Effective theory for low-energy nuclear energy density functionals
Abstract
We introduce a new class of effective interactions to be used within the energy-density-functional approaches. They are based on regularized zero-range interactions and constitute a consistent application of the effective-theory methodology to low-energy phenomena in nuclei. They allow for defining the order of expansion in terms of the order of derivatives acting on the finite-range potential. Numerical calculations show a rapid convergence of the expansion and independence of results of the regularization scale.