
HAL Id: in2p3-00702588
https://in2p3.hal.science/in2p3-00702588v1

Submitted on 30 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large scale kronecker product on supercomputers
Claude Tadonki

To cite this version:
Claude Tadonki. Large scale kronecker product on supercomputers. 23rd International Symposium
on Computer Architecture and High Performance Computing - SBAC-PAD 2011 - WAMCA 2011,
Oct 2011, Victoria, Brazil. pp.1-4, �10.1109/WAMCA.2011.10�. �in2p3-00702588�

https://in2p3.hal.science/in2p3-00702588v1
https://hal.archives-ouvertes.fr

Large scale kronecker product on supercomputers∗

Claude Tadonki
MINES ParisTech - CRI (Centre de Recherche en Informatique)- Mathematiques et Systèmes

35, rue Saint-Honoré
77305, Fontainebleau-Cedex

Laboratoire de l’Accélérateur Linéaire/IN2P3/CNRS
University of Orsay, Faculty of Sciences, Bat. 200

91898 Orsay Cedex (France)
claude.tadonki@u-psud.fr

Abstract

The Kronecker product, also calledtensor product, is
a fundamental matrix algebra operation, which is widely
used as a natural formalism to express a convolution of
many interactions or representations. Given a set of ma-
trices, we need to multiply their Kronecker product by a
vector. This operation is a critical kernel for iterative algo-
rithms, thus needs to be computed efficiently. In a previous
work, we have proposed a cost optimal parallel algorithm
for the problem, both in terms of floating point computation
time and interprocessor communication steps. However, the
lower bound of data transfers can only be achieved if we
really consider (local) logarithmic broadcasts. In practice,
we consider a communication loop instead. Thus, it be-
comes important to care about the real cost of each broad-
cast. As this local broadcast is performed simultaneously
by each processor, the situation is getting worse on a large
number of processors (supercomputers). We address the
problem in this paper in two points. In one hand, we pro-
pose a way to build a virtual topology which has the lowest
gap to the theoretical lower bound. In the other hand, we
consider a hybrid implementation, which has the advantage
of reducing the number of communicating nodes. We il-
lustrate our work with some benchmarks on a large SMP
8-Core supercomputer.

1 Introduction

The Kronecker productis a basic matrix algebra ope-
ration, which is mainly used for multidimensional mode-
ling in number of specialized fields[5]:Stochastic Automata

∗This work was partly supported by the PetaQCD (ANR) project.

Networks(SAN) [2, 3, 4], Fast Fourier Transform(FFT),
Fast Poisson Solver(FPS) [9, 10],Quantum Computation
(QC) [6] andLattice Quantum Chromodynamics[8]. Con-
sidering a principal matrix expressed as a Kronecker pro-
duct of several matrices, iterative schemes require to repea-
tedly multiply such a matrix by a vector. Formally, we are
givenN square matricesA(i) of sizesni, i = 1, · · · , N ,
and a vectorx of lengthL = n1n2 · · ·nN , and we need to
computey (of lengthL) given by

y = x(

N
⊗

i=1

A(i)). (1)

It is well-known that we should not compute the matrix ex-
plicitly before performing the multiplication, as this would
require a huge memory to store that matrix and will yield
redundant computations. A cost optimal algorithm for this
computation proceeds in a recursive way, consuming one
matrixA(i) after another [7]. Consequently, traditional pa-
rallel routines for matrix-vector product cannot be consi-
dered. When starting with the recursive algorithm as a basis,
any parallel scheme will involve a set of data communica-
tion at the end of each iteration. The cost of this commu-
nication is the main challenge for this problem, especially
with a large number of processors, because there is a signi-
ficant interleave between the (probably virtual) communi-
cation links. Moreover, in order to reduce the cache misses
due to an increasing stride from one iteration to the next one,
array reshuffling is sometimes considered, and this compli-
cates the communication topology.

In [7], we have proposed an efficient parallel algorithm
which achieves the multiplication without explicit shuffling
and requires a minimal number of communication steps.
However, the real cost of each communication step depends
on the virtual topology and the way the transfers are really

performed. This problem was left open in the paper because
of the modest size of the parallel computers considered (up
to 256 processors). In this paper, we provide an algorithm
to construct an efficient topology, in addition to a hybrid
implementation using OpenMP[11] on the computing mul-
ticore nodes. With this contribution, we keep the global
efficiency of the original algorithm on a larger number of
processors as illustrated by some benchmark results. The
rest of the paper is organized as follows. Section 2 gives an
overview of the original algorithm. This is followed in sec-
tion 3 by a discussion on its complexity and the position of
the problem. We describe our heuristic to find an efficient
topology in section 4. We discuss the hybrid implementa-
tion and section 5. In section 6, we display and comment
our benchmark results. Section 7 concludes the paper.

