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LTCI, Telecom ParisTech & CNRS

46, rue Barrault, 75013 Paris (France)

gfort@telecom-paristech.fr

LAL & LRI, University Paris-Sud & CNRS

91898 Orsay, France

balazs.kegl@gmail.com

Abstract

We propose a novel adaptive MCMC algorithm

named AMOR (Adaptive Metropolis with On-

line Relabeling) for efficiently simulating from

permutation-invariant targets occurring in, for

example, Bayesian analysis of mixture models.

An important feature of the algorithm is to tie

the adaptation of the proposal distribution to the

choice of a particular restriction of the target

to a domain where label switching cannot oc-

cur. The algorithm relies on a stochastic approx-

imation procedure for which we exhibit a Lya-

punov function that formally defines the crite-

rion used for selecting the relabeling rule. This

criterion reveals an interesting connection with

the problem of optimal quantifier design in vector

quantization which was only implicit in previous

works on the label switching problem. In bench-

mark examples, the algorithm turns out to be fast-

converging and efficient at selecting meaningful

non-trivial relabeling rules to allow accurate pa-

rameter inference.

1 Introduction

Adaptive Metropolis (AM) [1] is a powerful recent algo-

rithmic tool in numerical Bayesian data analysis. AM

builds on a well-known Markov Chain Monte Carlo

(MCMC) algorithm but optimizes the rate of convergence
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to the target distribution by automatically tuning the de-

sign parameters of the algorithm on the fly. In the case

of AM, the adaptive parameter tuning rule relies on the

availability of an online estimate of the covariance of the

target distribution. AM is considered a pioneering contri-

bution in adaptive MCMC methodology, and it represents

a significant step towards developing self-tuning, turn-key

sampling algorithms which are necessary for using MCMC

approaches in high throughput data analysis. The optimal-

ity criterion considered in AM relies on theoretical results

derived when the target distribution is multivariate Gaus-

sian [2, 3]. When the target is multi-modal or concentrated

around a non-linear manifold, the algorithm still applies but

its optimality is no longer guaranteed, and its practical per-

formance is often suboptimal.

An important case where AM usually fails is when the tar-

get is the posterior distribution in Bayesian inference on a

mixture model. In this case the mixture likelihood is in-

variant to permuting some of the mixture components, and

the chosen prior often does not favor any permutation ei-

ther. Although we usually have “nice” genuinely unimodal

posteriors of the parameters of well-identified components,

the posterior is highly multimodal with exponentially many

peaks, one for each permutation of the components. Run-

ning a well-mixing MCMC on such a model results in use-

less marginal estimates for the parameters of the individual

components due to the confusion between all possible la-

belings. This phenomenon is called label switching. Sev-

eral approaches have been proposed to deal with this prob-

lem, usually in a post-processing step after the posterior

sample has been produced [4, 5, 6, 7, 8, 9, 10, 11]. They all

aim to solve the identifiability problem in order to produce

meaningful marginal posteriors for the mixture parameters.

Running vanilla AM on such a model has two pitfalls. If

the chain does not mix well, we get stuck in one of the

modes. The adaptive proposal can then be efficient but it is
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unclear what the empirical distribution of the chain is and

it is quite likely that the results of inference will be ulti-

mately biased with respect to the posterior distribution. On

the other hand, if the MCMC chain does switch between

components, the online sample covariance estimate will be

too broad, resulting in poor adaptive proposals and slow

convergence. Note that the latter situation is usually preva-

lent when using trans-dimensional samplers based on the

Reversible Jump approach [4]: in this case, the dimension-

changing moves force label switching and running an em-

bedded AM algorithm is, in our experience, almost useless.

To solve these challenging issues, we develop an Adaptive

Metropolis algorithm with Online Relabeling (AMOR).

The main idea is to combine the online relabeling strat-

egy of [5] with the AM algorithm of [1]. This results in

a doubly adaptive algorithm that uses the sample statistics

both for (i) adapting its proposal and for (ii) redefining the

region onto which it constrains the chain by attempting re-

labeling in each iteration. We prove two important facts

about the AMOR algorithm. First, we show that when the

adaptation is frozen, the target of the algorithm is indeed

a restriction of the original target distribution to one of its

symmetric “modes”. Thus, except for the automated selec-

tion of a particular relabeling strategy, the proposed algo-

rithm does not modify the target distribution, a feature that

is missing in some of the procedures commonly used to

remedy label-switching. We also establish the existence of

a Lyapunov function for AMOR, that is, a quantitative cri-

terion which defines the set of possible limiting relabeling

rules. This allows us to combine relabeling with adaptive

proposals, something that is impossible in the usual setup

where relabeling is done on the MCMC outcome in a post-

processing step. The proofs of these results - to be found

in the supplementary material - also unveil interesting con-

nections with the problem of optimal quantifier design in

vector quantization for which we prove an extension of

known results regarding quantification using Mahalanobis

divergence.

