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two benchmark models predicting a heavy particle decaying to a WZ pair.

PACS numbers: 12.60.Nz, 12.60.Cn

I. INTRODUCTION

The study of electroweak boson pair production is a
powerful test of the spontaneously broken gauge symme-
try of the Standard Model (SM) and can be used as a
probe for new phenomena beyond the SM. Heavy parti-
cles that can decay to gauge boson pairs are predicted by
many scenarios of new physics, including the Extended
Gauge Model (EGM) [1], Extra Dimensions [2, 3], and
Technicolor models [4–6].

This paper describes the search for a resonant struc-
ture in WZ → ℓνℓ′ℓ′ (ℓ, ℓ′ = e, µ) production above 200
GeV. The dataset used corresponds to an integrated lu-
minosity of 1.02 fb−1, collected by the ATLAS detector
at the Large Hadron Collider in pp collisions at a center-
of-mass energy of

√
s = 7 TeV during the 2011 data tak-

ing. Events are selected with three charged leptons (elec-
trons or muons) and large missing transverse momentum
(Emiss

T ) due to the presence of a neutrino in the final state.
Two benchmark models, which predict the existence of
narrow heavy particles decaying intoWZ, are used to in-
terpret the results: the EGM, through heavy vector bo-
sonW ′ production, and the Low Scale Technicolor model
(LSTC) [4], through technimeson production.

The couplings of the EGM W ′ boson to the SM parti-
cles are the same as those of the W boson, except for the
coupling to WZ, whose strength is gW ′WZ = gWWZ ×
mWmZ/m

2
W ′ , where gWWZ is the SM WWZ coupling

strength, andmW ,mZ andmW ′ are the masses of theW ,
Z and W ′ particles, respectively. Strong bounds exist on
mW ′ fromW ′ → ℓν searches [7–10] assuming the Sequen-
tial Standard Model (SSM) as the benchmark model, in
which the W ′ coupling to WZ is strongly suppressed.
The W ′ →WZ search presented in this paper is thus in-
dependent of, and complementary to, W ′ → ℓν searches.
Searches for the EGMW ′ boson in theWZ channel have
been performed at the Tevatron and W ′ bosons with a
mass between 180 GeV and 690 GeV are excluded at 95%
confidence level (CL) [11, 12].

In the LSTC model, technimesons with narrow widths
are predicted which decay to WZ. Examples are the
lightest vector technirho ρT and its axial-vector partner
techni-a aT. A previous search in the WZ decay channel

has been performed by the D0 experiment and ρT techni-
mesons with a mass between 208 GeV and 408 GeV are
excluded at 95% CL under the specific mass hierarchy
assumption mρT

< mπT
+mW , where mρT

, mπT
are the

masses of the technirho and technipion, respectively [13].

II. THE ATLAS DETECTOR

The ATLAS detector [14] is a general-purpose particle
detector with an approximately forward-backward sym-
metric cylindrical geometry, and almost 4π coverage in
solid angle [15]. The inner tracking detector (ID) covers
the pseudorapidity range of |η| < 2.5 and consists of a
silicon pixel detector, a silicon microstrip detector, and a
transition radiation tracker. The ID is surrounded by a
thin superconducting solenoid providing a 2 T magnetic
field, and by a calorimeter system covering an η range up
to 4.9, which provides three-dimensional reconstruction
of particle showers. For |η| < 2.5, the electromagnetic
calorimeter is finely segmented and uses lead as absorber
and liquid argon (LAr) as active material. The hadronic
calorimeter uses steel and scintillating tiles in the barrel
region, while the endcaps use LAr as the active material
and copper as absorber. The forward calorimeter also
uses LAr as active medium with copper and tungsten as
absorber. The muon spectrometer (MS) is based on one
barrel and two endcap air-core toroids, each consisting
of eight superconducting coils arranged symmetrically in
azimuth, and surrounding the calorimeter. Three layers
of precision tracking stations, consisting of drift tubes
and cathode strip chambers, allow a precise muon mo-
mentum measurement up to |η| < 2.7. Resistive plate
and thin-gap chambers provide muon triggering capabil-
ity up to |η| < 2.4.

