
HAL Id: in2p3-00726760
https://in2p3.hal.science/in2p3-00726760v1

Submitted on 31 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An apple-to-apple comparison of Learning-to-rank
algorithms in terms of Normalized Discounted

Cumulative Gain
Róbert Busa-Fekete, György Szarvas, Tamás Élteto, B. Kégl

To cite this version:
Róbert Busa-Fekete, György Szarvas, Tamás Élteto, B. Kégl. An apple-to-apple comparison of
Learning-to-rank algorithms in terms of Normalized Discounted Cumulative Gain. ECAI 2012 - 20th
European Conference on Artificial Intelligence : Preference Learning: Problems and Applications in
AI Workshop, Aug 2012, Montpellier, France. �in2p3-00726760�

https://in2p3.hal.science/in2p3-00726760v1
https://hal.archives-ouvertes.fr


An apple-to-apple comparison of Learning-to-rank
algorithms in terms of Normalized Discounted

Cumulative Gain

Róbert Busa-Fekete12 and György Szarvas3 and Tamás Éltető 4 and Balázs Kégl 5

Abstract. The Normalized Discounted Cumulative Gain (NDCG)

is a widely used evaluation metric for learning-to-rank (LTR) sys-

tems. NDCG is designed for ranking tasks with more than one rele-

vance levels. There are many freely available, open source tools for

computing the NDCG score for a ranked result list. Even though the

definition of NDCG is unambiguous, the various tools can produce

different scores for ranked lists with certain properties, deteriorating

the empirical tests in many published papers and thereby making the

comparison of empirical results published in different studies diffi-

cult to compare. In this study, first, we identify the major differences

between the various publicly available NDCG evaluation tools. Sec-

ond, based on a set of comparative experiments using a common

benchmark dataset in LTR research and 6 different LTR algorithms,

we demonstrate how these differences affect the overall performance

of different algorithms and the final scores that are used to compare

different systems.

1 Introduction

In subset ranking [3] (or web page ranking), the goal is to learn a

ranking function that approximates the ideal partial ordering of a set

of objects (or documents retrieved for the same query). The partial

ordering is provided by relevance labels representing the relevance

of documents with respect to the query on an absolute scale.

In the past, manually designed ranking functions, such as

BM25 [7], were used to rank the retrieved documents in web page

ranking. More recently, this problem is tackled as a machine learning

task, where the training data is given in the form of (query, document,

relevance label) triplets. These machine learning based ranking ap-

proaches are referred to as learning-to-rank (LTR) systems.

The Normalized Discounted Cumulative Gain (NDCG) is a

widely used evaluation metric for learning-to-rank systems. NDCG

is designed for ranking tasks with more than one relevance levels.

There are many freely available, open source tools for computing

the NDCG score for a ranked result list (for full list of these tools

1 Department of Mathematics and Computer Science, Marburg University,
Germany, email: busarobi@mathematik.uni-marburg.de

2 R. Busa-Fekete is on leave from the Research Group on Artificial Intelli-
gence of the Hungarian Academy of Sciences and University of Szeged.

3 Computer Science Department Technische Universität Darmstadt, Ger-
many, email :szarvas@tk.informatik.tu-darmstadt.de

4 Ericsson Hungary, Könyves Kálmán krt. 11.B, 1097 Budapest, Hungary,
email: tamas.elteto@ericsson.com

5 Linear Accelerator Laboratory (LAL) and Computer Science Laboratory
(LRI), University of Paris-Sud, CNRS, Orsay, 91898, France, email: bal-
azs.kegl@gmail.com

see Section 3). Even though the definition of NDCG is unambigu-

ous6, the various tools can produce different scores for ranked lists

with certain properties, deteriorating the empirical tests in many pub-

lished papers and thereby making the comparison of empirical results

published in different studies difficult to compare.

We found that for certain benchmark datasets, the relative order of

the performance of different LTR methods can change depending on

which evaluation tool was used. The reason for this can be two-fold.