The rest of the paper is organized as follows. In Section 2

we formalize the problem and motivate AMOR on a real-

world example. In Section 3, we derive the new online

relabeling procedure based on AM and present our main

convergence results. We show experimental results in Sec-

tion 4 and conclude in Section 5.

2 Adaptive Metropolis and label switching

In this section we briefly provide some more background

regarding AM and the label switching problem. Readers

familiar with these notions may skip this section.

We consider using MCMC sampling to explore the poste-

rior distribution

π(x) ! p(x|y) ∝ p(y|x)p(x)

of the parameters x ∈ X given the observation y. The pos-

terior π(x), whose normalization constant is usually un-

known, can be explored by running a Markov chain (Xt)
with stationary distribution π. In this context, π is also said

to be the target distribution of the MCMC chain. The Sym-

metric Random Walk Metropolis algorithm (SRWM; [12];

corresponding to the blue steps in Figure 2 in Section 3)

is one of the most popular techniques for simulating such

a chain (Xt). In SRWM the user has to provide a sym-

metric proposal kernel that will be used to propose a new

sample X̃ given the previous sample Xt−1. When the pos-

terior is a distribution over a continuous space X = R
d,

the most common proposal kernel is a multivariate Gaus-

sian N
(

· |Xt−1,Σ
)

.

The goal of Adaptive Metropolis (AM) (corresponding to

the blue and green steps in Figure 2) is to automatically

calibrate the design parameter Σ of SRWM. When the tar-

get π(x) is multivariate Gaussian with covariance Σπ , the

optimal choice of Σ is of the order of (2.38)2Σπ/d [2, 3].

In practice, Σπ is unknown thus motivating the use of an

estimate of the covariance of the posterior based on sam-

ples (X1, . . . , Xt−1) generated so far. From a theoretical

point of view, the conditional distribution of Xt given the

past then depends on the whole past, rendering the analysis

of AM more challenging. The convergence of AM has been

recently addressed under quite general conditions (see, e.g.,

[13, 14] and references therein).

The optimal choice for Σ is appropriate only when the tar-

get distribution is strongly unimodal [3]. If the data y is

assumed to be drawn independently from a mixture model,

its likelihood is of the form

p(y|x) =
∏

i

M
∑

m=1

αmf(yi|φ(m)),

where
∑

i αi = 1 and αi ≥ 0, φ(m) denotes the n-

dimensional parameter vector of the mth component, and

the parameter space is a subset of (R+×R
n)M . The likeli-

hood p(y|x) in this case is invariant under any permutation

of the mixture components. If the prior p(x) is exchange-

able, that is, it also does not favor a particular permutation,

then the posterior π(x) inherits the permutation invariance.

To illustrate the challenges of inference in this model, we

present an example motivated by a signal processing prob-

lem of the water Cherenkov signals of the Pierre Auger Ob-

servatory [15]. Figure 1(a)-1(b) display the MCMC sam-

ple corresponding to a single run of AM on an exponential

mixture where the rates are known: only the location pa-

rameters and the mixture weights are estimated. A flat prior

is taken. The red variable gets stuck in one of the mixture

components, whereas the blue, green, and brown variables

visit all the three remaining components. Marginal esti-

mates computed for the blue, green, and brown variables

are then mostly identical as seen on Figure 1(b). In addi-

tion, the shaded ellipses, depicting the marginal posterior
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Rémi Bardenet, Olivier Cappé, Gersende Fort, Balázs Kégl

covariances of each component’s parameters, indicate that

the resulting empirical covariance estimate is very broad,

resulting in poor efficiency of the adaptive algorithm.