III. MONTE CARLO SIMULATION

Monte Carlo (MC) simulated samples are used to
model signal and background processes. Events are gen-
erated at

√
s = 7 TeV and the detector response simula-

tion [16] is based on the geant4 program [17].
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The simulation of the signals, both for the EGM W ′

and the LSTC ρT production, is based on the leading-
order (LO) pythia [18] event generator, with modi-
fied leading-order (LO∗) [19] parton distribution function
(PDF) set MRST2007 LO∗ [20]. By default, pythia also
includes aT production, as discussed below. A mass-
dependent k-factor is used to rescale the LO∗

pythia

prediction to the next-to-next-to-leading order (NNLO)
cross section. The k-factor is computed using the zw-

prod program [21] in the approximation of zero-width
for the resonance; its value decreases with the reso-
nance mass from 1.17 at mW ′ = 200 GeV to 1.08 at
mW ′ = 1 TeV.

The LSTC simulated samples correspond to the follow-
ing set of parameters: number of technicolors NTC = 4,
charges of up-type and down-type technifermions QU =
1, QD = 0, mixing angle between technipions and elec-
troweak gauge boson longitudinal component sinχ =
1/3. The ρT can decay both to WZ and πTW ; if the
ρT and πT masses are degenerate, the branching ratio
BR(ρT → WZ) is 100%. Two-dimensional exclusion
regions are set on the technicolor production in the (mρT

, mπT
) plane. In addition, for comparison purpose with

previous results [13], the relation mρT
= mπT

+ mW is
used when extracting one-dimensional limits on the ρT
mass, which entails a value of BR(ρT → WZ) = 98%.
The axial-vector partner of the ρT, the aT, also decays
to WZ, and depending on its mass, contributes to the
WZ production cross section. Two scenarios for the
value of the mass of the aT technimeson are considered:
maT

= 1.1 × mρT
, which is the standard value imple-

mented in pythia, and maT
≫ mρT

, which is simulated
by removing the aT contribution at the generator level.

The SM WZ production, which is an irreducible back-
ground for this search, is modeled by the mc@nlo event
generator [22], which incorporates the next-to-leading-
order (NLO) matrix elements into the parton shower by
interfacing to the herwig program [23]. The underlying
event is modeled with jimmy [24]. Other SM processes
that can mimic the same final state include: ZZ → ℓℓℓ′ℓ′,
where one of the leptons is not detected or fails the se-
lection requirements; Z(→ ℓℓ) + γ, where the photon is
misidentified as an electron; and processes with two iden-
tified leptons and jets, namely Z production in associa-
tion with jets (Z+jets), tt̄ and single top events, where
leptons are present from b- or c-hadron decays or one jet
is misidentified as a lepton. SM ZZ events are simulated
at LO using herwig and W/Z + γ production is mod-
eled with sherpa [25]. The cross sections for these two
processes are corrected to the NLO calculation computed
with mcfm [26, 27]. TheW/Z+jets process is modeled at
LO using alpgen [28], and then corrected to the NNLO
cross section computed with fewz [29]. Single top and
tt̄ events are simulated at NLO using mc@nlo. The
backgrounds due to the Z+jets, tt̄ and single top pro-
cesses (called the “ℓℓ′+jets” background in this paper)
are estimated using data-driven methods and the corre-
sponding MC samples mentioned above are used only for

cross-checks.

IV. EVENT SELECTION

The data analyzed are required to have been selected
online by a single-lepton (e or µ) trigger with a threshold
of 20 GeV on the transverse energy (ET) in the electron
case and 18 GeV on the transverse momentum (pT) in
the muon case. After applying data quality requirements,
the total integrated luminosity of the dataset used in this
analysis is 1.02± 0.04 fb−1 [30, 31].
Due to the presence of multiple collisions in a single

bunch-crossing, about 6 on average, each event can have
multiple reconstructed primary vertices. The vertex hav-
ing the largest sum of squared transverse momenta of as-
sociated tracks is selected as the primary vertex of the
hard collision and it is used to compute any reconstructed
quantity referred to the primary interaction vertex. To
reduce the contamination due to cosmic rays, only events
where the primary vertex of the hard collision has at least
three associated tracks with pT > 0.5 GeV are considered.
Electrons are reconstructed from a combination of an