First, the implemented NDCG calculation can itself result in differ-

ent scores, and in some cases, a different order for the same ranked

result lists. Second and more importantly, we found some of the LTR

algorithms that compute the NDCG scores during the training phase

to be sensitive to the different ways of computing the NDCG score,

i.e. depending on which NDCG implementation is used, some LTR

methods can produce different models that provide significantly dif-

ferent overall performance. In previous work[2], we recognized this,

here we investigate the effect of using different evaluation tools more

detailed.

The contribution of this study is two-fold. First, we identify the

major differences between the various publicly available NDCG

evaluation tools. Second, based on a set of comparative experiments

using a common benchmark dataset in LTR research and 6 differ-

ent LTR algorithms, we demonstrate how these differences affect

the overall performance of different learning methods and the final

scores that are used to compare different systems. We analyze these

differences and also draw conclusions on which metric should be

used and why.

This is not only an important step towards making the empirical

research results reported in the literature uniformly comparable, but it

also has implications on how benchmark datasets should be designed

in order to be equally suited to train and evaluate any particular learn-

ing to rank algorithm.

The rest of this paper is organized as follows. In the next section

we will describe the formal setup, and then, in Section 3 we list all the

evaluation tools that are available freely to compute NDCG and, in

addition, we identify precisely the differences in the way they com-

pute the NDCG score. Next, in Section 4 we briefly overview the

LTR algorithms we are used for comparison in the experiments in

Section 5. Finally, based on the observed differences in experimental

results, we draw our conclusions in Section 6.

6 See, for example http://nlp.stanford.

edu/IR-book/html/htmledition/

evaluation-of-ranked-retrieval-results-1.html

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html


2 Formal LTR task

In this section we formally define the learning-to-rank problem

and introduce the notation that will be used in the rest of the pa-

per. Let us assume that we are given a set of query objects D =
{D(1), . . . ,D(M)}. Each query object D(k) consists of a set of n(k)

pairs

D(k) =
n

`

x
(k)
1 , ℓ

(k)
1

´

, . . . ,
`

x
(k)

n(k) , ℓ
(k)

n(k)

´

o

.

The real-valued feature vectors x
(k)
i represent the kth query and the

ith document received as a potential hit for the query.7 The label

index ℓ
(k)
i of the query-document pair x

(k)
i is an integer between 1

and K. We assume that we are given a set of numerical relevance

grades

Z = {z1, . . . , zK}.

The relevance grade z
(k)
i = z

ℓ
(k)
i

expresses the relevance of the ith

document to the kth query on a numerical scale. A popular choice

for the numerical relevance grades is

zℓ = 2ℓ−1 − 1 (1)

for all ℓ = 1, . . . , K.

The goal of the ranker is to output a permutation j(k) =
(j1, . . . , jn(k)) over the integers (1, . . . , n(k)) for each query object

D(k). A widely used empirical measure of the quality of the permu-

tation j(k) is the Discounted Cumulative Gain (DCG)

DCG
`

j
(k)

,D(k)´ =

n(k)
X

i=1

ciz
(k)
ji

, (2)

where ci is the discount factor of the ith document in the permutation.

The most common discount factor is

ci =
1

log(1 + i)
. (3)

The rationale of this formula is that a user will be particularly sat-

isfied if he/she finds relevant documents early in the permutation.

To normalize DCG between 0 and 1, (2) is usually divided with the

DCG score of the best permutation (NDCG) which can be computed

as

IDCG
`

D(k)´ = max
j

DCG
`

j,D(k)´

This score referred to as the ideal DCG score. It is also a common

practice to truncate the sum (2) at nmax, defining the DCGnmax and

NDCGnmax scores. The reason for this is that a user would rarely

browse beyond the first page of search results containing the first

nmax hits.

3 Evaluation tools

In this subsection we briefly describe and compare the various tools

available to compute NDCG scores. The definition (2) is unambigu-

ous, nevertheless, the tools can differ in the definition of the discount

factor ci (3). More importantly, there can be an important difference

in the way the DCG score is normalized when i) there is no rele-

vant document for a query (zi = 0 for all i), or ii) when the number

of documents is less then the truncation level nmax. Although this

7 When it is not confusing, we will omit the query index and simply write xi

for the ith document of a given query.

seems to be a technical subtlety, it turns out that the confusion be-

tween the different tools can significantly alter the numerical scores

and in some case can even change the relative ordering of the algo-

rithms on benchmark datasets.