Several approaches have been proposed to deal with the la-

bel switching problem. The first solution consists in mod-

ifying the prior in order to make it select a single permu-

tation of the variables, introducing an identifiability con-

straint [4]. This solution is known to cause artificial biases

with respect to the posterior by not respecting its topol-

ogy [7]. An effort has then been made to adapt to the es-

timated posterior surface through the design of relabeling

algorithms [6, 7] that process the MCMC sample after the

completion of the simulation run. These techniques look

for a permutation Pt of each individual sample point Xt

so as to minimize a posterior-based criterion depending on

the whole chain history. [5] proposed an online version of

the relabeling procedure in which the simulation of each

Xt is followed by a permutation Pt of its components. The

permutation Pt is chosen to minimize a user-defined crite-

rion that depends only on the past history of the chain up to

time t. The major advantage of this online approach is that

it is compatible with our objective of solving label switch-

ing “on the fly” in order to optimize AM for permutation-

invariant models.

In both batch and online relabeling algorithms, inference

is carried out by using relabeled samples. Since the per-

mutation steps in the MCMC procedure modify the dis-

tribution of the chain (Xt), the target distribution is no

longer the posterior π(x). [8] showed that, empirically,

relabeling induces the learning of an appropriate identifi-

ability constraint, but the existence of a target distribution

and its relation with the original target π(x) has been an

open problem, meaning that these relabeling techniques

have remained mostly heuristics. [11] recently proved a

convergence result for a non-adaptive, batch, identifiabil-

ity constraint-based relabeling procedure, where the con-

straint however depends on both the unrelabeled sample

and the user. Our ultimate goal is to prove a similar but

sample- and user-independent result, tightening adaptivity

of the MCMC procedure with adaptivity of the identifiabil-

ity constraint.

3 An adaptive online relabeling algorithm

From now on, we consider the general case of MCMC

sampling from a target distribution with density π(x) on

X ⊆ R
d with respect to (w.r.t.) the Lebesgue measure, with

d = qM . Let P be a finite group of d×d block permutation

matrices, indexed by some permutations ν of {1, ...,M},

acting on X as follows: for x = (x1, ..., xM ) ∈ R
d, Pνx =

(xν−1(1), ..., xν−1(M)). As an example, let us take d = 6
dimensions divided in three blocks of size 2. This would

correspond to having a mixture model with M = 3 com-

ponents and q = 2 parameters per component. The 6 × 6

matrix associated to the permutation ν that sends 1 onto 2,

2 onto 3 and 3 onto 1 is

Pν =





0 0 I2
I2 0 0
0 I2 0



 ,

and for x = (1, 2, ..., 6)T , Pνx = (5, 6, 1, 2, 3, 4)T .

Let us now assume that π is invariant under the action of

P , i.e. π(Px) = π(x) for any P ∈ P . Our goal is

to isolate a single mode out of the many identically re-

peated symmetric modes of the posterior. Formally, we

are interested in restricting the target π to a fundamen-

tal domain D of the action of P , that is, finding a subset

D ⊂ X which is minimal for the inclusion and for which

{Px : x ∈ D, P ∈ P} = X , up to a set of Lebesgue

measure zero. Following [5, 6], we will select D so that

the sample looks as Gaussian as possible, since we want to

select a single mode of the symmetric modes of the target

π. For this purpose, the domain D will be defined through

the minimization of a Mahalanobis-type criterion.

For a d× d invertible covariance matrix Σ, let

N (x|µ,Σ) = 1

(2π)d/2
1√
detΣ

exp

(

−1

2
L(µ,Σ)(x)

)

be the density of a Gaussian distribution on R
d with mean

µ and covariance matrix Σ, where

L(µ,Σ)(x) = (x− µ)TΣ−1(x− µ).

3.1 Derivation of the algorithm

Let C+
d be the set of real d × d symmetric positive definite

matrices, and let θ ∈ R
d × C+

d . θ will later on be taken

to be the concatenation of the mean and covariance of the

chain (Xt), but for now, it is fixed to an arbitrary value.

AMOR combines two actions: (i) sample a chain with tar-

get proportional to π D where D is a fundamental domain

of the action of P and (ii) learn the domain D on the fly

(see Figure 2).

First assume that the adaptation is frozen, that is, consider

AMOR when steps 12 and 13 in the pseudocode in Figure 2

are removed. In this case, we prove in Proposition 1 that

our algorithm is a MCMC sampler with target distribution

πθ(x) = Z−1
θ π(x) Vθ

(x), where Zθ =

∫

Vθ

π(x)dx,

(1)

and Vθ is defined by

Vθ = {x : Lθ(x) = min
P∈P

Lθ(Px)}.