ID track and a calorimeter energy cluster, with ET >
25 GeV and |η| < 1.37 or 1.52 < |η| < 2.47, avoiding
the transition region between the barrel and the end-
cap electromagnetic calorimeters. Candidate electrons
must satisfy the medium [32] quality definition, which is
based on the calorimeter shower shape, track quality, and
track matching with the calorimeter cluster. To make
sure candidate electrons originate from primary interac-
tion vertex, they are also required to have a longitudinal
impact parameter (|z0|) smaller than 10 mm and a trans-
verse impact parameter (d0) with significance (|d0|/σd0

)
smaller than 10, both with respect to the selected pri-
mary vertex. In addition, the electron is required to
be isolated in the calorimeter such that the sum of the
ET of the clusters around the electron within a cone of
∆R =

√

∆η2 +∆φ2 = 0.3 is less than 4 GeV. Correc-
tions are applied to account for the energy deposition
inside the isolation cone due to electron energy leakage
and additional pile-up collisions.
Muon candidates must be reconstructed in both the ID

and the MS, and the combined track is required to have
pT > 25 GeV and |η| < 2.4. Good quality is ensured by
requiring a minimum number of silicon strip and pixel
hits associated to the track. To suppress the contribution
of muons coming from hadronic jets, the pT sum of other
tracks with pT > 1 GeV, within a cone of ∆R = 0.2
around the muon track, is required to be less than 10%
of the muon pT. The muon candidate is required to be
compatible with the selected primary vertex, with |z0| <
10 mm and |d0|/σd0

< 10.
The missing transverse momentum, Emiss

T , is recon-
structed, in the range |η| < 4.5, as the negative vector
sum of calorimeter cell transverse energies, calibrated to
the electromagnetic scale [33], to which the transverse
momenta of identified muons are added.
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The WZ → ℓνℓ′ℓ′ candidate events are selected by re-
quiring two oppositely-charged same-flavor leptons with
an invariant mass within 20 GeV of the Z boson mass,
plus a third lepton and Emiss

T > 25 GeV. The trans-
verse mass of the reconstructed W boson, i.e. mW

T =
√

2pℓTE
miss
T (1− cos∆φ), where pℓT is the transverse mo-

mentum of the charged lepton and ∆φ is the opening
angle between the lepton and the Emiss

T direction in the
plane transverse to the beam, is required to be greater
than 15 GeV to suppress multijet background. Selected
events are also required to have exactly three charged
leptons to suppress the ZZ → ℓℓℓ′ℓ′ background. These
selection criteria define the signal region. Four decay
channels eνee, eνµµ, µνee and µνµµ are analyzed sep-
arately and then combined. The measurement of the
inclusive pp→WZ → ℓνℓ′ℓ′ cross section has previously
been reported by ATLAS [34]. This analysis goes further
by using the reconstructed event properties to probe for
new phenomena.
After the final selection, the transverse mass of

the WZ candidates (mWZ
T ) is examined for any reso-

nant structure. Here mWZ
T is calculated as mWZ

T =
√

(EZ
T + EW

T )2 − (pZx + pWx )2 − (pZy + pWy )2, where EZ
T

and EW
T are the scalar sums of the transverse energies

of the decay products of the Z and W candidates, re-
spectively. The Emiss

T vector is used as the estimator of
the transverse momentum of the neutrino arising from
the W boson decay.

V. BACKGROUND ESTIMATION

The dominant background for the WZ resonance
search comes from SM WZ production. Its contribution
is estimated using MC simulation. Simulated events are
required to pass the event selection criteria and the final
yield is normalized to the integrated luminosity. Lepton
reconstruction and identification efficiencies, energy scale
and resolution in the MC simulation are corrected to the
corresponding values measured in the data in order to
improve the overall modeling. Other diboson processes
such as ZZ and Zγ are also estimated using MC simula-
tion.
A data-driven approach is used to estimate the contri-

bution of the ℓℓ′+jets background in the signal region.
It is estimated by selecting a data sample containing two
leptons that pass all the quality criteria requested in the
lepton selection, and a lepton-like jet, which is defined
as a reconstructed object that satisfies all quality criteria
but fails the electron medium quality or the muon iso-
lation requirement. The overall contribution is obtained
by scaling each event by a correction factor f . The factor
f is the ratio of the probability for a jet to satisfy the full
lepton identification criteria to the probability to satisfy
the lepton-like jet criteria. The factor f is measured both
for muons and electrons in a dijet-enriched data sample
as a function of the lepton pT, and corrected for the small

contribution of leptons coming fromW and Z bosons de-
cays using MC simulation.
Data and SM predictions are compared in two ded-

icated signal-free control regions, selected by requiring
the same selection criteria as used for the signal region
except requiring mWZ