We compared six evaluation tools computing the NDCG scores:

1. The LETOR 3.0 script implemented in Perl8

2. The LETOR 4.0 script implemented in Perl9

3. The MS script implemented in Perl10

4. The YAHOO script implemented in Python11

5. The RANKLIB package implemented in Java12

6. The TREC evaluation tool v8.1 implemented in C13

The evaluation tools can be divided into three groups. The tools of

the first group compute DCGnmax according to the definition (2) de-

scribed in Section 2. The LETOR 3.0, YAHOO, and TREC tools

belong to this group. All of these tools assign zero score to a query

if it is empty, that is, zi = 0 for all i which means that there are

no relevant documents. The TREC tool uses the labels of documents

given in the input file as relevance grades by default. From this point

of view, this is the most flexible implementation, since arbitrary rel-

evance grades can be defined. For example, in the case of MQ2008

dataset, the labels 0, 1 and 2 should be simply replaced by 0, 1 and 3
respectively, to have the commonly used exponential grades (1).

The second group is composed of the YAHOO tool alone. It also

computes the DCGnmax according to the definition (2), but it assigns

1.0 to the empty queries. This is a minor difference that generates an

additive bias between the NDCGnmax computed by YAHOO tool and

the three tools of the first group.

The third group consists of the LETOR 4.0 and MS tools. Ex-

cept for a small technical difference (the LETOR 4.0 tool can be

used for up to three relevance labels, whereas the MS tool can han-

dle up to five relevance labels), they compute the same score. As

the RANKLIB and LETOR 3.0 tools, they assign zero to a query

where the ideal DCGnmax is zero. Their rather strange feature is that

they also assign zero DCGnmax score to a query with less then nmax

documents in it, even if these documents are highly relevant. So, for-

mally, they compute the DCGnmax score as

DCGnmax

`

j
(k)

,D(k)´ =

(

Pnmax
i=1 ciz

(k)
ji

if nmax ≤ n(k)

0 otherwise.
(4)

This truncation does not only distort the test score, but it can also al-

ter the training of such algorithms that depend directly on the NDCG

score. Indeed, for example, in ADARANK [9] which optimizes the

NDCG10 evaluation metric, a query containing less than 10 docu-

ments does not influence the computation of the coefficient of the

weak ranker at all, and the the weight of such queries converge to

zero over the boosting iterations.

The only source of difference between the tools that have not been

identified yet, is the way they sort the objects of interest based on the

scores. All tools except TREC tool, make use of the default built-

in, programing language dependent sorting function which mainly

8 http://research.microsoft.com/en-us/um/beijing/

projects/letor/LETOR3.0/EvaluationTool.zip
9 http://research.microsoft.com/en-us/um/beijing/

projects/letor/LETOR4.0/Evaluation/Eval-Score-4.

0.pl.txt
10 http://research.microsoft.com/en-us/projects/

mslr/eval-score-mslr.pl.txt
11 http://learningtorankchallenge.yahoo.com/

evaluate.py.txt
12 http://www.cs.umass.edu/∼vdang/ranklib.html
13 http://trec.nist.gov/trec eval/

http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR3.0/EvaluationTool.zip
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR3.0/EvaluationTool.zip
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Evaluation/Eval-Score-4.0.pl.txt
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Evaluation/Eval-Score-4.0.pl.txt
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Evaluation/Eval-Score-4.0.pl.txt
http://research.microsoft.com/en-us/projects/mslr/eval-score-mslr.pl.txt
http://research.microsoft.com/en-us/projects/mslr/eval-score-mslr.pl.txt
http://learningtorankchallenge.yahoo.com/evaluate.py.txt
http://learningtorankchallenge.yahoo.com/evaluate.py.txt
http://www.cs.umass.edu/~vdang/ranklib.html
http://trec.nist.gov/trec_eval/


implement the quick sort algorithm. Therefore, the order of two ele-

ments with the same score depends on the implementation of the sort-

ing algorithm used. Whereas the TREC tool uses the lexicographic

ordering based on document ID given in the input file if the system-

predicted scores are equal for two documents.