2 Original parallel algorithm

We restate our parallel algorithm in order to provide a
self-contained material, the reader could refer to [7] for
more details. From (1) and using the so-calledcanonical
factorization, we obtain the recursive scheme defined by (2)

{

V (N+1) = x
V (s) = V (s+1)(In1···ns−1

⊗A(s) ⊗ Ins+1···nN
)

(2)

which leads at the last step toV (1) = x⊗N
i=1A

(i). Our
parallelization of the recursive computation expressed by
equation (2) can be defined as follows. Givenp proces-
sors (assuming thatp dividesL = n1n2...nN), we pro-
ceed as follows. We first compute a sequence ofN in-
tegerspi such thatp = p1p2...pN andpi dividesni, i =
1, 2, ..., N . Considering a multidimensional indexation, we
say that each processor(a1, a2, · · · , aN) computes the en-
tries (b1, b2, · · · , bN) of V (s) such thatbi mod pi = ai,
i = 1, 2, · · · , N . A complete description of the parallel al-
gorithm is given by Alg. 1. Note that thesendandreceive
occurrences can be combined into a singlesendreceivecall
because of the symmetry of the topology.

3 Communication complexity

Our scheduling ontop processors is based on a de-
composition(p1, p2, · · · , pN) such thatpi dividesni, and
p1p2 · · · pN = p. In theory, algorithm Alg. 1 performs
log(p) parallel communication steps when executed withp
processors. Indeed, one local broadcast occurs at the end of
each steps, thus we dolog(p1)+log(p2)+· · ·+log(pN) =
log(p1p2 · · · pN) = log(p) parallel communication steps.
This assumes that, at a given stepi, we performlog(pi)
parallel transfers (local broadcast topi processors by each
processor). However, in practice, we issuepi − 1 transfers

(communication loop). Thus, the gap betweenpi − 1 and
log(pi) becomes important for largerpi. Actually, each pro-
cessor performsp1 + p2 + · · ·+ pN transfers in total. On a
larger cluster, there will be an additional overhead coming
from the gap between the virtual topology and the physical
topology. We first focus on how to find a decomposition
which reduces the measurep1 + p2 + · · ·+ pN .

π ← 1; r ← 1; ℓ← c1c2...cN = L/p /* ci =
ni

di
*/

y ← x(Q1w1
, Q2w2

, ..., QNwN
)

For s← N downto 1 do
ℓ← ℓ/c[s]
ws = [wdiv(π)]mod(d[s]) + 1
e← (ws− 1)× c[s]
v ← 0
i← 1
For a← 1 to ℓ do
For j ← e+ 1 to e+ c[s] do
For b← 1 to r do
For t← e+ 1 to e+ c[s] do
v[i]← v[i] +A(s, t, j)y[I + (t− j)r]

end do
i← i+ 1

end do
end do

end do
If (ws = 1) thenH ← d elseH ← ws− 1
For T = ws+ 1 to ws+ d[s]− 1 do
G← mod(T − 1, d[s]) + 1
idest← w + (G− ws)× π
isender← w + (H − ws)× π
send(y, idest, ws)
recv(u, isender, H)
e← (H − 1)× c[s]
i← 1
For a← 1 to ℓ do
For j ← 1 to c[s] do
For b← 1 to r do
For t← e+ 1 to e+ c[s] do
v[i]← v[i] +A(s, t, j)u[I + (t− j)r]

end do
i← i+ 1

end do
end do

end do
If (H = 1) then H ← d[s] elseH ← H − 1

end do
r ← r × c[s]
π ← π × d[s]
If (s > 1) then y ← v

end do
z(Q1w1

, Q2w2
, ..., QNwN

)← v

Alg. 1 : Implementation of the matrix-vector product.