T < 300 GeV for the “SM WZ
control region”, and requiring Emiss

T < 25 GeV for the
“ℓℓ′+jets control region”. The SM WZ control region is
used to test the modeling of the irreducible background
from non-resonantWZ production, and the ℓℓ′+jets con-
trol region is used to assess the modeling of the ℓℓ′+jets
background. Good agreement between data and SM pre-
dictions is found in both control regions, as shown by the
transverse mass distribution of the W boson in the SM
WZ control region and by the invariant mass distribu-
tion of the two leptons coming from the Z boson decay
in the ℓℓ′+jets control region displayed in Fig. 1.

VI. SYSTEMATIC UNCERTAINTIES

Different sources of systematic uncertainties have been
considered. The first source is related to the lepton trig-
ger, reconstruction and identification efficiencies. These
efficiencies are evaluated with tag-and-probe methods us-
ing Z → ℓℓ, W → ℓν and J/ψ → ℓℓ events [35]. Scale
factors are used to correct for differences between data
and MC simulation. The lepton trigger efficiency scale
factors are compatible with unity and a systematic un-
certainty of 1% is considered. The lepton reconstruction
and identification scale factors are close to one and have
a systematic uncertainty of 1.2% for the electrons and
0.5% for muons [35]. The lepton isolation efficiency un-
certainties are estimated to be 2% for electrons and 1%
for muons.
The second source of uncertainty is related to the lep-

ton energy, momentum and Emiss
T reconstruction. Ad-

ditional smearing is applied to the muon pT and to the
electron cluster energy in the simulation, so that they
replicate the Z → ℓℓ invariant mass distributions in data.
The uncertainty due to the lepton resolution smearing
is of the order of 0.1% [35]. The uncertainty on the
Emiss

T reconstruction receives contributions from different
sources: energy deposits due to additional pp collisions
which are in-time and out-of-time with respect to the
bunch-crossing; energy deposits around clusters associ-
ated to reconstructed jets and electrons; energy deposits
not associated to any reconstructed objects; and muon
momentum uncertainties. The total systematic uncer-
tainty on the dominant SM WZ background estimation
due to the Emiss

T uncertainties lies between (2−3)%, de-
pending on the channel considered.
The third source of uncertainty is due to the limited

knowledge of the theoretical cross sections of SM pro-
cesses, used both to evaluate WZ, ZZ and Zγ back-
ground contributions, and for subtracting contributions
of W and Z leptonic decays from the dijet sample used
for the measurement of the correction factor f . An un-
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FIG. 1: (color online) Observed and predicted W boson transverse mass (mW
T ) distribution in the SM WZ control region (a),

and dilepton invariant mass (mZ) distribution in the ℓℓ′+jets control region (b).

certainty of 7% is assigned for the WZ process, 5% for
the ZZ process and 8% for the Zγ process [27], to which
the MC statistical uncertainty is added in quadrature.
The fourth source of uncertainty is related to the un-

certainty on the ℓℓ′+jets background estimation. The
systematic uncertainty comes mainly from the uncer-
tainty on f due to differences in the kinematics and fla-
vor composition of the QCD dijet events with respect to
the ℓℓ′+jets processes, and differences in event selection
criteria for QCD dijet events and WZ candidates. The
factor f is around 0.15 for muons and 0.07 for electrons
over the full range of pT and η, with a relative uncer-
tainty between 5% and 20%. The estimated number of
events from the ℓℓ′+jets background in the signal region
using the data-driven method is 6.4±1.0(stat.)+3.2

−4.0(syst.).
A MC-based cross-check gives a consistent estimation of
4.3± 1.1(syst.) events.
The fifth source of uncertainty is related to the esti-

mation of the signal acceptance based on MC simulation.
The systematic uncertainty is mainly due to the choice
of PDF and is found to be 0.6% when comparing the
differences between the predictions of the nominal PDF
set MRST2007 LO∗ and the ones given by MSTW2008
LO [36], using the standard LHAPDF framework [37]. A
cross-check has been done using the NNPDF LO∗ [38],
CT09MCS, CT09MC1 and CT09MC2 [39] PDF sets,
leading to a compatible uncertainty.
Finally the luminosity uncertainty is 3.7% [30, 31].