We believe that none of these two ways of handling equal scores

are desirable. On the one hand, the sorting algorithm should not have

an effect on the evaluation itself. On the other hand, the document ID

normally does not bear any useful information regarding the content

of a document, so in this sense, the use of the ordering based on

document ID corresponds to a particular random ordering which is

also not a desired feature in an evaluation tool.

4 Learning-to-rank algorithms

In our comparison study, we used six state-of-the-art ranking meth-

ods. Here we briefly summarize them.

1. ADARANK [9] is a listwise boosting approach aiming to opti-

mize an arbitrary listwise IR metrics, such as the Mean Aver-

age Precision (MAP), ERR, or NDCG. Inspired by ADABOOST,

it uses a stepwise greedy optimization technique for maximizing

the chosen IR metrics. In every boosting iteration, ADARANK re-

weights the queries based on their scores obtained by the eval-

uation metrics: it up-weights the query having lower score and

down-weights high-scoring queries. The weak learner is chosen

by optimizing the listwise evaluation metrics of interest which is

usually hard to optimize except for very simple weak classifiers.

This can be viewed as a handicap of this method. According to the

original implementation of ADARANK, we used the best feature

ranker (BF) described above as base ranker taking into account

the weighting of queries. The only hyperparameter of ADARANK

is the number of boosting iterations which we optimized by using

early-stopping on the validation set. We refer to this method as

ADARANK.{NDCG}.

2. RANKNET [1] is a neural-net-based method which employs a loss

based on pairwise cross entropy as its objective function. The neu-

ral net with one output node is trained to optimize directly the

differentiable probabilistic pairwise loss instead of the common

squared loss. We validated the number of hidden layers ranging

from 1 to 3 and the number of neurons in the hidden layers rang-

ing from 10 to 500. For the number of training epochs we applied

early stopping.

3. RANKBOOST [4] is a pairwise boosting approach. The objective

function is the rank loss (as opposed to ADABOOST which opti-

mizes the exponential loss). In each boosting iteration the weak

classifier is chosen by maximizing the weighted rank loss. For the

weak learner we used decision stumps and a variant of the single

decision stump described in [4] which is able to optimize the rank

loss in an efficient way.

4. RANKSVM [5] is a pairwise method based on SVM, formulating

the ranking task as a binary classification. We used linear kernel

because the optimization using non-linear kernels cannot be car-

ried out in reasonable time. The tolerance level of the optimization

was set to 0.001 and the regularization parameter was validated in

the interval [10−6, 104] with a logarithmically increasing step

5. COORDINATEASCENT (CA) [6] is a linear listwise model where

the scores of the query-document pairs are calculated as weighted

combinations of the feature values. The weights are tuned by us-

ing a coordinate ascent optimization method where the objective

function is an arbitrary evaluation metrics given by the user. The

coordinate ascent optimization method itself has two hyperparam-

eters to be tuned: the number of restarts R from random initial

weights, and the number of iterations T taken after each restart.

We used R = 30 and T = 100. We did not validate these hyper-

parameters, but using the validation set we evaluated every model

obtained due to restarting the optimization process, and we kept

the one having highest performance.

6. LAMBDAMART [8] is a boosted regression tree model. Since it

handles the LTR problem as a regression task, it could be classified

as pointwise method, but during the training phase, it adjust the

parameters of the regression trees based on the derivative estimate

of NDCG, therefore it is considered as a listwise approach. We

validated the number of boosting iterations. The number of leaves

were set to 10 and the learning rate to 0.1.

5 Experiments

We identified two major differences in the way the DCG score is

normalized in publicly available NDCG evaluation scripts:

1. When there is no relevant document for a query (zi = 0 for all i),

evaluation scripts conforming to the definition assign a 0.0 NDCG

value to the query. Optionally, some scripts may assign a different

value as default for such queries (namely, 1.0 for the Yahoo met-

ric).