2

4 Heuristic for an efficient topology

We propose the algorithm Alg. 2 to find an efficient de-
composition for a given number of processorsp, which is a
factor ofn1n2 · · ·nN .

d← p
{Starting decomposition}
For i← 1 to N do
pi ←gcd(d, ni)
d← d

pi

enddo
{Recursive refinement}
For i← 1 to N do
For j ← 1 to N do
α←gcd(pi,

nj

pj
)

if ((α > 1) ∧ (pi > cpj))
pi ←

di

α

pj ← αdj
endif

enddo
enddo

Alg. 2 : Heuristic for an efficient decomposition

The principle of Alg. 2 is the following. We start with a
gcd decomposition. Next, we refine it using the fact that if
pi > αpj , with α a non trivial factor ofpi, thenpi/α +
αpj < pi + pj . It is thus rewarding to replacepi (resp.pj)
by pi/α (resp.αpj). Once this is done, it is clear that on a
larger cluster (i.e. large value ofp), all these simultaneous
transfers will exacerbate the communication overhead and
certainly slowdown the global performance. Fortunately,
most modern supercomputers are built up with multicore
nodes. Thus, a hybrid implementation, which combines the
standard distributed memory implementation with a shared
memory program (SMP) on the nodes, will overcome the
problem by reducing the number of communicating nodes.

5 SMP implementation

We chose to use OpenMP to derive our shared me-
mory code. Looking at Alg. 1, we decide to put the
loop distribution pragma over thea loop. In order to do
so, we first need to remove thei ← i + 1 incrementa-
tion and directly calculate thei index, which is given by
i ← c[s] × r × (a − 1) + r × (j − 1) + b. Now, the
lengthℓ where the loop blocking will occur varies withs
(ℓ ← ℓ/c[s]). Thus, we need to keep it being a factor of
the (fixed) number of threads. We achieve it by splitting the
main loop into two parts, means isolating the cases = N
and then enclose the rest (s = N − 1, N − 2, · · · , 1) into
a parallel section. Moreover, since the number of nodes is
now reduced top/T (T is the number of OpenMP threads),

we need to adapt our primarily decomposition such thatℓ
remains a factor ofT . The general way to do that is to
split the loop overs at the right place (not only the ex-
tremal iteration), but this would be better implemented with
Posix threads library, because we could dynamically man-
age the threads to handle desired loop partitioning (this is
left for future work). We now show the impact of our strat-
egy on benchmark results. Interested reader can download
the source code at
http://www.omegacomputer.com/staff/tadonki/codes/kronecker.f

6 Experimental results

We consider a SMP 8-core cluster named JADE [12].
The whole cluster JADE is composed of 1536 compute
nodes (i.e. 1536 x 8 = 12288 cores of Harpertown type
processors) and 1344 compute nodes of nehalem type pro-
cessor (1344 x 8 = 10 752 cores). The network fabric is an
Infiniband (IB 4x DDR) double planes network for the first
part of the machine (Harpertown), whereas 4 drivers Infini-
Band 4X QDR provide 72 ports IB 4X QDR on output of
each IRU of the second part of the machine (576 Go/s).

We chooseN = 6 square matrices of orders20, 36, 32,
18, 24, and16, which means a principal matrix of order
L = 159 252 480. We first show in table 1 the results of
the pure MPI code. The decomposition obtained with our
algorithm is marked with a star and is surrounded by two
alternative decompositions (the one obtained by a basic gcd
decomposition and the less distributed one) to illustrate the
difference.

p decomposition time(s)
32 (4,1,8,1,1,1) 2.06 s
32 (2,2,2,2,2,1)* 1.62 s
32 (1,1,32,1,1,1) 4.14 s

180 (20,9,1,1,1,1) 0.75 s
180 (5,3,2,2,3,1)* 0.34 s
180 (10,6,1,1,3,1) 0.49 s

720 (20,36,1,1,1,1) 1.20 s
720 (10,3,2,2,3,2)* 0.23 s
720 (10,9,4,2,1,1) 0.35 s

2880 (20,36,4,1,1,1) 1.47 s
2880 (10,6,2,2,6,2)* 1.20 s
2880 (20,12,2,2,3,1) 1.32 s

4320 (20,36,2,3,1,1) 1.48 s
4320 (10,3,4,3,3,4)* 0.92 s
4320 (20,18,4,3,1,1) 1.34 s

Table 1. MPI implementation timings

From Table 1, we see that for a given number of pro-
cessors, the partition obtained with our procedure can im-

3

prove the global performance by a factor from2 to 5 (see
p = 720). However, when the number or MPI processes
increases, we see that we lose the scalability, because data
communication severely dominates (the code is cost opti-
mal for floating point operations). We now see how this is
improved using a hybrid implementation. We reconsider the
previous best decompositions as baseline and compare each
of them with the corresponding hybrid configuration. For
each number of cores in{4320, 2880, 720}, we consider a
k-cores SMP clustering,k ∈ {1, 4, 8}.