VII. RESULTS AND INTERPRETATION

The numbers of events expected and observed af-
ter the final selection are reported in Table I. A total
of 48 WZ → ℓνℓ′ℓ′ candidate events are observed in
data, to be compared to the SM prediction of 45.0 ±

1.0(stat.)+4.6
−5.2(syst.) events. The expected numbers of

events for a W ′ with a mass of 750 GeV and a ρT with a
mass of 500 GeV are also reported.

The overall acceptance times trigger, reconstruction
and selection efficiencies (A× ǫ) for EGM W ′ →WZ →
ℓνℓ′ℓ′ and the LSTC ρT → WZ → ℓνℓ′ℓ′ events as im-
plemented in pythia is shown in Table II for various
WZ resonance masses. The value of A × ǫ is 6.2% for
mW ′ = 200 GeV and increases to 20.5% for mW ′ = 1
TeV. The corresponding A× ǫ for the LSTC ρT is found
to be slightly lower than that of the EGM W ′ due to the
fact that the pythia implementation of the ρT → WZ
process does not account for the polarizations of vector
bosons in their decay. A massive W ′ boson is expected
to decay predominantly to longitudinally polarized W
and Z bosons, as is the ρT technimeson. While the pro-
duction and decay with spin correlations is fully imple-
mented in pythia for W ′, spin correlation information
is not considered in the decay of the W and Z bosons in
the ρT case, hence they each decay isotropically in their
respective rest frames. This leads to a softer lepton pT
spectrum and consequently lower A× ǫ. The interpreta-
tion of the data in terms of ρT production is performed
in two different manners: the first uses the pythia im-
plementation of ρT production and decay, and the second
assumes that A× ǫ for the ρT is equal to that of the W ′.

The transverse mass distribution of the WZ candi-
dates is presented in Fig. 2 for data and background
expectations together with possible contributions from
W ′ and ρT using pythia. The ℓℓ′+jets and Zγ back-
ground contributions to the mWZ

T distribution are ex-
trapolated using exponential functions to extend over the
full mWZ

T signal region. The transverse mass distribution
is used to build a log-likelihood ratio (LLR) test statis-
tic [40], which allows the compatibility of the data with
the presence of a signal in addition to the background
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TABLE I: The estimated background yields, the observed number of data events, and the predicted signal yield predicted by
pythia for a W ′ boson with a mass of 750 GeV and a ρT technimeson with a mass of 500 GeV, are shown after applying all
signal selection cuts, for each of the four channels considered and for their combination. For the ρT production, the relation
maT

= 1.1 ×mρT is used. Where one error is quoted, it includes all sources of systematic uncertainty. Where two errors are
given, the first comes from the limited statistics of the data and the second includes systematic uncertainties.

eνee µνee eνµµ µνµµ Combined
WZ 6.2 ± 0.7 7.6 ± 0.7 9.2 ± 0.8 11.6 ± 1.0 34.6 ± 3.1

ZZ 0.25 +

−

0.07
0.11 0.48 +

−

0.14
0.11 0.37 +

−

0.15
0.11 0.63 +

−

0.16
0.11 1.7 +

−

0.5
0.3

Zγ 1.3 ± 0.7 − 1.0 ± 0.9 − 2.3 ± 1.1

ℓℓ′ + jets 1.1 ± 0.4 ± 0.7 1.3 ± 0.5 +

−

0.6
0.8 3.0 ± 0.7 +

−

1.6
1.9 1.0 ± 0.4 +

−

0.5
0.6 6.4 ± 1.0 +

−

3.2
4.0

Overall backgrounds 8.9 ± 0.4 ± 1.2 9.4 ± 0.5 +

−

0.9
1.1 13.6 ± 0.7 +

−

2.0
2.3 13.2 ± 0.4 +

−

1.3
1.2 45.0 ± 1.0 +

−

4.6
5.2

Data 9 7 16 16 48

W ′ → WZ (mW ′ = 750 GeV) 0.74 ± 0.07 0.82 ± 0.06 0.97 ± 0.06 1.10 ± 0.08 3.64 ± 0.21

ρT → WZ (mρT = 500 GeV) 0.68 ± 0.08 0.79 ± 0.08 0.97 ± 0.09 1.11 ± 0.10 3.55 ± 0.24

TABLE II: Signal A × ǫ for W ′ → WZ → ℓνℓ′ℓ′ and
ρT → WZ → ℓνℓ′ℓ′ samples as implemented in pythia, with
statistical uncertainties. Missing values for ρT correspond to
signal samples not considered.