2. When the number of documents is less then the truncation level

nmax, evaluation scripts conforming to the definition assign an

NDCGn(k) value equal to the number of documents n(k) avail-

able for that query (thereby assuming that it is always possible

to fill in a result list with irrelevant documents, and at the same

time assuming that the provided relevance labeling is exhaustive

(i.e. there are no further, unseen relevant documents and thus the

use of IDCGn(k) score in the normalization step is a realistic es-

timate.14) Optionally, some scripts may assign a different value as

default for such queries (namely, 0.0 for the LETOR metric).

We consider the difference stemming from the different strategy to

order results with equal predicted scores less crucial (in practice two

different documents seldom get the same predicted score, i.e. ties are

rare) and we do not assess its impact, and we use all metrics with

exponential relevance grades (the TREC tool can be parameterized

to use exponential gain, while the other tools are implemented to use

this). That is, in our experiments we consider the Ranklib and TREC

evaluation tools to be equivalent and compare their scores to those

provided by the YAHOO and LETOR metrics, which are represen-

tative examples for the two major differences we found between the

various tools.

In Figure 1, we plot the NDCG1−10 scores for 4 character-

istic learning to rank algorithms (ADARANK, LAMBDAMART,

RANKNET and CA ) using the three different evaluation formulas

to evaluate the models: in each row, the left, middle and right plots

show the values provided by the RANKLIB/TREC, the YAHOO and

the LETOR tools, respectively. All models were trained to optimize

the NDCG10 scores, and the plots show the NDCG scores of these

models for cut-off values from 1 to 10. Each plot shows 3 differ-

ent curves that correspond to models trained using a specific metric

during the training of the model: the blue, black and red lines indi-

cate models learned using the YAHOO, RANKLIB/TREC and LETOR

metrics, respectively. This way we can visually compare the effects

14 Note that relevance labels are many times pooled in IR datasets and there
is no guarantee that no relevant, but unlabeled documents exist.



2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.4196

 0.4862

 0.4922

 

 

RankLib
LETOR
YAHOO

(a) ADARANK/YAHOO

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.7003

 0.7669

 0.7729

 

 

RankLib
LETOR
YAHOO

(b) ADARANK/TREC

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.177

 0.2139

 0.2201

 

 

RankLib
LETOR
YAHOO

(c) ADARANK/LETOR

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.4758

 0.4988

 0.5047

 

 

RankLib
LETOR
YAHOO

(d) LAMBDAMART/YAHOO

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.7565

 0.7794

 0.7853

 

 

RankLib
LETOR
YAHOO

(e) LAMBDAMART/TREC

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.2092

 0.227

 0.2307

 

 

RankLib
LETOR
YAHOO

(f) LAMBDAMART/LETOR

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.4815

 0.4824

 0.4827

 

 

RankLib
LETOR
YAHOO

(g) RANKNET/YAHOO

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.7622

 0.7631

 0.7633

 

 

RankLib
LETOR
YAHOO

(h) RANKNET/TREC

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.2106

 0.2112

 0.2115

 

 

RankLib
LETOR
YAHOO

(i) RANKNET/LETOR

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.4963

 0.504

 0.5055

 

 

RankLib
LETOR
YAHOO

(j) CA/YAHOO

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.7769

 0.7846

 0.7862

 

 

RankLib
LETOR
YAHOO

(k) CA/TREC

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
k

Position

 0.2171

 0.2277

 0.2298

 

 

RankLib
LETOR
YAHOO

(l) CA/LETOR

Figure 1. The dependence of NDCG10 scores on NDCG method used on MQ2008 dataset.



2 4 6 8 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
N

D
C

G
@

k

Position

 0.4824

 0.4862

 0.4988

 0.4999

 0.5001

 0.5055

 

 

AdaRank.NDCG
LambdaMART
RankBoost
RankNet
RankSVM
CA

(a) YAHOO

2 4 6 8 10
0.6

0.65

0.7

0.75

0.8

N
D

C
G

@
k

Position

 0.7631

 0.7669

 0.7794

 0.7805

 0.7808

 0.7862

(b) TREC

2 4 6 8 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

N
D

C
G

@
k

Position

 0.2106

 0.2139

 0.2239

 0.227

 0.2277

 0.2298

(c) LETOR

Figure 2. The dependence of NDCG10 scores on NDCG method used on MQ2008 dataset.

of the different evaluation tools both on on the numeric outcomes

(comparing the curves with same color, denoting the same models,

across the 3 plots horizontally) and on the learnt model (contrasting

the 3 curves on the same plots, denoting models learnt using different

measures).