In other words, πθ(x) is the initial target π(x) restricted to

the nearest-neighbor (Voronoı̈) cell Vθ defined by the dis-

tortion measure Lθ.
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(b) AM: component posteriors
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(d) AMOR: component posteriors

Figure 1: The results of AM (top row) and AMOR (bottom row) algorithms on a mixture of exponential components.

The right panels show the parameters of the four components (black dots: the x-coordinates are the location parameters

φ(m) and the y-coordinates are the mixture weights α(m)), the (unnormalized) mixture distribution (blue curve), and the

marginal posteriors of the four location parameters (colored histograms). Colored ellipses are exp(1/2)-level sets of

Gaussian distributions: the means are the Bayesian estimates for the location and weight parameters of each component,

and the covariance is the marginal posterior covariance of each location/weight couple. The left panels show the four

chains of the location parameters φ(m) (light colors), the running means (dark colors), and the mean of the running means

(black curve). The AM algorithm shows heavy label switching among the three rightmost components whereas the AMOR

algorithm separates the components nicely.

Proposition 1. Let θ = (µ,Σ) ∈ R
d × C+

d and c > 0. De-

fine a sequence {Xt, t ≥ 0} as prescribed by Figure 2: set

X0 ∈ Vθ and for t ≥ 0, (i) sample X̃ ∼ N (·|Xt, cΣ);
(ii) conditionally on X̃ , draw P̃ uniformly over the set

argminP∈PLθ(PX̃); (iii) set Xt+1 = P̃ X̃ with proba-

bility α(Xt, P̃ X̃) and Xt+1 = Xt otherwise, where the

acceptance ratio α is given by

α(x, x̃) = 1 ∧ π(x̃)

π(x)

∑

Q∈P
N (Qx|x̃, cΣ)

∑

Q∈P
N (Qx̃|x, cΣ) . (2)

Then {Xt, t ≥ 0} is a Metropolis-Hastings Markov chain

with invariant distribution πθ.

Proof We first prove by induction that Xt ∈ Vθ for any

t ≥ 0. This holds true for t = 0. Assume that Xt ∈ Vθ. By

construction, P̃ X̃ ∈ Vθ; therefore, Xt+1 ∈ Vθ.

Recall that for a permutation matrix P , P−1 = PT . Ob-

serve that given the current state Xt, P̃ X̃ is sampled under

the proposal distribution

q̃θ(xt, x) =
∑

P∈P

pθ(P |PTx)N (PTx|xt, cΣ) ,

where the conditional distribution pθ(·|X) is the uniform

distribution over argminP∈PLθ(PX). As P is a group,

pθ(·|PX) = pθ(·|X) for any P ∈ P . Furthermore, for

any x ∈ Vθ, the support of the distribution q̃θ(x, ·) is in Vθ.

This implies that for any x, x′ ∈ Vθ,

q̃θ(x, x
′) ∝

∑

P∈P

N (Px′|x, cΣ) .
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AMOR
(

π(x), X0, T , µ0,Σ0, c
)

1 S ← ∅
2 for t ← 1 to T

3 Σ ← cΣt−1 ⊲ scaled adaptive covariance

4 X̃ ∼ N
(

· |Xt−1,Σ
)

⊲ proposal

5 P̃ ∼ argmin
P∈P

L(µt−1,Σt−1)

(

PX̃
)

⊲ pick an optimal permutation

6 X̃ ← P̃ X̃ ⊲ permute

7 if
π(X)

∑

P N
(

PXt−1|X,Σ
)

π(Xt−1)
∑

P N
(

PX|Xt−1,Σ
)> U [0, 1] then

8 Xt ← X ⊲ accept

9 else

10 Xt ← Xt−1 ⊲ reject

11 S ← S ∪ {Xt} ⊲ update posterior sample

12 µt ← µt−1 +
1

t

(

Xt − µt−1

)

⊲ update running mean and covariance

13 Σt ← Σt−1 +
1

t
((Xt − µt−1) (Xt − µt−1)

⊺ − Σt−1)

14 return S

Figure 2: The pseudocode of the AMOR algorithm. The steps of the classical SRWM algorithm are in blue, the adaptive

MH algorithm adds the green steps, and the new online relabeling steps are in red. Notice the adaptation of both the

proposal (line 4) and the selection mechanism through the dependence of L(µ,Σ) on (µ,Σ). Note that for practical reasons,

a small εId is often added to the covariance matrix in line 3, but [16] recently confirmed that core AM does not lead to

degenerate covariances. Note also that line 5 is usually a simple assignment of the optimal permutation. In case of ties, we

draw uniformly from the finite set of optimal permutations.