Mass [GeV] A× ǫ for W ′ (%) A× ǫ for ρT (%)
200 6.2± 0.2 5.7± 0.2
250 8.2± 0.4 6.1± 0.2
300 10.0 ± 0.5 7.6± 0.3
350 11.6 ± 0.3 9.4± 0.3
400 13.2 ± 0.5 10.8± 0.3
450 14.5 ± 0.6 11.8± 0.3
500 15.9 ± 0.3 12.6± 0.3
550 16.9 ± 0.6 –
600 17.9 ± 0.6 13.8± 0.3
650 18.7 ± 0.6 –
700 19.4 ± 0.7 15.6± 0.4
750 19.9 ± 0.3 –
800 20.3 ± 0.7 16.1± 0.4
850 20.6 ± 0.7 –
900 20.6 ± 0.7 –
950 20.6 ± 0.7 –
1000 20.5 ± 0.3 –

to be assessed, in a modified frequentist approach [41].
Confidence levels for the signal plus background hypoth-
esis, CLs+b, and background-only hypothesis, CLb, are
computed by integrating the LLR distributions obtained
from simulated pseudo-experiments using Poisson statis-
tics. The confidence level for the signal hypothesis CLs,
defined as the ratio CLs+b/CLb, is used to determine the
exclusion limits.
The probability that the background fluctuations give

rise to an excess at least as large as that observed in
data has been computed as p-value = 1 − CLb and is
reported in Table III for the signal hypothesis of a W ′

particle with mass from 200 GeV to 1 TeV. Since no sta-

tistically significant excess is observed for any value of
the W ′ mass, limits are derived on the production cross
section times branching ratio (σ × BR(W ′ → WZ)) for
a W ′ decaying to WZ, already corrected for the A × ǫ
of the leptonic decay WZ → ℓνℓ′ℓ′. The 95% CL limit
on σ × BR(W ′ → WZ) is defined as the value giving
CLs = 0.05. The upper limit on σ ×BR(W ′ →WZ) for
pp → W ′ → WZ as a function of the W ′ mass is shown
in Fig. 3(a) and the values are reported in Table III.
Simulation of W ′ bosons is performed for mW ′ between
200 GeV and 1 TeV with a 150 to 250 GeV mass spac-
ing, and an interpolation procedure providesmWZ

T shape
templates with a 50 GeV spacing. ThemWZ

T shapes from
the fully simulated signal samples have been fitted with

 [GeV]WZ
Tm

0 100 200 300 400 500 600 700 800 900 1000

E
ve

nt
s 

/ 2
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G
eV

-110

1

10

210
data 2011
WZ
ZZ

γZ+
ll’+jets
W’(350 GeV)
W’(500 GeV)
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(500 GeV)
T

ρ
 syst⊕stat 

-1
 Ldt = 1.02 fb∫
 = 7 TeVsATLAS

FIG. 2: (color online) Observed and predicted mWZ
T distri-

bution for events with all selection cuts applied. Predictions
from three W ′ samples with masses of 350 GeV, 500 GeV
and 750 GeV and a ρT sample with a mass of 500 GeV using
pythia are also shown.
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a Crystal Ball function using RooFit [42]. The obtained
Crystal Ball parameters are fitted as a function of the
W ′ mass and the functional value for these parameters is
then used to build the mWZ

T templates for the intermedi-
ate W ′ mass points. The observed (expected) exclusion
limit on the W ′ mass is found to be 760 (776) GeV.

TABLE III: Expected and observed limit on the σ×BR(W ′ →
WZ) [pb] for W ′ production decaying to WZ, as a function
of the W ′ mass. The p-values are also reported.