We can make several observations based on figure1. First, for all

the algorithms in figure 1, the NDCG scores provided by the YAHOO

tool are on average around 0.25 higher than the scores provided by

the RANKLIB/TREC tool which conforms the definition of NDCG.

This difference comes solely from the presence of queries with 0
relevant documents in the dataset: for those queries, the YAHOO tool

assign 1.0 as NDCG which results in an additive bias compared to

the official NDCG scores. On the other hand, the scores provided by

the LETOR tool degrade rapidly for cutoff values of 8 − −10 for all

algorithms, with a difference around or above 0.25 compared to the

official NDCG scores. As opposed to the former additive difference

this behavior might result in a different ordering of the algorithms:

a method that is on average superior to others on larger sets but is

weaker than the competitors on small sets is preferred by the Letor

metric, as this tool assigns zero to small sets (smaller than the NDCG

cut-off).

Second, and more interestingly, we can observe that it is by no

means irrelevant which metric was used during the training of the al-

gorithms: for those algorithms that make use of the NDCG scores in

some way in the training process (namely, the ADARANK, LAMB-

DAMART and CA methods), we see differences in the performance

of the learnt models. We observe that in general, the LETOR tool is

not suited for training the algorithms – its property to assign 0.0 score

to small sets causes these small sets to be useless for training (to op-

timize NDCG10), i.e. the algorithms can exploit less data in a mean-

ingful way to learn patterns. This results in a significantly15 worse

performance for these algorithms, when trained using the LETOR

metric (instead of the official NDCG scores). On the other hand, for

some algorithms, it is worth to assign a non-zero score to sets which

contain no relevant documents at all: doing so, the algorithms do not

increase the weight of such queries similarly to other low-performing

queries where there is hope to improve performance. This can result

in better learning rates and in some cases slightly better performance

(see e.g. the blue vs. black curves for the ADARANK and LAMB-

DAMART methods).

Overall, we can observe that the best metric to train the algorithms

is the one provided by YAHOO: in general this results in equal or

better learnt models than the other evaluation tools. To shed light

on how these characteristics of the evaluation tools affect the rela-

15 The error bars on the plots correspond to the standard errors of querywise
NDCG scores averaged out in quadrature over the folds.

tive performance of benchmark LTR algorithms, in figure 2, we plot

the NDCG scores for 6 different learning algorithms (trained using

the official NDCG metric) with all the evaluation tools surveyed in

this study. As can be seen, the performance of the best algorithms

is very close to each other, with Coordinate Ascent having a slight

advantage regardless which metric is used for evaluation. Slightly

worse than CA, the three algorithms RANKBOOST, RANKSVM and

LAMBDAMART perform very close to each other. If we compare

the results obtained with different evaluation measures, the relative

order of these (otherwise very similar) models change depending on

the metric: apparently the RANKBOOST algorithm has a slight ad-

vantage over the other two for short sets, which advantage disappears

when the LETOR metric is used for evaluation. In general, we were

unable to reproduce the competitive results of ADARANK [9], using

the reimplementation of the algorithm in the Ranklib package 16,17.

6 Conclusion

In this study, we reviewed the publicly available NDCG evaluation

scripts, identified and compared the differences between them and

systematically analyzed how these differences affect the numeric

results and the training processes of various learning-to-rank algo-

rithms. It is reasonable to assume that most previous studies use one

of the assessed evaluation tools, and at the same time it seems likely

that most measures are used at least in some studies to evaluate the

performance of machine learnt ranking systems. We found that there

indeed are differences between tools despite the relative simplicity of

the popular NDCG evaluation metric, and our experiments demon-

strate that these differences can easily lead to non-trivial differences

between research results. Since most studies do not discuss such de-

tails as the evaluation script used, this fact makes previous studies

very difficult to compare and might lead to the misinterpretation of

results and false conclusions.