Therefore, for any x, x′ ∈ Vθ,

α(x, x′) = 1 ∧ πθ(x)

πθ(x)

∑

P∈P
N (Px|x′, cΣ)

∑

P∈P
N (Px′|x, cΣ)

= 1 ∧ πθ(x
′)

πθ(x)

q̃θ(x
′, x)

q̃θ(x, x′)
.

Vθ is a fundamental domain of the action of P on X . It

contains only one copy of each genuine mode of π and it

is sufficient to consider the restriction πθ of π to Vθ: ∀x ∈
X , ∃P ∈ P and y ∈ Vθ s.t. x = Py and π(x) = π(y)
(by the permutation invariance of π). The sets (PVθ)P∈P ,

where PVθ = {Px : x ∈ Vθ}, cover X . If θ is further

taken such that no P exists with µ = Pµ or PΣPT = Σ,

then the sets (PVθ)P∈P are pairwise disjoint. Proofs of

these claims can be found in the supplementary material.

To sum up, we have a family of cells (PVθ)P∈P that are

permutations of each other, and where each cell PVθ is the

support of a permuted copy of the landscape of π (Figure

3). In view of the definition of Vθ and Lθ, forcing the chain

to stay in Vθ means that we want to make the sample look

“as unimodal as possible”.

The second step now is to find a convenient θ in such a way

that MH is optimized: based on [3], we want to choose the

covariance matrix Σ such that Σ is proportional to the co-

variance matrix of πθ. This implies that θ = (µ,Σ) solves

the fixed point equations

µ =

∫

xπθ(x)dx, Σ =

∫

(x− µ)(x− µ)Tπθ(x)dx.

(3)

To achieve this goal, the MH-online relabeling (steps 3 to

11 in Figure 2) is combined with the adaptive steps 12

and 13. AMOR can thus be described as follows: let

{Kθ, θ ∈ R
d×C+

d } be the family of MH kernels described

by Proposition 1. The posterior sample S in AMOR is ob-

tained by running adaptive MCMC: given an initial value

θ0 = (µ0,Σ0), define by induction {(Xt, θt), t ≥ 0} as

follows:

• Sample Xt ∼ Kθt−1
(Xt−1, ·),

• Update the parameter:

θt = θt−1 +
1

t
H(Xt, θt−1), (4)

where

H(x, θ) = (x− µ, (x− µ)(x− µ)T − Σ). (5)

Recent results on convergence of adaptive MCMC show

that when this algorithm converges, there exists θ⋆ ∈
95
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Figure 3: Examples of tessellations (PVθ)P∈P . (a) The plane is always cut into two parts in a “butterfly” shape. The

central intersection point can move along the first diagonal, eventually until ∞. (b) Borders between two cells in 3D are

quadratic hypersurfaces.

R
d × C+

d such that the distribution of the posterior sam-

ple {Xt, t ≥ 0} converges to πθ⋆ and n−1
∑n

t=1 f(Xt) −
πθ⋆(f) converges a.s. to zero for a wide family of func-

tions f [14]. Therefore, the empirical mean and covariance

of {Xt, t ≥ 0} converges to the expectation and covari-

ance matrix of πθ⋆ . Hence θ⋆ solves the fixed point equa-

tions (3). In Section 3.2 we will discuss sufficient condi-

tions for the convergence of AMOR.

Allowing only scalar matrices (Σt = λtI) for selection

and using fixed-covariance proposals, our relabeling mech-

anism coincides with the one of [5]. Beside the obvious

generalization to full covariance matrices and the adaptivity

of the proposal, the breakthrough of our algorithm lies in

its modification of the acceptance ratio that allows to iden-

tify the limiting distribution of the sample {Xt, t ≥ 0} and

to prove limit theorems (e.g., ergodicity and law of large

numbers).

3.2 Convergence analysis

As discussed in section 3.1, AMOR is an adaptive MCMC

algorithm such that for any θ ∈ R
d×C+

d , Kθ has its own in-

variant distribution πθ. Sufficient conditions for the conver-

gence of such algorithms have been recently derived [14].

