An algorithm for the detection of extreme mass ratio inspirals in LISA data
Abstract
The gravitational wave signal from a compact object inspiralling into a massive black hole (MBH) is considered to be one of the most difficult sources to detect in the LISA data stream. Due to the large parameter space of possible signals and many orbital cycles spent in the sensitivity band of LISA, it has been estimated that ~1035 templates would be required to carry out a fully coherent search using a template grid, which is computationally impossible. Here we describe an algorithm based on a constrained Metropolis-Hastings stochastic search which allows us to find and accurately estimate parameters of isolated EMRI signals buried in Gaussian instrumental noise. We illustrate the effectiveness of the algorithm with results from searches of the Mock LISA Data Challenge round 1B data sets.