We identified that the two key points of difference between dif-

ferent tools are i) the way how small queries (queries with less than

nmax documents in the case of NDCGnmax ) and ii) the way how

queries with no relevant document (i.e. when all documents have the

same, zero relevance score and therefore the ideal DCG is zero) are

handled by the tools. These two factors can lead to different overall

scores (for the same model) and also to inherently different learnt

models, depending on which learning algorithm was used. Some di-

vergences from the definition of the NDCG measure might be jus-

16 http://people.cs.umass.edu/∼vdang/ranklib.html
17 We found no clear indication in the original article what stopping criterion

was used to terminate the iteration in the training process, so we tried to
use various stopping strategies and provide the best results we obtained.
These are nevertheless lower than those reported at the letor website.

http://people.cs.umass.edu/~vdang/ranklib.html


tified from an ML perspective though: for example, if the measure

assigns a perfect score to queries with zero relevant documents, these

queries are not treated like other queries that can be improved, and do

not distort the model. On the other hand, we could not identify any

benefit of other modifications, such as zeroing out the NDCGnmax

score for queries with less than nmax documents in total.

To summarize our findings, we suggest the following protocols

to make learning to rank results more comparable and benchmark

datasets more suited to training and evaluating systems:

1. The use of tools that give zero score to small queries should be

avoided, as these can negatively impact certain algorithms (while

others are unaffected) and thus the reported results can represent

a false relative order of the algorithms.

2. If possible, benchmark datasets should be free of not meaning-

ful queries. Queries that does not have any relevant documents

do not play a role in learning to rank – they cannot be used to

learn meaningful patterns and they do not have an impact on eval-

uation. At the same time, such queries can negatively impact the

performance of some algorithms, and can motivate non-standard

evaluation tools (c.f. the YAHOO metric).

3. Regardless which evaluation script is used while training the sys-

tems (c.f. the YAHOO tool which is reasonable in the presence of

queries without relevant documents in the data), the final evalua-

tion should be carried out using a tool fully conforming the official

NDCG definition. This way machine learnt performance scores

would become directly comparable to non-machine learnt ones,

such as those coming from TREC and other evaluation exercises.

REFERENCES

[1] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, ‘Learning to rank using gradient descent’, in Proceed-

ings of the 22th International Conference on Machine Learning, (2005).
[2] R. Busa-Fekete, B. Kégl, T. Éltető, and Gy. Szarvas, ‘Tune and mix:

learning to rank using ensembles of calibrated multi-class classifiers’,
Machine Learning accepted, (2012).

[3] D. Cossock and T. Zhang, ‘Statistical analysis of Bayes optimal subset
ranking’, IEEE Transactions on Information Theory, 54(11), 5140–5154,
(2008).

[4] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, ‘An efficient boost-
ing algorithm for combining preferences’, Journal of Machine Learning

Research, 4, 933–969, (2003).
[5] R. Herbrich, T. Graepel, and K. Obermayer, ‘Large margin rank bound-

aries for ordinal regression’, in Advances in Large Margin Classifiers,
eds., Smola, Bartlett, Schoelkopf, and Schuurmans, pp. 115–132. MIT
Press, Cambridge, MA, (2000).

[6] D. Metzler and B. W. Croft, ‘Linear feature-based models for informa-
tion retrieval’, Information Retrieval, 10, 257–274, (2007).

[7] S. Robertson and H. Zaragoza, ‘The probabilistic relevance framework:
BM25 and beyond’, Found. Trends Inf. Retr., 3, 333–389, (2009).

[8] Q. Wu, C.J.C. Burges, K.M. Svore, and J. Gao, ‘Adapting boosting for
information retrieval measures’, Information Retrieval, 13(3), 254–270,
(2010).

[9] J. Xu and H. Li, ‘AdaRank: a boosting algorithm for information re-
trieval’, in SIGIR ’07: Proceedings of the 30th annual international ACM

SIGIR conference on Research and development in information retrieval,
pp. 391–398. ACM, (2007).


	Introduction
	Formal LTR task
	Evaluation tools
	Learning-to-rank algorithms
	Experiments
	Conclusion