W ′ Mass [GeV] Excluded σ ×BR(W ′ → WZ) [pb] p-value
Expected Observed

200 7.31 7.62 0.43
250 5.26 6.55 0.34
300 2.74 3.38 0.28
350 1.72 2.06 0.25
400 1.18 1.48 0.25
450 0.92 1.07 0.23
500 0.76 0.93 0.21
550 0.61 0.79 0.19
600 0.54 0.63 0.26
650 0.51 0.56 0.33
700 0.48 0.53 0.34
750 0.49 0.52 0.34
800 0.45 0.50 0.37
850 0.46 0.47 0.38
900 0.50 0.50 0.39
950 0.44 0.44 0.40
1000 0.48 0.46 0.35

The observed (expected) limits on σ×BR(ρT → WZ)
for the ρT technimeson are presented in Fig. 3(b) assum-
ing maT

= 1.1mρT
and unpolarized W and Z decays.

This corresponds to an observed (expected) limit on the
ρT mass of 467 (506) GeV. A limit on the ρT mass of
456 (482) GeV is obtained if maT

≫ mρT
. Assuming

A × ǫ for the ρT signal to be equal to that of the W ′

signal, which is estimated by accounting for predomi-
nantly longitudinal W and Z polarization, the observed
(expected) limit on the ρT mass is 483 (553) GeV for
maT

= 1.1mρT
, and 469 (507) GeV for maT

≫ mρT
.

Table IV summarizes these limits, which all assume the
relation mρT

= mπT
+mW .

TABLE IV: Observed (expected) limit on the ρT mass with
two different assumptions about A × ǫ for ρT and two mass
hierarchy assumptions between aT and ρT.

Excluded ρT mass [GeV]
maT

= 1.1mρT maT
≫ mρT

A× ǫ from W ′ sample 483 (553) 469 (507)

A× ǫ from ρT sample 467 (506) 456 (482)

Figure 4 shows the 95% CL expected and observed
excluded regions in the (mρT

, mπT
) plane for maT

=
1.1mρT

andmaT
≫ mρT

, respectively. Results are shown
under the two assumptions on A× ǫ for the ρT signal.

VIII. CONCLUSION

A search for resonant production of a pair of WZ
bosons with three charged leptons in the final state has
been performed using 1.02 fb−1 of data collected with the
ATLAS detector in pp collisions at

√
s = 7 TeV at the

Large Hadron Collider. No significant excess of events is
observed and upper limits are derived on the production
cross section times branching ratio of new physics using
the transverse mass of the WZ system. EGMW ′ bosons
with masses up to 760 GeV are excluded at 95% CL. Us-
ing the mass hierarchy assumption mρT

= mπT
+ mW ,

LSTC ρT technimesons with masses from 200 GeV up
to 467 GeV and 456 GeV are excluded at 95% CL for
maT

= 1.1mρT
and maT

≫ mρT
respectively using the

pythia implementation of ρT production. Assuming the
kinematics of the W ′ production and decay are valid for
the ρT technimeson, ρT with masses from 200 GeV up to
483 GeV and 469 GeV are excluded for maT