Three main conditions are required. The first condition is

that adaptation has to be diminishing; this means that some

suitable distance between two consecutive kernels Kθt−1

and Kθt vanishes. When adaptation relies on stochastic

approximation as in the case of AMOR, this condition is

easy to check [14, 13]. The second condition is the con-

tainment condition: roughly speaking, a kind of uniform-

in-θ ergodic behavior of the kernels {Kθ, θ ∈ R
d × C+

d } is

required. As shown in [14, 13], this property is related to

the stability of the random sequence {θt, t ≥ 0}. The third

condition is to control the weak convergence of the random

invariant distributions {πθt , t ≥ 0} to the limiting target

πθ⋆ . In the case of AMOR, this amounts to control both the

stability and the almost sure convergence of the sequence

{θt, t ≥ 0}.

Therefore, a key ingredient for the proof of the convergence

of AMOR is to show the stability and the convergence of

the stochastic approximation sequence {θt, t ≥ 0}. Exist-

ing results cannot apply since the draws are neither i.i.d.

nor Markovian. However, since the draws Xt are obtained

by applying a new kernel at each iteration, our idea is to

adapt the existing results for the Markovian case. While

the full proof of convergence of AMOR is out of the scope

of this paper, we address here one of its most important as-

pects which unveils a novel relation between relabeling and

vector quantization.

The main tool for the stability and convergence of stochas-

tic approximation algorithms is the existence of a Lya-

punov function [17]. The space R
d × C+

d is endowed with

the scalar product 〈θ1, θ2〉 = µT
1 µ2 + Trace(Σ1Σ2). A

continuously differentiable function w : Rd × C+
d → R

+

is a Lyapunov function for the mean field h if (i) for any

θ ∈ R
d × C+

d , 〈∇w(θ), h(θ)〉 ≤ 0; (ii) the level sets

{w ≤ C}, C > 0, are compact subsets of Rd × C+
d . When

w(F) has empty interior, where F = {θ ∈ R
d × C+

d :
〈∇w(θ), h(θ)〉 = 0}, then the sequence {θt, t ≥ 0} de-

fined by (4) converges to F [18]. Proposition 2 shows that

the function w given by w(θ) = −
∫

logN (x|θ)πθ(x)dx
is a natural candidate for the Lyapunov function. It is also
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proven that F is the set of points (µ,Σ) satisfying the fixed

point equation (3).

Proposition 2. Let us consider the AMOR algorithm (see

Figure 2) with quadratic loss

Lθ(x) = (x− µ)TΣ−1(x− µ).

Define the mean field h on R
d × C+

d by

h(θ) = E [H(X, θ)]

=
(

µπθ
− µ, (µπθ

− µ)(µπθ
− µ)T +Σπθ

− Σ)
)

,

and let

Θ = {θ ∈ R
d × C+

d : ∀P ∈ P ,Σ 6= PΣPT or µ 6= Pµ}.

Then 〈∇w(θ), h(θ)〉 ≤ 0 for any θ ∈ Θ and

〈∇w(θ), h(θ)〉 = 0 iff θ = (µ,Σ) solves the fixed point

equation (3).

The proof of Proposition 2 is given in the supplementary

material (Corollary 1). We also show that for any θ ∈ Θ,

w(θ) is, up to an additive constant, the Kullback-Leibler

divergence between N (·|θ) and πθ. Equivalently w(θ) is

the Kullback-Leibler divergence between the original un-

relabeled posterior π and a mixture of Gaussians, whose

component parameters are images of each other through

the symmetries that leave π invariant. Finally, Proposition

3 establishes that when θ ∈ Θ, w(θ) is a distortion mea-

sure in vector quantization [19], which is the key property

for the proof of Proposition 2, and unveils a novel link be-

tween clustering and relabeling. Notice that w(θ) is exactly

a distortion measure, as the first term of the right-hand side

of Proposition 3 is constant over the set {PΣPT , P ∈ P}.

Proposition 3. For any θ ∈ Θ,

w(θ) =
1

2
ln det(Σ) +

1

2

∫

min
P∈P

L(Pµ,PΣPT )(x)π(x)dx.