#MPI decomposition #threads time speedup
4320 (10,3,4,3,3,4) 1 0.92 s 1
1080 (5, 3, 2, 3, 3, 4) 4 0.16 s 5.75
540 (5, 3, 2, 3, 3, 2) 8 0.12 s 7.67

2880 (10,6,2,2,6,2) 1 1.20 s 1
360 (5, 3, 2, 3, 3, 4) 8 0.16 s 7.5

720 (10,3,2,3,3,2) 1 0.23 s 1
90 (5, 3, 2, 1, 3, 1) 4 0.45 s 0.51

Table 2. Hybrid (MPI+OpenMP) code timings

We can see from Table 2 that we are close to a linear
(threads) speedup with4320 and2880 cores. This is due to
the fact that the global computation time was really domi-
nated by data communication and synchronization mecha-
nism. For a smaller number of cores, we see that we start
loosing the benefit of the SMP implementation. This is
due the (predictable) cache misses penalty coming from the
stride(t−j)×r in Alg. 1, which is increasingly bigger since
r does. We could use larger number of cores, but we our ex-
perimental configuration sufficiently illustrative of whatwe
need to show and how our solution contributes to the issues.

7 Conclusion

The problem of multiplying a vector by a Kronecker
product of matrices is crucial in stochastic sciences and is
a computationally challenging task for large instances. In
order to avoid a memory bottleneck and redundant com-
putation, a recursive scheme has been mathematically for-
mulated, for which corresponding efficient implementations
are expected. In one hand, the increasing loop stride needs
to be handled carefully in order to reduce the impact of
caches misses. This aspect really dominates and thus needs
to be seriously taken into account in the performance ana-
lysis. In the other hand, the parallelization requires an im-
portant number of parallel transfers, which could become
problematic on large clusters. This paper provides a con-
tribution on both aspects, based on a cost optimal solution
(floating point computation point of view) from the litera-
ture. Our solution is a combination of a heuristic procedure

to build an efficient virtual topology and the use of hybrid
programming paradigm. Our experimental results illustrate
the improvement of our contribution, and evidence the need
of a compromise on large clusters.

References

[1] M. Davio, Kronecker Products and Shuffle Algebra,
IEEE Trans. Comput., Vol. C-30, No. 2, pp. 116-125,
1981.

[2] P. Fernandes, B. Plateau, and W. J. Stewart,Efficient
Descriptor-Vector Multiplications in Stochastic Au-
tomata Networks, INRIA internal report No. 2935 ,
July 1996.

[3] Benoit, Anne and Fernandes, Paulo and Plateau,
Brigitte and Stewart, William J.,On the benefits of
using functional transitions and Kronecker algebra,
Performance Evaluation, Vol. 58(4), pp. 367-390,
2000.

[4] Benoit, Anne and Plateau, Brigitte and Stewart,
William J., Memory-efficient Kronecker algorithms
with applications to the modeling of parallel systems,
Future Gener. Comput. Syst., Vol. 22(7), pp. 838-
847, 2006.

[5] J. Granta, M. Conner, and R. Tolimieri, Recur-
sive fast algorithms and the role of the tensor
product, IEEE Transaction on Signal Processing,
40(12):2921-2930, December 1992.

[6] P. W. Shor, Quantum Computing, Proceeding of the
ICM Conference, 1998.

[7] C. Tadonki and B. Philippe, Parallel Multiplication
of a Vector by a Kronecker Product of Matrices,
Journal of Parallel and Distributed Computing and
Practices, Parallel Distributed Computing Practices
PDCP, volume 3(3), 2000.

[8] C. Tadonki, G. Grosdidier, and O. Pene,An efficient
CELL library for lattice quantum chromodynamics,
ACM SIGARCH Computer Architecture News, Vol.
38(4), 2011.

[9] C.Tong and P. N. Swarztrauber, Ordered Fast Fourier
Transforms on Massively Parallel Hypercube Multi-
processor, Journal of Parallel and Distributed Com-
puting 12, 50-59, 1991.

[10] C. Van Loan,Computational Framework for the Fast
Fourier Transform, SIAM, 1992.

[11] http://openmp.org/

[12] http://www.cines.fr

4