= 1.1mρT

and maT
≫ mρT

respectively.
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FIG. 3: The observed and expected limits on σ × BR(W ′ → WZ) for W ′ → WZ (a) and pp → ρT , aT → WZ (b). The
theoretical prediction is shown with a systematic uncertainty of 5% due to the choice of PDF and is estimated by comparing
the differences between the predictions of the nominal PDF set MRST2007 LO∗ and the ones given by MSTW2008 LO PDF
using the LHAPDF framework. The green and yellow bands represent respectively the 1σ and 2σ uncertainty on the expected
limit.
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≫ mρT (b), above the curves. Two different assumptions about the ρT signal A× ǫ are used: assuming a ρT signal where
A× ǫ is equal to that of the W ′ signal and assuming a ρT signal where A× ǫ is obtained through its implementation in pythia.
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Garćıa-Estañ168, V. Perez Reale34, L. Perini90a,90b, H. Pernegger29, R. Perrino73a, P. Perrodo4, S. Persembe3a,
V.D. Peshekhonov65, K. Peters29, B.A. Petersen29, J. Petersen29, T.C. Petersen35, E. Petit4, A. Petridis155,
C. Petridou155, E. Petrolo133a, F. Petrucci135a,135b, D. Petschull41, M. Petteni143, R. Pezoa31b, A. Phan87,
P.W. Phillips130, G. Piacquadio29, A. Picazio49, E. Piccaro76, M. Piccinini19a,19b, S.M. Piec41, R. Piegaia26,
D.T. Pignotti110, J.E. Pilcher30, A.D. Pilkington83, J. Pina125a,b, M. Pinamonti165a,165c, A. Pinder119, J.L. Pinfold2,
J. Ping32c, B. Pinto125a, O. Pirotte29, C. Pizio90a,90b, R. Placakyte41, M. Plamondon170, M.-A. Pleier24,
A.V. Pleskach129, E. Plotnikova65, A. Poblaguev24, S. Poddar58a, F. Podlyski33, L. Poggioli116, T. Poghosyan20,
M. Pohl49, F. Polci55, G. Polesello120a, A. Policicchio36a,36b, A. Polini19a, J. Poll76, V. Polychronakos24,
D.M. Pomarede137, D. Pomeroy22, K. Pommès29, L. Pontecorvo133a, B.G. Pope89, G.A. Popeneciu25a,
D.S. Popovic12a, A. Poppleton29, X. Portell Bueso29, C. Posch21, G.E. Pospelov100, S. Pospisil128, I.N. Potrap100,
C.J. Potter150, C.T. Potter115, G. Poulard29, J. Poveda174, V. Pozdnyakov65, R. Prabhu78, P. Pralavorio84,
A. Pranko14, S. Prasad29, R. Pravahan24, S. Prell64, K. Pretzl16, L. Pribyl29, D. Price61, J. Price74, L.E. Price5,
M.J. Price29, D. Prieur124, M. Primavera73a, K. Prokofiev109, F. Prokoshin31b, S. Protopopescu24, J. Proudfoot5,
X. Prudent43, M. Przybycien37, H. Przysiezniak4, S. Psoroulas20, E. Ptacek115, E. Pueschel85, J. Purdham88,
M. Purohit24,z, P. Puzo116, Y. Pylypchenko63, J. Qian88, Z. Qian84, Z. Qin41, A. Quadt54, D.R. Quarrie14,
W.B. Quayle174, F. Quinonez31a, M. Raas105, V. Radescu41, B. Radics20, P. Radloff115, T. Rador18a,
F. Ragusa90a,90b, G. Rahal179, A.M. Rahimi110, D. Rahm24, S. Rajagopalan24, M. Rammensee48, M. Rammes142,
A.S. Randle-Conde39, K. Randrianarivony28, P.N. Ratoff72, F. Rauscher99, T.C. Rave48, M. Raymond29,
A.L. Read118, D.M. Rebuzzi120a,120b, A. Redelbach175, G. Redlinger24, R. Reece121, K. Reeves40, A. Reichold106,
E. Reinherz-Aronis154, A. Reinsch115, I. Reisinger42, C. Rembser29, Z.L. Ren152, A. Renaud116, M. Rescigno133a,
S. Resconi90a, B. Resende137, P. Reznicek99, R. Rezvani159, A. Richards78, R. Richter100, E. Richter-Was4,ac,
M. Ridel79, M. Rijpstra106, M. Rijssenbeek149, A. Rimoldi120a,120b, L. Rinaldi19a, R.R. Rios39, I. Riu11,
G. Rivoltella90a,90b, F. Rizatdinova113, E. Rizvi76, S.H. Robertson86,j , A. Robichaud-Veronneau119, D. Robinson27,
J.E.M. Robinson78, A. Robson53, J.G. Rocha de Lima107, C. Roda123a,123b, D. Roda Dos Santos29, D. Rodriguez163,
A. Roe54, S. Roe29, O. Røhne118, V. Rojo1, S. Rolli162, A. Romaniouk97, M. Romano19a,19b, V.M. Romanov65,
G. Romeo26, E. Romero Adam168, L. Roos79, E. Ros168, S. Rosati133a, K. Rosbach49, A. Rose150, M. Rose77,
G.A. Rosenbaum159, E.I. Rosenberg64, P.L. Rosendahl13, O. Rosenthal142, L. Rosselet49, V. Rossetti11,
E. Rossi133a,133b, L.P. Rossi50a, M. Rotaru25a, I. Roth173, J. Rothberg139, D. Rousseau116, C.R. Royon137,
A. Rozanov84, Y. Rozen153, X. Ruan32a,ad, F. Rubbo11, I. Rubinskiy41, B. Ruckert99, N. Ruckstuhl106, V.I. Rud98,
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Italy
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy
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