4 Experiments

We benchmarked the AMOR algorithm on two Bayesian

inference tasks. The first one is the problem of estimating

the nine parameters ψ = (αi, µi, σi)i=1,2,3 of a mixture

of three one-dimensional Gaussians
∑3

i=1 αiN (.|µi, σi),
taking wide flat priors over each parameter. We compared

four algorithms: (i) an SRWM with an ordering constraint

on the three means µ1 ≤ µ2 ≤ µ3, (ii) the original online

relabeling algorithm of [5], (iii) the same online algorithm

with modified acceptance ratio according to (2) (henceforth

denoted as MC for Modified Celeux), and (iv) the AMOR

algorithm. To quantify the performance after T iterations,

we first selected the permutation of the running posterior

mean components (µ̂
(T )
i )i=1,2,3 which minimized the sum

of the ℓ2 errors on the three estimates of the means µi, i =

1, 2, 3, and we considered the latter sum taken at this best

permutation of the posterior mean:

ST = argmin
τ∈S3

3
∑

i=1

(µ̂
(T )
τ(i) − µi)

2.

We repeated this experiment 100 times on 100 different

datasets coming from parameters generated as follows:

draw (αi) ∼ D(1), µi ∼ U(0,1) i.i.d., and σi ∼ U(0,0.05)

i.i.d. This choice of generative distribution ensured a rea-

sonable number of datasets containing overlapping Gaus-

sians, thus provoking switching. Figure 5(a) depicts the

performance measure ST averaged over the 100 datasets

of this 9D experiment, versus time T . We use this av-

eraging as a way to estimate the expected performance

measure on a class of problems given by the generative

distribution. AMOR significantly outperforms other ap-

proaches as it converges faster on average and to a better

solution. As expected, imposing an ordering constraint on

the means (RWM+OC) reveals a poor strategy leading to

artificial additional bias. Note finally that the modification

of the acceptance ratio did not increase drastically the per-

formance of the Online Relabeling algorithm of [5] (“Orig-

inal RWM+OR” vs. “Modified RWM+OR”), which is not

a surprise since the additional factor in the ratio (2) is of-

ten close to 1. Figure 4 provides insight into how the two

best methods (AMOR and MC) behaved after T1 = 1K

and T2 = 30K iterations, presenting scatter plots of perfor-

mances S1,000 and S30,000. Each point corresponds to one

of the 100 datasets. Clearly, starting from a rather random

distribution of the errors, AMOR took the advantage after

30k iterations, while a few cases were still better treated by

MC.

We also performed a higher dimensional experiment to fur-

ther investigate the comparison between AMOR and CC.

This time, the goal was to estimate the three means of a 10-

dimensional Gaussian mixture
∑3

i=1 1/3 N (.|µi, 0.1I10).
Again, 100 datasets of 100 points each were generated with

µi ∼ U(0,1) i.i.d. Again, as seen Figure 5(b), AMOR stabi-

lizes earlier and selects a better region of R30 than MC, thus

illustrating the interest of combining adaptive selection and

proposal mechanisms.

5 Conclusion

We derived AMOR, a novel MCMC algorithm for simulat-

ing from a permutation invariant target. AMOR combines

Adaptive Metropolis with Online Relabeling. We justified

its use by showing that it relies on a stochastic approxima-

tion procedure for which we exhibited a Lyapunov func-

tion. Experiments show that AMOR outperforms exist-

ing approaches for Bayesian inference in Gaussian mixture

models. Besides, the theoretical framework of its analysis

is appealing because (i) it generalizes previous approaches

97



Adaptive Metropolis with Online Relabeling

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!
!

!

!

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

Squared Error of AMOR

S
q
u
ar
ed
E
rr
o
r
o
f
M
C

(a) S1,000 in the 9D experiments
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Figure 4: Experimental comparison of the performance measure S for AMOR (x-axis) versus Modified Celeux (y-axis) in

the 9D experiment.
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Figure 5: Experimental comparison of several relabeling approaches. The plots show the performance measure ST vs. T
averaged over 100 datasets drawn from a common generative model.

[5], (ii) it paves the way towards future work on the asymp-

totic behavior of relabeling algorithms and convergence of

the samples {Xt, t ≥ 0}, and (iii) the Lyapunov function

we derived exhibits an elegant relation with vector quanti-

zation techniques.

However, these features come at a price: future work

should try to remove the need to sweep over all permu-

tations in P , which is prohibitive when using AMOR with

large |P|. Future work could also study variants of AMOR,

using, e.g., a soft clustering selection mechanism, replacing

the indicator appearing in the definition of πθ by a logistic

indicator, or equivalently relabel each new Gaussian sam-

ple in AMOR by sampling from a multinomial distribution

over permutations conditionally on the history statistics, a

technique similar in spirit to probabilistic relabeling algo-

rithms developed in [9] and [10].
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