p, q ∈ Z/dZ. (10)
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The wpq(aα) expansion coefficients in Eq. (8) are complex numbers such that

wpq(aα) = wqp(aα), p, q ∈ Z/dZ, (11)

where the bar denotes complex conjugation.

By combining Eqs. (7) and (8), we get

d−1
∑

p=0

d−1
∑

q=0

wpq(aα)wpq(bβ) = δα,βδa,b +
1

d
(1− δa,b). (12)

The Πaα operators can be considered as vectors

w(aα) = (w00(aα), w01(aα), . . . , wmm(aα)) , m = d− 1 (13)

in the Hilbert space Cd2 of dimension d2 endowed with the usual inner product

w(aα) ·w(bβ) =

d−1
∑

p=0

d−1
∑

q=0

wpq(aα)wpq(bβ) (14)

(in Eq. (13), we use the dictionary order for ordering of the components of w(aα)). Equation

(12) can then be rewritten as

w(aα) ·w(bβ) = δα,βδa,b +
1

d
(1− δa,b), (15)

to be compared with Eq. (5).

The determination of the Πaα operators and, therefore, of the |aα〉 vectors in Cd, is equivalent

to the determination of the wpq(aα) components of the w(aα) vectors in Cd2 . This yields the

following.

Proposition 1. For d ≥ 2, to find d+1 MUBs in Cd (if they exist) is equivalent to find d(d+1)

vectors w(aα) in Cd2 satisfying

w(aα) ·w(aβ) = δα,β (16)

and

w(aα) ·w(bβ) =
1

d
for a 6= b, (17)

where a, b = 0, 1, . . . , d and α = 0, 1, . . . , d− 1.

Proof. The proof follows from Eqs. (6)–(15). 2

For a 6= b, Eqs. (16) and (17) show that angle ωaαbβ between any vector w(aα) and any vector

w(bβ) is

ωaαbβ = cos−1(1/d) (18)
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and therefore does not depend on a, α, b and β.

Proposition 1 can be transcribed in terms of matrices. Let Maα be the Hermitian matrix of

dimension d whose elements are wpq(aα) with p, q ∈ Z/dZ. Then, Eq. (14) gives

w(aα) ·w(bβ) = Tr (MaαMbβ) . (19)

Therefore, we have the following proposition.

Proposition 2. For d ≥ 2, to find d+1 MUBs in Cd (if they exist) is equivalent to find d(d+1)

Hermitian matrices Maα of dimension d satisfying

Tr (MaαMbβ) = δα,βδa,b +
1

d
(1− δa,b), (20)

where a, b = 0, 1, . . . , d and α = 0, 1, . . . , d− 1.

Proof. The proof is trivial. 2

Finally, as a test of the validity of Propositions 1 and 2, we have the following result.

Proposition 3. For d prime, Eqs. (16) and (17) or Eq. (20) admit the solution

wpq(aα) =
1

d
eiπ(p−q)[(d−2−p−q)a−2α]/d, a, α, p, q ∈ Z/dZ (21)

and

wpq(dα) = δp,qδp,α, α, p, q ∈ Z/dZ (22)

for a = d.

Proof. The proof is based on the use of Gauss sums [16] in connection with ordinary [17] and

quadratic [18] discrete Fourier transforms. Indeed, it is sufficient to calculate w(aα) · w(bβ) as

given by (14) with the help of (21) and (22) in the cases a = b (for a = 0, 1, . . . , d), a 6= b (for

a, b = 0, 1, . . . , d − 1) and a 6= b (for a = 0, 1, . . . , d − 1 and b = d). The main steps are the

following.

(i) Case a = b = d: We have

w(dα) ·w(dβ) =
d−1
∑

p=0

d−1
∑

q=0

δp,qδp,αδp,β = δα,β. (23)

(ii) Case a = b = 0, 1, . . . , d− 1: We have

w(aα) ·w(aβ) =
1

d2

d−1
∑

p=0

d−1
∑

q=0

ei2π(p−q)(α−β)/d = δα,β. (24)
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(iii) Case a 6= b (a = 0, 1, . . . , d− 1 and b = d): We have

w(aα) ·w(dβ) =
1

d

d−1
∑

p=0

d−1
∑

q=0

e−iπ(p−q)[(d−2−p−q)a−2α]/dδp,qδp,α =
1

d

d−1
∑

p=0

δp,α =
1

d
. (25)

(iv) Case a 6= b (a, b = 0, 1, . . . , d− 1): We have

w(aα) ·w(bβ) =
1

d2

d−1
∑

p=0

d−1
∑

q=0

eiπ(p−q)[(d−2−p−q)(b−a)+2(α−β)]/d. (26)

The double sum in (26) can be factored into the product of two sums. This leads to

w(aα) ·w(bβ) =
1

d2

∣

∣

∣

∣

∣

d−1
∑

k=0

eiπ{(a−b)k2+[(d−2)(b−a)+2(α−β)]k}/d

∣

∣

∣

∣

∣

2

. (27)

By introducing the generalized Gauss sums [16]

S(u, v, w) =

|w|−1
∑

k=0

eiπ(uk
2+vk)/w, (28)

(where u, v and w are integers such that u and w are coprime, uw is nonvanishing and uw + v is

even), we obtain

w(aα) ·w(bβ) =
1

d2
|S(u, v, w)|2, (29)

with

u = a− b, v = −(a− b)(d− 2) + 2(α− β), w = d. (30)

The S(u, v, w) Gauss sum in (29)-(30) can be calculated from the methods in [16]. This yields

w(aα) ·w(bβ) =
1

d
, (31)

which completes the proof. 2

4 CONCLUSION

As a conclusion, passing from Cd to Cd2 amounts to replace the square of the modulus of the inner

product 〈aα|bβ〉 in Cd (see Eq. (5)) by the inner product w(aα) ·w(bβ) in Cd2 (see Eqs. (16) and

(17)). It is expected that the determination of the d(d + 1) vectors w(aα) satisfying Eqs. (16)

and (17) (or the d(d + 1) corresponding matrices Maα satisfying Eq. (20)) should be easier than

the determination of the d(d+ 1) vectors |aα〉 satisfying Eq. (5). In this respect, the absence of a

modulus in (17) represents an incremental step.

Now we may ask the question: How to pass from the w(aα) to |aα〉 vectors? Suppose we

find d(d+1) vectors of type (13) satisfying Eqs. (16) and (17). Then, the Πaα operators given by
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(8) are known. A matrix realization of each Πaα operator immediately follows from the standard

matrix realization of the generators of the GL(d,C) group. The eigenvector of the matrix of Πaα

corresponding to the eigenvalue equal to 1 gives the |aα〉 vector.

Of course, the impossibility of finding d(d + 1) vectors w(aα) or d(d + 1) matrices Maα

would mean that d+1 MUBs do not exist in Cd when d is not a strictly positive power of a prime.

Transforming a given problem into another one is always interesting even in the case where

the new problem does not lead to the solution of the first one. In this vein, the existence problem of

MUBs in d dimensions was approached from the points of view of finite geometry, Latin squares,

and Hadamard matrices (see [6] and references therein) with some interesting developments. We

hope that the results presented here will stimulate further works, especially a new way to handle

the d = 6 unsolved problem.

To close, let us mention that it should be interesting to apply the developments in this paper

to the concept of weakly MUBs recently introduced for dealing in the Z/dZ×Z/dZ phase space

[19].
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