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Search for Turbulent Gas through Interstellar
Scintillation

Moniez M., Ansari R., Habibi F., Rahvar S.

Abstract Stars twinkle because their light propagates through the atmosphere. The

same phenomenon is expected when the light of remote stars crosses a Galactic –

disk or halo – refractive medium such as a molecular cloud. We present the promis-

ing results of a test performed with the ESO-NTT and the perspectives.
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1 What is interstellar scintillation?

Refraction through an inhomogeneous transparent cloud (hereafter called screen)

distorts the wave-front of incident electromagnetic waves (Fig.1) [Moniez (2003)];

For a point-like source, the intensity in the observer’s plane is affected by interfer-

ences which, in the case of stochastic inhomogeneities, takes on the speckle aspect.

At least 2 distance scales characterise this speckle:

• The diffusion radius Rdi f f (λ ) of the screen, defined as the transverse separation

for which the root mean square of the phase difference at wavelength λ is 1

radian.

• The refraction radius

Rre f (λ ) =
λ z0

Rdi f f (λ )
∼ 30860km

[

λ

1 µm

][

z0

1kpc

][

Rdi f f (λ )

1000km

]−1

(1)

where z0 is the distance to the screen. This is the size, in the observer’s plane, of

the diffraction spot from a patch of Rdi f f (λ ) in the screen’s plane.
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After crossing a fractal cloud described by the Kolmogorov turbulence law (Fig. 1,

left), the light from a monochromatic point source produces an illumination pattern

on Earth made of speckles of size Rdi f f (λ ) within larger structures of size Rre f (λ )
(Fig. 1, right).

Fig. 1 Left: a 2D stochastic phase screen (grey scale), from a simulation of gas affected by

Kolmogorov-type turbulence.

Right: the illumination pattern from a point source (left) after crossing such a phase screen. The

distorted wavefront produces structures at scales ∼ Rdi f f (λ ) and Rre f (λ ) on the observer’s plane.

The illumination pattern from a stellar source of radius rs is the convolution of the

point-like intensity pattern with the projected intensity profile of the source (Fig. 2,

up-right). The cloud, moving with transverse velocity VT relative to the line of sight,

Fig. 2 Simulated illumina-

tion map at λ = 2.16µm

on Earth from a point

source (up-left)- and from

a K0V star (rs = 0.85R⊙,

MV = 5.9) at z1 = 8kpc

(right). The refracting

cloud is assumed to be

at z0 = 160 pc with a

turbulence parameter

Rdi f f (2.16µm) = 150km.

The circle shows the

projection of the stellar

disk (rs × z0/z1). The

bottom maps are illumi-

nations in the Ks wide

band (λcentral = 2.162µm,

∆λ = 0.275µm).

will induce stochastic intensity fluctuations of the light received from the star at the

characteristic time scale
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tre f (λ ) =
Rre f (λ )

VT

∼ 5.2minutes

[

λ

1µm
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z0

1kpc

][

Rdi f f (λ )

1000km

]−1 [
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100km/s

]−1

.

(2)

with modulation index mscint. = σI/Ī given by

mscint. = 0.12

[

λ

1µm

][

z0

10pc

]

−1/6 [
Rdi f f (λ )

1000km

]−5/6[
rs/z1

R⊙/10kpc

]

−7/6

. (3)

This modulation index decreases when the apparent stellar radius increases.

Signature of the scintillation signal: The first two signatures point to a propa-

gation effect, which is incompatible with any type of intrinsic source variability.

• Chromaticity: Since Rre f varies with λ−1/5, one expects a small variation of the

characteristic time scale tre f (λ ) between the red side of the optical spectrum and

the blue side.

• Spatial decorrelation: We expect a decorrelation between the light-curves ob-

served at different telescope sites, increasing with their distance.

• Correlation between the stellar radius and the modulation index: Big stars scin-

tillate less than small stars through the same gaseous structure.

• Location: The probability for scintillation is correlated with the foreground gas

column-density. Therefore, extended structures may induce scintillation of ap-

parently neighboring stars looking like clusters.

Foreground effects, background to the signal: Atmospheric intensity scintilla-

tion is negligible through a large telescope [Dravins et al. (1998)]. Any other atmo-

spheric effect should be easy to recognize as it affects all stars. Asterosismology,

granularity of the stellar surface, spots or eruptions produce variations of very dif-

ferent amplitudes and time scales. A rare type of recurrent variable stars exhibit

emission variations at the minute scale, but such objects could be identified from

their spectrum.

2 Preliminary studies with the NTT

During two nights of June 2006, 4749 consecutive exposures of Texp = 10s have

been taken with the infra-red SOFI detector in Ks and J through nebulae B68, cb131,

Circinus and towards SMC [Habibi et al. (2011)]. A candidate has been found to-

wards B68 (Fig. 3), but the poor photometric precision in Ks and other limitations

prevent us from definitive conclusions. Nevertheless, we can conclude from the rar-

ity of stochastically fluctuating objects that there is no significant population of stars

that can mimic scintillation effects, and future searches should not be overwhelmed

by background of fakes.

From the observed SMC light-curves we also established upper limits on invis-

ible gaseous structures as a function of their diffusion radius (Fig. 4). This limit,

although not really competitive, already excludes a major contribution of strongly
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Fig. 3 Light-curves for the two nights of observation

(above) and images of the candidate found toward B68

during a low-luminosity phase (up-right) and a high-

luminosity phase (bottom); North is up, East is left.

turbulent gas to the hidden Galactic matter. These constaints are at the moment lim-

ited by the statistics and by the photometric precision.

Fig. 4 The 95%CL maximum optical

depth of structures with Rdi f f (1.25µm)<
Rd toward the SMC. The right scale gives

the maximum contribution of structures

with Rdi f f (1.25µm) < Rd to the Galac-

tic halo (in fraction); the gray zone shows

the possible region for the hidden gas

clumpuscules expected from the model of

[Pfenniger & Combes (1994)].

3 Perspectives

LSST will be an ideal setup to search for this signature of gas thanks to the fast

readout and to the wide and deep field. Scintillation signal would provide a new

tool to measure the inhomogeneities and the dynamics of nebulae, and to probe the

molecular hydrogen contribution to the Milky-Way baryonic hidden matter.
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