Chiral symmetry breaking as open string tachyon condensation
Abstract
We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N_f)_L x U(N_f)_R -> U(N_f)_V symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N_f^2 Goldstone bosons (for m_q=0), the Gell-Mann-Oakes-Renner relation (for m_q small) and the \eta' mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m_n^2 ~ n is naturally reproduced.